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A b s t r a c t  

This work describes a disk-resident database for Prolog which uses mechanisms 
similar to the ones used by the clausal database for recording and retrieving terms. 
It is intended to be used by applications requiring a flexibility greater than that 
provided by an interface to traditional database system. There is almost no restric- 
tion on the terms stored in the database and the retrieval mechanisms produces 
terms in the order they were recorded. To enhance the performance of the sys- 
tem, the database organization provides an access mechanism using hash-codes on 
"key" arguments of the recorded term. The database also provides basic support 
for multi-user access. 

Area  : Architectures and Languages / Logic Programming 

1 I n t r o d u c t i o n  

Although many Prolog implementations provide mechanisms for interfacing with classic 

database systems, in some situations those systems are not suited to store the kind of 

da ta  needed by the applications. This is the case of applications where the da ta  takes 

the form of complex Prolog terms representing, for instance, expert  sys tem rules, natural  

language g rammar  rules or dictionary entries. 

Such systems are implemented, at least in a first stage, using the clausal database or, 

if one exists, an internal database.  When a great amount  of da ta  is needed the choice 

is usually a relational database system. A certain relationship between the relational 

model and Prolog is then assumed: 

relation ~ predicates 

tuple ; clause 

at t r ibute  . . . .  argument  
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This relationship enables the implementation of relational databases in Prolog. On the 

other hand, due to some of the characteristics of the relational model the arrows cannot 

be reversed: 

data  structure 

domains 

Relational Model 

atomic values 

(and NULLS) 

n-ary relations n > 0 

set of unordered tuples 

data  integrity constrains 

keys primary keys cannot 

be NULL 

data manipulation 

qugries return a table 

Prolog 

all kinds of terms 

(including list, functor-terms and 

variables with multiple occurrences) 

n > O  

set of ordered tuples 

no restrictions on 

particular arguments 

a clause at a time is returned 

trough backtrack 

The use of clauses (or the internal database) to store the data. has, however, the 

following drawbacks: all the data. must be resident in memory, there is no persistence, 

and no mechanisms for multi-user access are provided. 
This work describes an external database, which aims at overcoming the inconvenients 

mentioned above, for the YAP Prolog system [Damas et al.]. YAP is based on a portable 

Prolog compiler compatible with C-Prolog. Like the YAP compiler, the external database 

is written in C and runs at present under the UNIX operating system. It was developed 

in a SUN3/60 workstation. 

The external database began originally as a permanent (i.e. disk resident) version of 

the internal database. In the sequel, features were included to make multi-user access 

possible. 

No restrictions are imposed on the terms stored in the database. They may contain 

variables with multiple occurrences, and may have any size or depth. Thus any kind of 

information representable by a Prolog term may be recorded. 

Simultaneous use of the same database file by several Prolog programs is supported 

through predicates for modifying a term while guaranteeing exclusive access to it so tha t  

database consistency can be kept. 

It should be stressed that the aim of this work was to implement a tool for Prolog 

applications that need to store a great amount of data  using all the flexibility of the 

clausal database. It is, by no means, intended to produce a full-fledged relational database 

system using Prolog as a query language or as an host programming language. Therefore, 

only the basic aspects of database access and control are addressed. Some functions 

usually found in conventional database management systems, such as query optimization, 
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integrity constrains, security, and views were totally ignored. They can be implemented, 
in Prolog, using well known techniques [Parsaye]. 

2 Conceptual  Architecture of the Database  

As mentioned in the introduction, the database was originally modeled on the clausal 
database of Prolog systems, and so it can be seen, in a simplistic way, as an ordered 

collection of Prolog terms which is accessed and modified through the following kinds of 

primitives: 

recorded_db(X) 
erase_db(X) 
record_db(X) 

for querying the database 
for removing a term from the database 
for inserting a term a the the end of the database 

In clausal database unification is the matching mechanism beetwen clauses and goals. 

Following the same paradigm the external database is searched for terms unifying with 
the argument of the recorded_db(X) predicate. We also include two other forms of this 

predicate. They use, as a matching criteria, the term stored in the database being an 
instance of the argument, and equality of terms modulo variable names. Note also that 
this predicate is backtrackable and, thus, can be used to access, by backtracking, all the 

terms matching its argument. 
The erase_db(X) predicate removes the first term matching its argument from the 

database. As with the recorded_rib/1 predicate, there are two other forms of this pred- 

icate with different matching criteria. 

Although the outlined above was a starting point for the design of the conceptual 
architecture of the external database, it is obvious that, in order to achieve efficiency 

and multi-user" support, same changes were required. 

Firstly, most of the applications organize data around classes of terms similar to the 
notion of relation in the conventional database systems. This led us to change our view 
of the database as an ordered set of terms with the same functor. Since the only Prolog 
terms with no functor are the atomic ones, they are collected in a "functor-less" relation. 

This forced us to restrict the arguments of the basic access predicates described above 
to be non-variables. In order to improve the efficiency of the access for a given relation, 

the programmer can use the predicate 

relation_usage(Name ,Arity, Indices) 
to specify indexing information for the relation name Name with arity Arity.  This does 
not impose any restriction on the terms used as arguments of the basic access predicates 
as it only conveys some pragmatic information for speeding up database look up. This 

predicate can also be used to retrieve information about the indices currently used by a 

relation (for instance, to be used in query optimization). 
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Secondly, in certain uses of the database system updating is very frequent. To cater 
for this in an efficient way, instead of deleting and recording the modified term, the 

predicate 
modif y_db (T, Updat eGoal, NewT) 

was introduced. It replaces a term T with the term NewT after executing the Prolog 
goal UpdateGoal. Note that this predicate is applied only to the first term matching 

T for which the update goal succeeds. It fails when no such term is found. A similar 
predicate is available to modify all terms matching the specification. Again, variations 

of this predicates, using different matching criteria, are provided. 
The database integrity can be kept in multi-user applications by using the modify_rib/3 

predicate since it guarantees exclusive access to the term being modified. To see how this 
predicate works, consider the case where we want to interchange the second argument 
(the first is the key argument and cannot be changed) of two terms with the main functor 

£ncorae/2. This can be achieved through the following code using two nested calls of the 

modify_rib/3 predicate. 

modify_db(income(zp,X), 
modify_db(income(pr,Y),true,income(pr,X)), 
income(zp,Y)) 

3 Implementat ion Decisions 

A database with the characteristics described in the previous section must have certain 

restrictions in the choice of the access mechanisms: 
1) Apart from the indexed access that is naturally expected, the database must provide 

a default search, to guarantee, in all cases, the order of recovery. 

2) In the indexed access: 
a) - No requirement on the uniqueness of the key (as they are not required for 

Prolog clauses). 

b) - The terms with the same key arguments must be sorted by their recording 

or def. 
c) - Variables can occur in terms in arguments used as keys. The search method 

must allow it and garantee that terms are recovered in the correct order. 

3) The search method must be compatible with backtracking and consistent when used 

with it. 

The methods used in the first versions of the database are the hash addressing in its 
basic form, combined with linear search as default. They were chosen for their simplicity 

and comparative efficiency when used with medium sized stable relations. As we shall 

see, they meet all the previous specifications. 
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Other index addressing methods with the characteristics discussed above could be 

implemented, in particular to deal with large or dynamic relations. A method of the 

B-Tree family seems to be particularly recommended for this purpose and its implemen- 

tat ion is expected in future versions. 

The type of applications for which this database was designed will generally need a 

fast access to the recorded data. With this system we expect to have an access time of the 

same order of magnitude of the memory resident databases, i.e. databases using clauses 

or an internal database; at least with small and medium sized relations. To achieve this 

goal, it is necessary not only to have a fast access method but also to use a caching 

mechanism to maintain the information in memory as long as possible. 

The UNIX file system offers a service of that kind that  could partially solve this 

problem, but we have found it inappropriate for our purposes. 

In the remainder of this section the implementation of this topics will be discussed in 

more detail. 

3 . 1  G e n e r a l  a c c e s s  m e c h a n i s m  

The fact that the database must provide an access to terms through unification and must 

retrieve terms in the order in which they were recorded, precludes, in general, the use 

of the traditional database access mechanisms. It is obvious that,  in general, we must 

resort to a linear search method to retrieve the terms that  match a given term. Since 

unification is an expensive operation we use a technique known as "pre-unification" that  

speeds up linear search by avoiding the need to access the complete representation of 

terms within a relation. This technique, which is also used in the internal database of 

YAP, and was previously described in [Futo et al.], works as follows. 

We associate with each term recorded in the database two codes. One is based on 

the concatenation of the hash codes of up to the first 8 arguments of the term. The hash 

code for each argument ta.kes into consideration the type and value of the argument. The 

second code is a binary number with zeros on positions corresponding to variables. 

These codes can be used as a very fast test to decide whether or not two terms are 

unifiable. For that  purpose~ the bitwise conjunction of the arguments code of the first 

term and the variables code of the second term, and vice-versa are compared. The terms 

can not unify if the results are not the same. 

The pre-unification test is used as follows. 

For each relation, we keep a linear table at the end of which we add, every time a 

term is recorded, a pointer to the representation of the term, and the codes described 

above. 

When searching for terms pre-unifying with a given term we compute two similar 

codes for that term, and make a linear scan of the table for those entries for which the 

unification test succeeds. Only after the test succeeds we fetch the term from the disk 
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and perform the unification. This process reduces both the number of unifications and 

accesses to disk. 

3 . 2  I n d e x  A c c e s s  M e c h a n i s m  

In the current database implementation the index access mechanism is based on hashing. 

We shall see tha t  this method meets all predefined specifications. 

I t  is trivial to verify tha t  this method accepts more than one te rm with the same key. 

The  term insertion order is preserved, provided the terms in each hash-bucket  are 

maintained in the same order in which they were recorded. Note, in passing, tha t  meth-  

ods closely related to this one for par t ia l -match retrieval, such as those proposed in 

[Chomicki et al.] , could not be used directly as a general access method,  since they 

would not respect the order in which the terms were recorded, and would require the 

uniqueness of the key arguments. 

Terms with variables in the key arguments have a replica in every bucket. In this way, 

not only a certain locality of the search - which increases its efficiency - results, but also 

the appropriate  order of retrieval is ensured. It  can be assumed that  there will not be 

too many terms with variables in the key arguments,  so that  the cost of this redundancy 

is not expected to be very high. 

As mentioned in the previous section the user can employ the relation_usage/3 
predicate to specify one or more sets of arguments to be used as (ground) indices. If  none 

is specified by the user the system will use the set consisting of just  the first argument.  

Of the several indexing sets specified for a relation, we will distinguish one as the 

preferred indexing set and will refer to the others as the secondary indices. 

The tuples of a relation are divided into buckets using an hash function on the argu- 

ments specified by the preferred indexing set. In a bucket directory we will find, for each 

possible hash-code, a pointer to a sequence of disk pages containing the representation 

of the terms having that  particular hash-code. Note that  under each hash bucket, the 

terms are kept in the order in which they were recorded. 

A similar organization is used for secondary indices but  the information under each 

bucket consists of pointers to the representation on the terms instead of the te rms them- 

selves. 

To look up a term we s tar t  by checking if, for any of the indexing sets, all the 

relevant arguments are non-variables. If is not the case we use the general access method 

previously described. 

Then,  an hash function is applied to the key arguments in order to compute  the 

bucket 's  number and the bucket directory is consulted to find the sequence of terms with 

tha t  particular hash-code. Finally every te rm in that  sequence is checked for a matching 

with the initial term. 

The  hash function of a term is computed from the partial  hash functions of each key 

argument.  The hash value is the remainder of the division of the sum of those values 
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by the number of buckets. In a numerical argument,  the partial  hash function result 

is its value. In all other cases the partial  hash function is computed from the string 

of characters of the argument external representation. The sum of the characters code 

shifted to the left by their position in the string has been found to be a well distributed 

hash function for a wide range of applications. 

When a new relation is created a certain number of hash-buckets is assigned to it. I f  

the number  of tuples of a relation grows so much that  the number of pages of an hash- 

buckets exceeds a pre-defined value - usually 1 - the number  of buckets in the bucket 

directory will be doubled in order to keep the average number  of terms in each bucket 

within reasonable bounds. 

3.3 Backtrack ing  

As we have seen in the introduction, the backtracking mechanism will access a database 

t e rm at a time. The  information needed to handle backtracking is maintained in the 

execution stack: as records (or pointers to them) are clustered by their insertion order it 

is enough to save in the stack the position of the record (pointer) where the last match-  

ing te rm was found. Actually more information is kept in stack to avoid unnecessary 

calculations and searches during backtracking. 

We had a special concern about  the consistence of backtracking when a relation is up- 

dated before the next backtrack. A particular problem could arise in the indexed search. 

Consider the execution of a goal were recorded_db/1  predicate has succeeded n times 

and the subsequent insertion of a new term causes an automatic  relation restructuring 

before the next backtracking, possibly moving all terms with the relevant key value to 

another page. For instance, the execution of the goal 

• - r e c o r d e d _ d b ( : f ( a , X ) ) ,  r eco rd_db( : f (b ,X) ) ,  : f a i l .  

could lead to an inconsistency of that  kind. 

To avoid this kind of inconsistency, when a relation restructuring has occurred before 

the next backtrack, the search will continue in the new page and the first n matching 

terms will be skipped. 

3 . 4  B u f f e r i n g  M e c h a n i s m  

To improve the database efficiency and reduce the number of disk accesses, the system 

uses a pool of buffers as a cache mechanism for disk pages. 

All the access to database pages is done through these buffers which are kept in 

memory  as long as possible. When a buffer is needed to access a database page and 

there is none free, the database releases the least recently used one. This decision is 

made taking into account both the number of accesses to the pages and the "t ime" of 

the last access. 
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Even with this mechanism a page that  is currently buffered may have to be re-read. 

If the database file is in use by several users and is updated then all other users having 

a private copy of the updated page must refresh their buffers. 

In this situation (multi-user access) the database must be locked to prevent the in- 

troduction of inconsistency when different processes are updating the same relation si- 

multaneously. Locks are maintained over file pages. 

3 . 5  P h y s i c a l  o r g a n i z a t i o n  o f  t h e  D a t a b a s e  

The database is stored in a single file. The file is organized in pages of a fixed size, which 

is currently 4K. 

The first page of the file is used to keep global information. In particular, it contains 

the following information: 

- The chain of free pages. 

- The location of the atom table. 

- The location of the relation directory. 

The atom table contains an hash table, giving, for each possible hash code, the address 

of the first of the sequence of linked pages where the actual ASCII representation of the 

atoms with that  particular hash code are stored. 

The relation directory contains the following information for each relation present in 

the database: 

- The name and arity. 
- The location of the chain of pages containing, for every term of the relation recorded 

in the database, the pre-unification codes for the term and pointers to the actual 

representation of the term. 

- The location, for each indexing set in use for the  relation, of the chain of pages 

containing the hash buckets for the indexing set in question. 

Each chain of data  pages is used in a linear fashion and can grow as needed. All the 

data pages provide a field for linking to a continuation page. The actual information 

stored in a chain, such as the representation of a recorded term, can be split among 

several continuation pages. 

3 . 6  R e p r e s e n t a t i o n  o f  t e r m s  

Prolog terms are encoded as sequences of 32-bit cell in prefix form. Atomic terms (num- 

bers and atoms) and variables are encoded using only one cell while structured terms 

(functor-terms and lists) use a sequence of contiguous cells. 

In a cell encoding an atomic term as well as in the first cell of a sequence encoding a 

structured term, the 4 leftmost bits determine the type of the term. The remaining bits, 

or the following cells, record the term itself. 
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When encoding an atom the remaining bits record a pointer to an entry in the atom 

table were the atoms external representation (a string of characters) is kept. The uni- 

fication process is more efficient using this method and the redundancy of recording 

repeatedly used names is avoided. 

Variable terms are encoded as an offset to their previous occurrence in the sequence 

of cells, or a special value in their first occurrence. Note that  variables will only appear 

in structured terms, a variable alone cannot be saved in the database. 

The rightmost bits of a functor term record its functor - name and arity - and the 

following cells record its argument in order. 

In general a list of terms is implemented as a list of pairs where each pair is a special 

functor ~the dot) with arity 2. For lists with only atomic elements - string lists - is used 

a special compacted format: the first cell will record the size of the list and the following 

cells will record the elements in order. The general case has to be kept to allow an 

efficient unification in all circumstances. 

4 Conclusion 

The value of this work can only be fully appreciated after a good number of realistic 

applications having used it, specially those with large knowledge bases or dictionaries - 

the kind of applications this database was written for. 

For the moment, this database was used with SPIRAL, a natural language interface to 

databases [Filgueiras]. This kind of application need to store two kinds of information: 

the database itself and the dictionary used for lexical analysis. The former kind of 

predicates could belong to a relational database as they possess all the characteristics 

of the relational model. The latter kind uses more complex predicates that do not fit 

welt in the relational model: predicates with linked variables, fields with different kinds 

of structures, more then one tuple with the same primary key (the same word may have 

different meanings). 

Since the characteristics of this database are very similar to those of the clausal 

database of Prolog, which was previously used to store all relations, this adaptation was 

very straightforward. 
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