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ABSTRACT
Large scale information systems, such as public informa-
tion systems for light-train/metro networks, must be able
to fulfill contractualized Service Level Agreements (SLAs) in
terms of end-to-end latencies and jitter, even in the presence
of faults. Failure to do so has potential legal and financial
implications for the software developers. Current middle-
ware solutions have a hard time coping with these demands
due, fundamentally, to a lack of adequate, simultaneous,
support for fault-tolerance (FT) and real-time (RT) tasks.
In this paper we present Stheno, a general purpose peer-to-
peer (P2P) middleware system that builds on previous work
from TAO and MEAD to provide: (a) configurable, trans-
parent, FT support by taking advantage of the P2P layer to-
pology awareness to efficiently implement Common Of The
Shelf (COTS) replication algorithms and replica manage-
ment strategies, and; (b) kernel-level resource reservation
integrated with well-known threading strategies based on
priorities to provide more robust support for soft real-time
tasks. An evaluation of the first (unoptimized) prototype for
the middleware shows that Stheno is able to match and often
greatly exceed the SLA agreements provided by our target
system, the light-train/metro information system developed
and maintained by EFACEC, and currently deployed at mul-
tiple cities in Europe and Brazil.

Categories and Subject Descriptors
C.4 [Performance of Systems]: [design studies, fault tol-
erance, reliability, availability, and serviceability]; C.1 [Proc-
essor Architectures]: Parallel Architectures—distributed
architectures; C.3 [Special-Purpose and Application-
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Based Systems]: [real-time and embedded systems]
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1. INTRODUCTION
At EFACEC1 we have to handle a multitude of applica-

tion domains, including: information systems used to man-
age public, high-speed, transportation networks; automated
power management systems that handle smart grids, and;
power supply systems, that monitor power supply units us-
ing embedded sensors. Such systems typically transfer large
amounts of streaming data; have erratic periods of extreme
network activity; are subject to relatively common hardware
failures and for comparatively long periods, and; require low
jitter and fast response time for safety reasons, e.g., vehicle
coordination.

Target Systems
The main motivation for this work was the need to address
the requirements of the public transportation solutions at
EFACEC, more specifically, the middleware that supports
the, non safety-critical, information systems for light-train
networks. One such system is deployed at Oporto’s light-
train network and is composed of 5 lines, 70 stations and
approximately 200 sensors. Each station is managed by a
computational node, designated as peer, that is responsible
for managing all the local audio, video, display panels, and
low-level sensors such as track sensors for detecting inbound
and outbound trains.

The system supports three types of traffic: normal - for
regular operations over the system, such as playing an au-
dio message in a station through an audio codec; critical -
medium priority traffic comprised of urgent events, such as
an equipment malfunction notification; alarms - high pri-
ority traffic that notifies critical events, such as low-level
sensor events. Independently of the traffic type, the SLAs
must be met by EFACEC even under faults, namely: a) any
operation must be completed within 2 seconds (e.g., RPC

1EFACEC, the largest Portuguese Group in the field of
electricity, with a strong presence in systems engineer-
ing namely in public transportation and energy systems,
employs around 3000 people and has a turnover of al-
most 1000 million euro; it is established in more than 50
countries and exports almost half of its production (c.f.
http://www.efacec.com).



invocation and event processing), and; b) the system must
be able to sustain 200 events per second.

1.1 Challenges and Opportunities
The current architecture at EFACEC uses a rigid cen-

tralized, client-server architecture based on a proprietary
CORBA implementation that only works for small deploy-
ments, i.e., deployments with tens of nodes. For example,
the Oporto’s light-train system follows a tree-like deploy-
ment, with 3 levels of depth, where the root node is com-
posed of the main server and the intermediary level nodes
(2nd level) are composed of regional servers with the pur-
pose of aggregating, without redundancy, a variable set of
stations (3rd level). As such, in the presence of faults and
in overloading conditions, the current solution barely meets
the SLAs and does not support fault-tolerance.

At EFACEC we started working on a middleware that
could solve the limitations of the current solution. From the
point of view of distributed architectures, the current de-
ployments would be best matched with P2P infra-structures
that are resilient and allow resources (e.g., a sensor con-
nected through a serial link to a peer) to be seamlessly
mapped to the logical topology. In addition to provide the
infra-structure, the overlay should also provide support for
soft real-time (RT) tasks and fault-tolerant (FT) services.

RT is required to ensure that SLAs are meet accordingly
to the systems requirements, e.g., an alarm must reach an
operator within 2 seconds. A failure to meet a RT deadline is
handled at the application level, e.g., a video frame received
with a latency greater than 10 seconds is considered a failure,
while a P2P reorganization operation fails if it takes more
than 1 second to complete.

FT is required to ensure system dependability (and avail-
ability) in the presence of faults, e.g., the alarm must reach
the operator despite the occurrence of failures.

Moreover, the next generation light-train solutions require
deployments across cities and regions that can be overwhelm-
ingly large. Supporting larger deployments in an efficient
way requires some form of scalable hierarchical abstraction
that takes advantage of the underlying P2P organization
while providing more efficient ways for peers to cooperate
and to discover and manage resources. We call this abstrac-
tion a cell, that is composed of several peers that cooperate
to maintain a portion of the mesh, and it is akin, e.g., to
Gnutella’s ultrapeers [8].

The main challenge in the development of such of a mid-
dleware system is that of seamlessly and efficiently inte-
grating real-time and fault-tolerance support. Considering
current state-of-the-art research we see many opportunities
to address this issue. One is the use of Common Of The
Shelf (COTS) operating systems (Linux) that allows for a
faster implementation time, thus smaller development cost,
while offering the necessary infrastructure to build a new
middleware system.

RT support can be achieved by enhancing TAO’s [23] and
MEAD’s[16] threading strategies with resource reservation
(e.g., using Linux Control Groups [13] - a low-level resource
reservation mechanism implemented by the kernel) and by
avoiding traffic multiplexing through the use of different ac-
cess points to handle different traffic priorities. Currently,
our resource reservation infrastructure only supports CPU,
but we aim to support memory, network and I/O in the
future.

Moreover, in order to provide reliability and availability
to our target system, we need to provide FT mechanisms
using space redundancy [26], which introduces the need for
the presence of multiple copies of the same resource (repli-
cas), and these, in turn, ultimately lead to a greater resource
consumption. Thus, FT support can have an important im-
pact on RT tasks. When an operation is performed any
state change that it causes must be propagated among the
replicas using a replication algorithm that introduces an ad-
ditional source of latency. Furthermore, the recovery time,
that consists in the time that the system needs to recover
from a fault, is an additional source of latency to real-time
operations.

P2P networks can be used to provide a scalable and re-
silient infra-structure that mirrors the physical deployments
of our target systems. Furthermore, different P2P topolo-
gies offer different trade-offs between self-healing, resource
consumption and latency in end-to-end operations.

Ultimately, by directly implementing FT on the P2P infra-
structure we manage to lower resource usage and latency
to allow the integration of RT. We use proven replication
algorithms [26, 3] that offer well-known trade-offs regarding
consistency, resource consumption and latency, so that we
can focus on the actual problem of integrating real-time,
fault-tolerance within a P2P infrastructure.

To the best of our knowledge, Stheno is the first P2P mid-
dleware system, for general purpose computing, that is able
to provide scalability, while simultaneously supporting both
RT and FT. The contributions of this work include: sup-
port for transparent FT directly at the P2P overlay taking
advantage of its resiliency and topology awareness; exten-
sion of TAO’s and MEAD’s support for RT through the
enhancement of their threading strategies with kernel based
resource reservation (only CPU for now), and; a fully con-
figurable P2P layer (e.g., mesh topology and algorithms and
FT replication algorithms) that provides a good match to
the topology of the physical deployments.

Assumptions
The distributed model used in this paper is based on a par-
tial asynchronous computing model, as defined in [3], ex-
tended with fault-detectors.

The services and P2P layer only support crash failures.
We consider a crash failure [26] to be characterized as a
complete shutdown of a computing instance in the event of
a failure, ceasing to interact any further with the remaining
entities of the distributed system.

The timing faults are handled differently by services and
the P2P layer. In our service implementations a timing fault
is logged (for analysis) with no other action being performed,
whereas, in the P2P layer we consider a timing fault as a
crash failure, i.e., if the remote creation of a service exceeds
its deadline, the peer is considered crashed. This method is
also called as process controlled crash [7]. In this work, we
adopted a more relaxed version. A peer wrongly suspected of
being crashed does not get killed or commits suicide. Instead
it gets shunned, that is, a peer is expelled from the overlay,
and is forced to rejoin it, more precisely, it must rebind using
the membership service of the P2P layer.

The fault model used was motivated by the first author’s
experience on several field deployments of ligth-train trans-
portation systems, such as the Oporto, Dublin and Tenerife
light-train solutions. Due to the use of highly redundant



hardware solutions, e.g., power supplies and 10-Gbit net-
work ring links, network failures tend to be short. The most
common cause for downtime is related with software bugs,
that mostly results in a crashing computing node. While
simultaneous failures can happen, they are considered rare
events.

We also assume that the resource-reservation mechanisms
are always available.

1.2 Related Work
We started by searching for an available off-the-shelf so-

lution that could meet the SLAs from our target systems,
or in its absence, identify a current solution that could be
extended, and in this way, avoid the creation of a new mid-
dleware solution from the ground up. Figure 1 shows the
research space that we have covered.
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FT+P2P

P2P
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RT+FT RT+FT+P2P
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Figure 1: Middleware system classes.

We focused our search on the intersecting domains, namely,
RT+FT, RT+P2P and FT+P2P, as the systems contained
in these domains seemed the most suitable to be extended
to support RT+FT+P2P, as required by our target system.

Within the RT domain, a substantial body of work focused
on the integration of real-time within CORBA [23]. More
recently, QoS-enabled publisher-subscriber middleware sys-
tems based on the JAIN SLEE specification [11] and in the
Data Distribution Service (DDS) specification [18], appeared
as a way to overcome the current lack of support for real-
time applications in SOA-based middleware systems. In the
FT domain, CORBA-based middleware systems were a fer-
tile ground to test fault-tolerance techniques, that resulted
in the creation of the CORBA-FT specification [19]. Nowa-
days, some of this focus was redirected to SOA-based plat-
forms, such as JBoss [14].

The support for RT+FT in general purpose distributed
platforms remains mostly restricted to CORBA, such as
MEAD [16] and TAO [23]. RT support for Java was intro-
duced with the Real-Time Specification for Java (RTSJ) [9],
but it was aimed solely to the Java 2 Standard Edition
(J2SE). Thus, currently, there is no Java application server
(J2EE) able to support RT.

Alternatively, P2P systems evolved and started to focus
on reliability, i.e., FT+P2P, namely through the introduc-
tion of distributed hash tables (DHTs). While some efforts
have been made in the past to provide an uniform Applica-
tion Programming Interface (API) [5] for the various DHTs,
e.g., Chord [25], they usually have a tight integration with
the target application, not providing a general purpose so-
lution to support a wider range of applications. More re-

cently, these type of systems have been focusing in publish-
subscribe systems [20] and storage-based solutions [6].

While most of the focus on P2P systems has been on the
support of FT, there is a growing interest in to the use
of P2P for RT applications, i.e, RT+P2P, namely in video
streaming [10]. Moreover, P2P systems have been focused
on providing Quality-of-Service (QoS) on latency-sensitive
applications, such as Video on Demand (VoD) systems [12]

Nevertheless, we were unable to find a suitable middle-
ware system that could be extended in order to simultane-
ously support RT, FT and P2P. Systems from the RT+FT
domain are not adaptable to the P2P paradigm, whereas
P2P systems do not offer a general purpose framework that
allows to build upon them, forcing us to build a new mid-
dleware solution.

In our first effort to support RT+FT+P2P, DAEM [15],
we used some off-the-self components, e.g., JGroups [2] to
manage replication groups, but realized that in order to inte-
grate real-time and fault-tolerance within a P2P infrastruc-
ture, we would have to completely control the underlying
infrastructure with fine grain management over all the re-
sources available in the system. Thus, the use of COTS soft-
ware components creates a ”black-box”effect that introduces
sources of unpredictable behavior and non-determinism that
undermines any attempt to support real-time. For that rea-
son, we opted to create a solution from scratch.

The middleware system presented in this work, Stheno,
is to the best of our knowledge the first general purpose
middleware system that simultaneously supports RT and
transparent FT within a P2P infrastructure.

2. ARCHITECTURE
As we noted above, current state-of-the-art middleware

systems [16, 23] address this problem by offering soft real-
time computing and fault-tolerance support. Nevertheless,
their support for real-time computing is limited, as they do
not provide isolation, e.g., a service can hog the CPU and ef-
fectively starve the remaining services. The support for FT
is normally accomplished through the use of high-level ser-
vices. Furthermore, enhancing FT with topology awareness
requires additional high-level services [1]. However, these
high-level services cause a significant amount of overhead,
due to cross-layering and long code-paths, limiting the real-
time capabilities of these middleware systems.

These systems also used a centralized networking model
that is susceptible to single point-of-failure and offers lim-
ited scalability. The CORBA naming service is an example
of these limitations, where a crash failure can effectively stop
an entire system because of the absence of the name resolu-
tion mechanism.

Next, we present the architecture of Stheno and show how
it addresses the aforementioned problems. The resilient na-
ture and topology awareness of P2P overlays enables us to
overcome the limitations of current approaches by offering a
decentralized and reconfigurable fault resistant architecture
that avoids bottlenecks, and thus enhances overall perfor-
mance.

2.1 Stheno’s System Architecture
In order to contextualize our approach, we will present our

solution applied to one of our target systems, the Oporto’s
light-train public information system. As shown in Figure 2,
the network uses a hierarchical tree-based topology, that is



based on the P3 overlay [17], where each cell represents a
portion of the mesh space that is maintained (replicated)
by a group of peers. These peers provide the computational
resources needed to maintain the light-train stations and
host services within the system. Additionally, there are also
sensors that connect to the system through peers. These
offer an abstraction to several low-level activities, such as
traffic track sensors and video camera streams.

Figure 2: Stheno overview.

The middleware’s runtime provides the necessary infra-
structure that allows users to launch and manipulate ser-
vices, while hiding the interaction with the low level peer-to-
peer overlay and operating system mechanisms. It is based
on a five layer model, as shown in Figure 2.

The bottom layer, Operating System Interface, encapsu-
lates the ACE [22] network framework and the Linux operat-
ing system. ACE provides abstractions to the operating sys-
tem calls with the goal of achieving portability. The Support
Framework is built on top of the bottom layer, and offers
a set of high-level abstractions for efficient, modular com-
ponent design, e.g., threading strategies and the resource
reservation infra-structure. The P2P Layer and FT Config-
uration contains all the peer-to-peer overlay infrastructure
components and provides a communication abstraction and
FT configuration to the upper layers. The runtime can be
loaded with a specific overlay implementation at bootstrap.
The middleware is parametric in the choice of the overlay,
configurable at bootstrap time. The Core layer represents
the kernel of the runtime, and is responsible for managing all
the resources allocated to the middleware, the peer-to-peer
overlay and the middleware services by interacting with a
QoS daemon. Note that, while each machine can hold mul-
tiple peers from an overlay (instances of the runtime), it
runs a single instances of the QoS daemon which is used by
all local peers. Finally, the Application and Services layer is
composed of the applications and services that run on top
of the middleware.

2.2 Discussion
Our middleware platform is able to provide QoS comput-

ing with support for resource reservation through the im-
plementation of a QoS daemon. This daemon is responsible
for the admission and distribution of the available resources
among the components of the middleware. It interacts with

the low-level resource reservation mechanisms of the oper-
ating system to perform the actual reservations. With this
support, we provide proper isolation that is able to accom-
modate soft real-time tasks in order to maximize the proba-
bility of meeting the target SLAs. Whilst the use of Earliest
Deadline First (EDF) scheduling would provide greater RT
guarantees, this goal was not be pursued due to the lack of
maturity of the current EDF implementations in Linux (our
reference COTS operating system). Because we are limited
to use priority based scheduling and resource reservation, we
can only partially support our goal of providing end-to-end
guarantees, more specifically, we enhance our RT guaran-
tees through the use of RT scheduling policies with over-
provisioning to improve the odds that deadlines are met.

While we currently only support CPU reservation, the ar-
chitecture was designed to be extensible and subsequently
support additional sub-systems, such as memory and net-
working resource reservations.

Notwithstanding, the real-time capabilities are limited by
the amount of resources that are needed to provide fault-
tolerance. To overcome the current limitations of provid-
ing fault-tolerance through the use of expensive high-level
services, we propose the integration of the fault-tolerance
mechanisms directly in the the overlay layer. This provides
two advantages over the previous approaches: a) it allows
the implementations of lightweight fault-tolerance mecha-
nism by reducing cross-layering, and; b) the replica place-
ment strategies can be optimized using the knowledge of the
overlay’s topology. Previous systems relied on manual boot-
strap of replicas, such as TAO [23], or required the presence
of additional high-level services to perform load balancing
across the replica set, as in FLARe [1].

While the work presented in this paper only implements
semi-active replication [21], we designed a modular and flex-
ible fault-tolerance infrastructure that is able to accommo-
date other types of replication policies, such as passive repli-
cation [4] and active replication [24].

Given that we wanted to use COTS operating systems
and hardware, we used the ACE framework [22] to abstract
the underlying operating system infrastructure and therefore
minimize the effort required to port the runtime to a new
platform.

3. IMPLEMENTATION
We will limit the discussion on Stheno’s implementation

to our main contributions: real-time support through the
extension of TAO and MEAD threading strategies with re-
source reservation, provided on top of Linux’s Control Groups,
and the implementation of transparent and topology aware
FT mechanisms directly in the P2P layer.

3.1 Real-Time and Resource Reservation
One of the key aspects of real-time systems is the ability to

fulfill a SLA even in the presence of an adverse environment.
Adversities such as system overload or bugs can be caused
by rogue services, device drivers, or kernel modules.

Our approach to improve support for RT is accomplished
by the isolation of the various components present in the
runtime through resource reservation. This is achieved by
using the Control Groups facility provided by the Linux ker-
nel. Figure 3 shows an overview of Stheno’s resource reser-
vation infra-structure.

The QoS Controller acts as a proxy between the compo-



Figure 3: QoS infra-structure.

nents of the runtime and the QoS daemon. Each component
has access to resources that are assigned at creation time. A
component uses its resources through a QoS Client, that was
previously assigned to it by the QoS Controller. A resource
reservation request is created by a QoS Client and then gets
re-routed by the QoS Controller to the QoS daemon. In the
current implementation, the allocation of resources is static.
A dynamical reassignment of the resources allocated to a
component is left for future work.

The goal of the QoS daemon is to provide an admission
control and management facility that governs and interacts
with the underlying Control Groups infrastructure through
the /proc pseudo-filesystem. Control Groups supports four
main QoS subsystems: CPU, I/O, memory and network. At
this time, we only have full support for the CPU subsystem.

All the subsystems supported by Control Groups follow
a hierarchical tree approach to the distribution of their re-
sources. Each node of the tree represents a group that con-
tains a set of threads that share the available resources of
the group. For example, Figure 3 depicts a possible sce-
nario where a peer has statically partitioned the available
CPU cores (in this case a quad-core) between 2 indepen-
dent partitions. The first partition, composed of core 0, is
dedicated to the Linux operating system, while the second
partition, composed of cores 1,2 and 3, is dedicated to host
Stheno’s runtimes. In this case, the available resources were
divided equally between two runtimes (runtime B composi-
tion is omitted for simplicity), with each one receiving 50%
of the CPU time (of cores 1,2 and 3). Looking closely to
runtime A, we can see that its resources were also divided
equally between the P2P layer and its services. While we
could have further divided the resources allocated to the
P2P layer among its services (FT, discovery and member-
ship), we choose to aggregate them into the leaf designated
as ”P2P”. This was done in order to maximize the available
resources to the FT service, i.e., although some contention
occurs from this sharing of resources, each individual ser-

vice has access to a large resource pool. On the other hand,
the services allocated to runtime A were isolated from each
other, in order to guarantee that they do not interfere.

3.2 P2P and Fault-Tolerance
As previous stated, we use a P2P overlay based on the

P3 framework [17] because it best suits our target system,
but other topologies, such as Chord [25] or Gnutella [8], can
be used as appropriate for the target system.

Within a P3 cell, peers collaborate to maintain a portion
of the overlay. Cells provide resilience to the overlay and
improve the efficiency of resource discovery. In each cell
there is one coordinator peer. Every other peer in the cell
is connected to the coordinator, allowing for efficient group
communication. In the case of failure of a coordinator, one
of the other peers in the cell takes its place, following an
overlay specific algorithm.

The communication between cells is accomplished through
point-to-point connections (TCP/IP sockets) between the
coordinators. Sensors are not required to help with mesh
management. They are usually low resource peers that use
the overlay capabilities, for instance, to advertise the avail-
ability of a data stream or events.

A P2P overlay implementation must provide three basic
services: the membership, discovery and, fault-tolerance ser-
vices.

The Membership Service. This service is responsible
for the building and maintenance of the mesh by allowing
peers to join and leave the overlay. When a peer wants to
join the overlay, it first requests the root cell (that acts as
a portal to the overlay) to obtain a suitable binding cell. If
there is no available cell to accept the incoming peer, then
a new cell must be created and the root cell replies with a
message containing the coordinator of the parent cell (of the
newly created cell) and the new cell identifier. Otherwise, if
there is a cell willing to accept the new peer, i.e., a cell that
is not completely full, then it joins this active cell. In this
case, the reply message contains the cell’s coordinator infor-
mation and also the cell identifier. In both cases, the joining
peer connects to the proper coordinator (i.e. the parent co-
ordinator if this is a new cell, or the cell’s coordinator if this
is an active cell) and sends a join message. This message is
propagated through the overlay until it reaches the root cell.
It is the responsibility of the root cell to validate the join
request and to reply accordingly. The reply is propagated
through the overlay downwards to the joining peer. After
this, the peer is part of the overlay.

The Discovery Service. The P3 discovery service uses
the hierarchical topology of the mesh to efficiently resolve
query requests. When a query is received, the overlay first
tries to resolve it locally, and only if this is not possible, it
propagates the request to the cell’s coordinator. If the co-
ordinator is also unable to reply to the request, the request
is propagated once more to its parent coordinator and the
process is repeated recursively until a coordinator is able to
reply. If this process reaches a point where there is no par-
ent coordinator available, i.e. the root node, the process fails
and a failure reply is sent downwards to the originating peer.

The Fault-Tolerance Service. The fault-tolerance ser-
vice is built on top of the notion of replication groups. A



replication group can be defined as a set of cooperating
peers that have the common goal of providing reliability to
a high-level service. Previous work [16, 23], implemented
FT support through a set of high-level services that used
the underlying primitives of the middleware. Our approach
makes a fundamental shift to this principle, by embedding
this lightweight FT support at the overlay layer.

Each replication group implements its own replication al-
gorithm. This allows different services to use different repli-
cation algorithms, e.g., passive [4], semi-active [21] and ac-
tive [24], inside the FT service.

The integration of FT in the overlay reduces the overhead
of cross-layering that is associated with the use of high-level
services. Furthermore, this approach also enables the run-
time to make decisions on the placement of replicas that are
aware of the overlay topology. This allows a better leverage
between resiliency and resource usage. For example, placing
replicas in different geographic locations leads to a better re-
siliency, but can be limited by the availability of bandwidth
over WAN links.

Figure 4: Replication group overview.

Figure 4 shows an overview of the FT service, more specif-
ically, of the bootstrap process of a replicated service. It
starts with a peer, in this case referred to as user, request-
ing the creation of a replicated service to peer A, using the
membership service. At this point, peer A receives the re-
quest (1), and forwards it to its core. Here in a process
referred as createFTService, it verifies if it is able to host
the service. If enough resources are available for hosting the
service, that will act as the primary service instance, then
the core makes the necessary resource reservations for sup-
porting both the service instance and the replication group
(2 and 3). The core delegates to the FT service the respon-
sibility of creating the actual replication group object that
will support the replication infrastructure for the service.
The type of replication group and the number of replicas
depends on the FT parameters embedded in the user’s re-
quest. Peer A searches for suitable deployment sites in order
to match the required number of replicas, using the overlay’s
discovery service (step omitted). After finding these sites,
the primary starts creating the replicas sequentially, using
the FT service. The creation of one of these replicas is illus-
trated in peer B (steps 5 to 9). Upon receiving this request
(5), peer B redirects it to its core, where is handled by the
process joinRG. Peer B does the same procedure as peer A,
it checks if the necessary resources are available and makes
the resource reservations (6 and 7). Peer B then requests
the FT service to join the replication group created by peer
A (8). This results in the creation of the local replication
group object that makes the final reply to peer A, acknowl-

edging its membership to the replication group (9). This
process is repeated in all the peers selected by the discovery
service to host replicas.

4. EVALUATION
The physical infra-structure used to evaluate the middle-

ware prototype consists of a cluster of 20 quad-core nodes,
each equipped with AMD Phenom II X4 920@2.8Ghz CPUs
and 4GB of memory, totaling 80 cores and 80GB of mem-
ory. Each node was installed with Ubuntu 10.10 and kernel
2.6.39-git12. The physical network infrastructure was a 100
Mbit/s Ethernet with a star topology.

At bootstrap, the middleware starts by building a peer-
to-peer overlay with a user specified number of peers and
sensors. The peers are grouped in cells that are created
according to the rules of the underlying P3 overlay. Overlay
properties control the tree span and the maximum number
of peers per cell at any given depth. For the results gathered,
we used a binary tree with 3 levels of depth, with 4 peers in
the cell of the first level, 3 peers for the 2 cells in the second
level and 2 peers for the 4 cells in the third level.

RPC Benchmark
The RPC service executes a procedure in a foreign address
space. This is a standard service in any middleware system.
A primary server receives a call from a client, executes it,
and updates the state in all service replicas. When all repli-
cas acknowledge the update, the primary server then replies
to the client. In the absence of fault-tolerance mechanisms,
the primary server executes the procedure and immediately
replies to the client.

To evaluate the RPC service we used the maximum avail-
able priority of 48 (for the services). This was done to pre-
vent starvation of the kernel threads that handle both the
low-level Control Groups infrastructure and the interrupt
handling. Thus priorities above 48 are only used by the
Linux operating system.

The remote procedure simply increments a counter and
returns the value. We performed 1000 RPC calls each run,
with an invocation rate of 250 per second.

Load Generator
Complex distributed systems can be affected by the pres-
ence of rogue services that can become a source of latency
and jitter. We evaluate the impact of the presence of such
entities by introducing in each peer a load generator service.
The later spawns as many threads as the logical core count
of the CPU. Unless explicitly mentioned, the threads are
allocated to the SCHED_FIFO schedule class, with priority
48. This scheduling policy represents the worst case scenario
of unwanted computation. Given a desired load percentage
p (in terms of the total available CPU time), each thread
continuously generates random time intervals (up to a con-
figurable maximum of 5ms). For each value it calculates
the percentage of time that it must generate load (this is
achieved by a set of mathematical operations with the sole
purpose of avoiding any optimizations by the compiler) so
that it equals p. For example, if the desired load is 75% and
the value generated is 4ms, then the load generator must
compute for 3ms and sleep for the remainder of that time
lapse.

The experiments were tested with increasing load values
(5% step), up to a maximum of 95%. For each of these con-
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Figure 5: End-to-End latency.

figurations we ran the benchmark 16 times, and computed
the average and the 95% confidence intervals (represented as
error bars). A vertical dashed line corresponding to a load
of 90% is used as a reference for the case where resource
reservation is enabled.

4.1 End-to-End Latency Results
In this experiment no faults were injected in the system.

The invocation latencies without resource reservation de-
picted in Figure 5(a) show that up to loads of 35% the
FT mechanisms introduce low overhead and low jitter. The
maximum invocation latency registered, while using 4 repli-
cas, was about 300ms per invocation.

On the other hand, The results from the runs using re-
source reservation can be seen in Figure 5(b). The fact that
the RPC service is now isolated, at least in terms of CPU,
from the remainder of the system, contributes to its almost
constant latencies and stability (low jitter) with increasing
peer loads. The invocation latency also shows the natural
increase with the number of replicas. The maximum invo-
cation latency with resource reservation and using 4 replicas
was of 1ms per invocation.

4.2 Fail-over Latency Results
The results for the fail-over latency without resource reser-

vation can be seen in Figure 6(a). A single fault was injected
in the service at half-time through the execution. The la-
tency values are measured by the client, from the time it
first detects the fault until it is able to rebind to the service.
In general, the rebind latency presents a stepper increase
when compared to invocation latency, although the differ-
ences with varying number of replicas are masked by jitter.
The rebind process involves several steps: failure detection;
election of a new primary server; discovery of new primary
server, and; transfer of lost data. In each step, the increas-
ing load introduces a new source of latency and jitter that
accumulates to the overall rebind time. In this implementa-
tion the client must use the discovery service of the mesh to
find the new primary server. This step could be optimized,
for example, by keeping track of the replicas in the client.
Despite this, the rebind latency remains fairly constant up
to loads of 40% to 45%. The maximum fail-over latency
without resource reservation was of 3s.

The results for the fail-over latency with resource reser-
vation can be seen in Figure 6(b). With the introduction
of resource reservation, the fail-over latencies remain fairly
low even with the increase in load. The maximum fail-over
latency with resource reservation was below 20ms.

Stheno provides a low end-to-end response time that com-
bined with a low fail-over latency enables it to meet and ex-
ceed the target system requirements (2s end-to-end response
time), even under the presence of a fault.

5. CONCLUSIONS AND FUTURE WORK
To the best of our knowledge, Stheno is the first system

that: a) supports traffic types with different soft-RT require-
ments; b) supports different FT configurations; c) supports
configurability at multiple levels: P2P, RT and FT, and; d)
continues to meet RT requirements even under faults.

Our empirical evaluation shows that Stheno meets and ex-
ceeds target system requirements for end-to-end latency and
fail-over latency, and thus validates our approach of imple-
menting fault-tolerance mechanisms directly over the peer-
to-peer overlay infrastructure as a way to minimize overhead
and simultaneously support RT tasks.

For future work, we would like to evolve from a prior-
ity approach to a deadline approach, using the upcoming
Linux’s EDF scheduler, in order to improve the guarantees
on the fulfillment of SLAs.
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