
An External Database for Prolog

Josd Paulo Leat
Centro de Inform£tica da Universidade do Porto

R. das Taipas 135 / 4000 Porto
PortugM

A b s t r a c t

This work describes a disk-resident database for Prolog which uses mechanisms
similar to the ones used by the clausal database for recording and retrieving terms.
It is intended to be used by applications requiring a flexibility greater than that
provided by an interface to traditional database system. There is almost no restric-
tion on the terms stored in the database and the retrieval mechanisms produces
terms in the order they were recorded. To enhance the performance of the sys-
tem, the database organization provides an access mechanism using hash-codes on
"key" arguments of the recorded term. The database also provides basic support
for multi-user access.

Area : Architectures and Languages / Logic Programming

1 I n t r o d u c t i o n

Although many Prolog implementations provide mechanisms for interfacing with classic

database systems, in some situations those systems are not suited to store the kind of

da ta needed by the applications. This is the case of applications where the da ta takes

the form of complex Prolog terms representing, for instance, expert sys tem rules, natural

language g rammar rules or dictionary entries.

Such systems are implemented, at least in a first stage, using the clausal database or,

if one exists, an internal database. When a great amount of da ta is needed the choice

is usually a relational database system. A certain relationship between the relational

model and Prolog is then assumed:

relation ~ predicates

tuple ; clause

at t r ibute argument

277

This relationship enables the implementation of relational databases in Prolog. On the

other hand, due to some of the characteristics of the relational model the arrows cannot

be reversed:

data structure

domains

Relational Model

atomic values

(and NULLS)

n-ary relations n > 0

set of unordered tuples

data integrity constrains

keys primary keys cannot

be NULL

data manipulation

qugries return a table

Prolog

all kinds of terms

(including list, functor-terms and

variables with multiple occurrences)

n > O

set of ordered tuples

no restrictions on

particular arguments

a clause at a time is returned

trough backtrack

The use of clauses (or the internal database) to store the data. has, however, the

following drawbacks: all the data. must be resident in memory, there is no persistence,

and no mechanisms for multi-user access are provided.
This work describes an external database, which aims at overcoming the inconvenients

mentioned above, for the YAP Prolog system [Damas et al.]. YAP is based on a portable

Prolog compiler compatible with C-Prolog. Like the YAP compiler, the external database

is written in C and runs at present under the UNIX operating system. It was developed

in a SUN3/60 workstation.

The external database began originally as a permanent (i.e. disk resident) version of

the internal database. In the sequel, features were included to make multi-user access

possible.

No restrictions are imposed on the terms stored in the database. They may contain

variables with multiple occurrences, and may have any size or depth. Thus any kind of

information representable by a Prolog term may be recorded.

Simultaneous use of the same database file by several Prolog programs is supported

through predicates for modifying a term while guaranteeing exclusive access to it so tha t

database consistency can be kept.

It should be stressed that the aim of this work was to implement a tool for Prolog

applications that need to store a great amount of data using all the flexibility of the

clausal database. It is, by no means, intended to produce a full-fledged relational database

system using Prolog as a query language or as an host programming language. Therefore,

only the basic aspects of database access and control are addressed. Some functions

usually found in conventional database management systems, such as query optimization,

278

integrity constrains, security, and views were totally ignored. They can be implemented,
in Prolog, using well known techniques [Parsaye].

2 Conceptual Architecture of the Database

As mentioned in the introduction, the database was originally modeled on the clausal
database of Prolog systems, and so it can be seen, in a simplistic way, as an ordered

collection of Prolog terms which is accessed and modified through the following kinds of

primitives:

recorded_db(X)
erase_db(X)
record_db(X)

for querying the database
for removing a term from the database
for inserting a term a the the end of the database

In clausal database unification is the matching mechanism beetwen clauses and goals.

Following the same paradigm the external database is searched for terms unifying with
the argument of the recorded_db(X) predicate. We also include two other forms of this

predicate. They use, as a matching criteria, the term stored in the database being an
instance of the argument, and equality of terms modulo variable names. Note also that
this predicate is backtrackable and, thus, can be used to access, by backtracking, all the

terms matching its argument.
The erase_db(X) predicate removes the first term matching its argument from the

database. As with the recorded_rib/1 predicate, there are two other forms of this pred-

icate with different matching criteria.

Although the outlined above was a starting point for the design of the conceptual
architecture of the external database, it is obvious that, in order to achieve efficiency

and multi-user" support, same changes were required.

Firstly, most of the applications organize data around classes of terms similar to the
notion of relation in the conventional database systems. This led us to change our view
of the database as an ordered set of terms with the same functor. Since the only Prolog
terms with no functor are the atomic ones, they are collected in a "functor-less" relation.

This forced us to restrict the arguments of the basic access predicates described above
to be non-variables. In order to improve the efficiency of the access for a given relation,

the programmer can use the predicate

relation_usage(Name ,Arity, Indices)
to specify indexing information for the relation name Name with arity Arity. This does
not impose any restriction on the terms used as arguments of the basic access predicates
as it only conveys some pragmatic information for speeding up database look up. This

predicate can also be used to retrieve information about the indices currently used by a

relation (for instance, to be used in query optimization).

279

Secondly, in certain uses of the database system updating is very frequent. To cater
for this in an efficient way, instead of deleting and recording the modified term, the

predicate
modif y_db (T, Updat eGoal, NewT)

was introduced. It replaces a term T with the term NewT after executing the Prolog
goal UpdateGoal. Note that this predicate is applied only to the first term matching

T for which the update goal succeeds. It fails when no such term is found. A similar
predicate is available to modify all terms matching the specification. Again, variations

of this predicates, using different matching criteria, are provided.
The database integrity can be kept in multi-user applications by using the modify_rib/3

predicate since it guarantees exclusive access to the term being modified. To see how this
predicate works, consider the case where we want to interchange the second argument
(the first is the key argument and cannot be changed) of two terms with the main functor

£ncorae/2. This can be achieved through the following code using two nested calls of the

modify_rib/3 predicate.

modify_db(income(zp,X),
modify_db(income(pr,Y),true,income(pr,X)),
income(zp,Y))

3 Implementat ion Decisions

A database with the characteristics described in the previous section must have certain

restrictions in the choice of the access mechanisms:
1) Apart from the indexed access that is naturally expected, the database must provide

a default search, to guarantee, in all cases, the order of recovery.

2) In the indexed access:
a) - No requirement on the uniqueness of the key (as they are not required for

Prolog clauses).

b) - The terms with the same key arguments must be sorted by their recording

or def.
c) - Variables can occur in terms in arguments used as keys. The search method

must allow it and garantee that terms are recovered in the correct order.

3) The search method must be compatible with backtracking and consistent when used

with it.

The methods used in the first versions of the database are the hash addressing in its
basic form, combined with linear search as default. They were chosen for their simplicity

and comparative efficiency when used with medium sized stable relations. As we shall

see, they meet all the previous specifications.

280

Other index addressing methods with the characteristics discussed above could be

implemented, in particular to deal with large or dynamic relations. A method of the

B-Tree family seems to be particularly recommended for this purpose and its implemen-

tat ion is expected in future versions.

The type of applications for which this database was designed will generally need a

fast access to the recorded data. With this system we expect to have an access time of the

same order of magnitude of the memory resident databases, i.e. databases using clauses

or an internal database; at least with small and medium sized relations. To achieve this

goal, it is necessary not only to have a fast access method but also to use a caching

mechanism to maintain the information in memory as long as possible.

The UNIX file system offers a service of that kind that could partially solve this

problem, but we have found it inappropriate for our purposes.

In the remainder of this section the implementation of this topics will be discussed in

more detail.

3 . 1 G e n e r a l a c c e s s m e c h a n i s m

The fact that the database must provide an access to terms through unification and must

retrieve terms in the order in which they were recorded, precludes, in general, the use

of the traditional database access mechanisms. It is obvious that, in general, we must

resort to a linear search method to retrieve the terms that match a given term. Since

unification is an expensive operation we use a technique known as "pre-unification" that

speeds up linear search by avoiding the need to access the complete representation of

terms within a relation. This technique, which is also used in the internal database of

YAP, and was previously described in [Futo et al.], works as follows.

We associate with each term recorded in the database two codes. One is based on

the concatenation of the hash codes of up to the first 8 arguments of the term. The hash

code for each argument ta.kes into consideration the type and value of the argument. The

second code is a binary number with zeros on positions corresponding to variables.

These codes can be used as a very fast test to decide whether or not two terms are

unifiable. For that purpose~ the bitwise conjunction of the arguments code of the first

term and the variables code of the second term, and vice-versa are compared. The terms

can not unify if the results are not the same.

The pre-unification test is used as follows.

For each relation, we keep a linear table at the end of which we add, every time a

term is recorded, a pointer to the representation of the term, and the codes described

above.

When searching for terms pre-unifying with a given term we compute two similar

codes for that term, and make a linear scan of the table for those entries for which the

unification test succeeds. Only after the test succeeds we fetch the term from the disk

281

and perform the unification. This process reduces both the number of unifications and

accesses to disk.

3 . 2 I n d e x A c c e s s M e c h a n i s m

In the current database implementation the index access mechanism is based on hashing.

We shall see tha t this method meets all predefined specifications.

I t is trivial to verify tha t this method accepts more than one te rm with the same key.

The term insertion order is preserved, provided the terms in each hash-bucket are

maintained in the same order in which they were recorded. Note, in passing, tha t meth-

ods closely related to this one for par t ia l -match retrieval, such as those proposed in

[Chomicki et al.] , could not be used directly as a general access method, since they

would not respect the order in which the terms were recorded, and would require the

uniqueness of the key arguments.

Terms with variables in the key arguments have a replica in every bucket. In this way,

not only a certain locality of the search - which increases its efficiency - results, but also

the appropriate order of retrieval is ensured. It can be assumed that there will not be

too many terms with variables in the key arguments, so that the cost of this redundancy

is not expected to be very high.

As mentioned in the previous section the user can employ the relation_usage/3
predicate to specify one or more sets of arguments to be used as (ground) indices. If none

is specified by the user the system will use the set consisting of just the first argument.

Of the several indexing sets specified for a relation, we will distinguish one as the

preferred indexing set and will refer to the others as the secondary indices.

The tuples of a relation are divided into buckets using an hash function on the argu-

ments specified by the preferred indexing set. In a bucket directory we will find, for each

possible hash-code, a pointer to a sequence of disk pages containing the representation

of the terms having that particular hash-code. Note that under each hash bucket, the

terms are kept in the order in which they were recorded.

A similar organization is used for secondary indices but the information under each

bucket consists of pointers to the representation on the terms instead of the te rms them-

selves.

To look up a term we s tar t by checking if, for any of the indexing sets, all the

relevant arguments are non-variables. If is not the case we use the general access method

previously described.

Then, an hash function is applied to the key arguments in order to compute the

bucket 's number and the bucket directory is consulted to find the sequence of terms with

tha t particular hash-code. Finally every te rm in that sequence is checked for a matching

with the initial term.

The hash function of a term is computed from the partial hash functions of each key

argument. The hash value is the remainder of the division of the sum of those values

282

by the number of buckets. In a numerical argument, the partial hash function result

is its value. In all other cases the partial hash function is computed from the string

of characters of the argument external representation. The sum of the characters code

shifted to the left by their position in the string has been found to be a well distributed

hash function for a wide range of applications.

When a new relation is created a certain number of hash-buckets is assigned to it. I f

the number of tuples of a relation grows so much that the number of pages of an hash-

buckets exceeds a pre-defined value - usually 1 - the number of buckets in the bucket

directory will be doubled in order to keep the average number of terms in each bucket

within reasonable bounds.

3.3 Backtrack ing

As we have seen in the introduction, the backtracking mechanism will access a database

t e rm at a time. The information needed to handle backtracking is maintained in the

execution stack: as records (or pointers to them) are clustered by their insertion order it

is enough to save in the stack the position of the record (pointer) where the last match-

ing te rm was found. Actually more information is kept in stack to avoid unnecessary

calculations and searches during backtracking.

We had a special concern about the consistence of backtracking when a relation is up-

dated before the next backtrack. A particular problem could arise in the indexed search.

Consider the execution of a goal were recorded_db/1 predicate has succeeded n times

and the subsequent insertion of a new term causes an automatic relation restructuring

before the next backtracking, possibly moving all terms with the relevant key value to

another page. For instance, the execution of the goal

• - r e c o r d e d _ d b (: f (a , X)) , r eco rd_db(: f (b ,X)) , : f a i l .

could lead to an inconsistency of that kind.

To avoid this kind of inconsistency, when a relation restructuring has occurred before

the next backtrack, the search will continue in the new page and the first n matching

terms will be skipped.

3 . 4 B u f f e r i n g M e c h a n i s m

To improve the database efficiency and reduce the number of disk accesses, the system

uses a pool of buffers as a cache mechanism for disk pages.

All the access to database pages is done through these buffers which are kept in

memory as long as possible. When a buffer is needed to access a database page and

there is none free, the database releases the least recently used one. This decision is

made taking into account both the number of accesses to the pages and the "t ime" of

the last access.

283

Even with this mechanism a page that is currently buffered may have to be re-read.

If the database file is in use by several users and is updated then all other users having

a private copy of the updated page must refresh their buffers.

In this situation (multi-user access) the database must be locked to prevent the in-

troduction of inconsistency when different processes are updating the same relation si-

multaneously. Locks are maintained over file pages.

3 . 5 P h y s i c a l o r g a n i z a t i o n o f t h e D a t a b a s e

The database is stored in a single file. The file is organized in pages of a fixed size, which

is currently 4K.

The first page of the file is used to keep global information. In particular, it contains

the following information:

- The chain of free pages.

- The location of the atom table.

- The location of the relation directory.

The atom table contains an hash table, giving, for each possible hash code, the address

of the first of the sequence of linked pages where the actual ASCII representation of the

atoms with that particular hash code are stored.

The relation directory contains the following information for each relation present in

the database:

- The name and arity.
- The location of the chain of pages containing, for every term of the relation recorded

in the database, the pre-unification codes for the term and pointers to the actual

representation of the term.

- The location, for each indexing set in use for the relation, of the chain of pages

containing the hash buckets for the indexing set in question.

Each chain of data pages is used in a linear fashion and can grow as needed. All the

data pages provide a field for linking to a continuation page. The actual information

stored in a chain, such as the representation of a recorded term, can be split among

several continuation pages.

3 . 6 R e p r e s e n t a t i o n o f t e r m s

Prolog terms are encoded as sequences of 32-bit cell in prefix form. Atomic terms (num-

bers and atoms) and variables are encoded using only one cell while structured terms

(functor-terms and lists) use a sequence of contiguous cells.

In a cell encoding an atomic term as well as in the first cell of a sequence encoding a

structured term, the 4 leftmost bits determine the type of the term. The remaining bits,

or the following cells, record the term itself.

284

When encoding an atom the remaining bits record a pointer to an entry in the atom

table were the atoms external representation (a string of characters) is kept. The uni-

fication process is more efficient using this method and the redundancy of recording

repeatedly used names is avoided.

Variable terms are encoded as an offset to their previous occurrence in the sequence

of cells, or a special value in their first occurrence. Note that variables will only appear

in structured terms, a variable alone cannot be saved in the database.

The rightmost bits of a functor term record its functor - name and arity - and the

following cells record its argument in order.

In general a list of terms is implemented as a list of pairs where each pair is a special

functor ~the dot) with arity 2. For lists with only atomic elements - string lists - is used

a special compacted format: the first cell will record the size of the list and the following

cells will record the elements in order. The general case has to be kept to allow an

efficient unification in all circumstances.

4 Conclusion

The value of this work can only be fully appreciated after a good number of realistic

applications having used it, specially those with large knowledge bases or dictionaries -

the kind of applications this database was written for.

For the moment, this database was used with SPIRAL, a natural language interface to

databases [Filgueiras]. This kind of application need to store two kinds of information:

the database itself and the dictionary used for lexical analysis. The former kind of

predicates could belong to a relational database as they possess all the characteristics

of the relational model. The latter kind uses more complex predicates that do not fit

welt in the relational model: predicates with linked variables, fields with different kinds

of structures, more then one tuple with the same primary key (the same word may have

different meanings).

Since the characteristics of this database are very similar to those of the clausal

database of Prolog, which was previously used to store all relations, this adaptation was

very straightforward.

5 Acknowledgements

The work described in this paper was partially supported by Junta Nacional de Inves-

t i g a ~ o Cientifica, under contract no, 87.366, and by Instituto Nacional de Investiga§~o

Cientffica.

285

R e f e r e n c e s

[Chomicki et al.]

[Damas et al.]

[Date]

[Filgueiras]

[Futo et al.]

[Parsaye]

[Robinson]

J. Chomicki, Wlodzimiers Grudzinski "A Database Support System
For Prolog", in L. Moniz Pereira, L. Monteiro, A. Porto, M. Filgueiras
(eds.), Proceedings of the Logic Programming Workshop 83, Universi-
dade Nova de Lisboa, 1983.

L. Damas, V. Costa, R. Azevedo, R. Reis, "Yap Reference Manual",
Centro de Inform£tica, Universidade do Porto.

C. J. Date, "An introduction to Database Systems", Addinson-Wesley
Publishing Company, 1986

M. F.ilgueiras, "Cooperating Rewrite Process for Natural Language
Analysis", Jornal of Logic Programming, vol 3 no. 4, 1986.

I. Futo, F. Darvas and P. Szeredi, "The Application Of Prolog to the
Development of QA and DBM Systems", Logic and Databases.

K. Parsaye, "Database Management, Knowledge Base Management
and Expert System Development in Prolog", in L. Moniz Pereira, L.
Monteiro, A. Porto, M. Filgueiras (eds.), Proceedings of the Logic Pro-
gramming Workshop 83, Universidade Nova de Lisboa, 1983.

J. A. Robinson, "A Machine-Oriented Logic Based on the Resolution
Principle", JACM, Vol I2, No 1 (January 1965), pp. 23-41.

[Ullman] J, D. Ullman, "Database Systems", Pitman Publishing Limited, 1980.

