
Sampling Massive Streaming Call Graphs

Shazia Tabassum
LIAAD, Inesc tec

University of Porto
Porto, Portugal

shazia.tabassum@inesctec.pt

João Gama
LIAAD, Inesc tec

University of Porto
Porto, Portugal

jgama@fep.up.pt

ABSTRACT
The problem of analyzing massive graph streams in real time
is growing along with the size of streams. Sampling tech-
niques have been used to analyze these streams in real time.
However, it is difficult to answer questions like, which struc-
tures are well preserved by the sampling techniques over
the evolution of streams? Which sampling techniques yield
proper estimates for directed and weighted graphs? Which
techniques have least time complexity etc? In this work,
we have answered the above questions by comparing and
analyzing the evolutionary samples of such graph streams.
We have evaluated sequential sampling techniques by com-
paring the structural metrics from their samples. We have
also presented a biased version of reservoir sampling, which
shows better comparative results in our scenario.

We have carried out rigorous experiments over a massive
stream of 3 hundred million calls made by 11 million anony-
mous subscribers over 31 days. We evaluated node based
and edge based methods of sampling. We have compared
the samples generated by using sequential algorithms like,
space saving algorithm for finding topK items, reservoir sam-
pling, and a biased version of reservoir sampling. Our over-
all results and observations show that edge based samples
perform well in our scenario. We have also compared the
distribution of degrees and biases of evolutionary samples.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning—Concept learn-
ing

Keywords
Data Streams, Streaming Graphs, Sampling, Call Graphs

1. INTRODUCTION
As described in [3] a data stream is an ordered sequence

of instances that can be read only once or a small num-
ber of times using limited computing and storage capabili-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SAC 2016, April 04-08, 2016, Pisa, Italy
c© 2016 ACM. ISBN 978-1-4503-3739-7/16/04. . . $15.00

DOI: http://dx.doi.org/10.1145/2851613.2851654

ties. These sources of data are characterized by being open-
ended, flowing at high-speed, and generated by non station-
ary distributions in dynamic environments. In terms of such
graph streams, sampling is the process of selecting a subset
of streaming graph to represent the characteristics of the
entire graph stream at a given point of time. Because of
the time and space limitations, it is difficult to analyze and
mine massive social streams in real time. Wherefore, sam-
ples are generated, so as to gain approximate solutions for
real time queries. A number of algorithms have been intro-
duced in this research area to sample streams [1], [7], [6],
[10], [11] etc. The authors of corresponding research pa-
pers have evaluated their work in terms of time and space
complexity, but not based on the structural properties of
streams.

All the sampling techniques developed so far only pre-
serve some of the properties of original streams. However,
we do not know which properties of streams are preserved
by which sampling methods, that would be appropriate for
a specific application scenario. In [5] the authors compared
static snapshots of samples generated by algorithms like ran-
dom node and edge sampling, random walks and forest fire
with aggregated datasets of about five hundred thousand
edges. Their goal was to find a general sampling method
that would match full set of properties of original graph so
that sample can be used for simulations and experiments.
Our goal in this work, is to find appropriate sample tech-
niques for specific properties of graphs. The main focus
of this work is applying sequential sampling algorithms to
the streaming graphs scenario and analyze the samples over
the evolution of stream. Consequently the samples can be
used for real time queries and experiments. We have also
presented a biased version of reservoir sampling algorithm
which shows better comparative results.

In other works of [9], the authors investigated to prove
that the subnets of scale free networks are not scale free,
by random sampling of static network. [2] discussed sam-
pling algorithms for pure topology types. [4] studied three
types of methods for sampling Internet graphs with a reduc-
tion of 70 % of original graphs. However the previous works
did not answer questions like, which sequential techniques
preserve the structure of evolutionary streams? which sam-
pling techniques best preserve the community structures for
weighted graphs? Which are most time efficient? And which
sampling methods are appropriate for generating approxi-
mate solutions for specific real time queries? Which sam-
pling techniques preserve the relevant structural properties
of graph specific for an application? Nevertheless, no pre-

vious works focused on the evolution analysis of samples
and the graphs with weighted and bi-directional edges. In
this work, we answer the above questions regarding sam-
ples of real time streams like call graphs of Telecommunica-
tion Networks (TN). We do this by plotting the measures
used for comparing the structures and properties preserved
by different samples generated in real time. We also deal
with the weighted and Bi-directional properties of graph.
Furthermore, we analyze the evolution of metrics over 31
days of Call graph streams. Enhancing the diversity of algo-
rithms for sampling, we introduce an algorithm, by modify-
ing the existing Random Sampling Algorithm using reservoir
by [10].

2. METHODOLOGY
In order to find the best suitable sampling algorithms for

a scale free network like telecommunication call graphs, we
analyzed the evolution of stream by generating snapshots
of 31 samples at the end of each day, each from the begin-
ning. For example, first sample for a stream of 1 day, second
sample for the total stream of day 1 and day 2 etc.

Identifying community structures has its real time appli-
cations like customer profiling, segmentation, targeted mar-
keting, fraud detection etc for telecoms service providers. To
answer queries like above we need to answer the questions
like, which samples preserve community structure? In this
work we have exploited the evolution of community struc-
tures for 31 samples by evaluating centrality measures such
Average Degree Centrality (ADC) and Average Weighted
Degree Centrality (AWDC) of graphs; In-degree Centrality
(IC) and Out-degree Centrality (OC) centrality of nodes.
Number of Communities in the sample graphs. Degree Dis-
tribution of the samples. We have also analyzed the network
connectedness using metrics: Number of Connected Compo-
nents (NC) and Average Component Size (ACS).

Then, we compare the time for computation by each of the
techniques. Using the approx. time taken for one single pass
over the stream of minimum size 7,845,201 and a maximum
size of 15,440,707 calls streams. However we also present the
results to process a single edge, for edge based methods.

For answering queries like, which samples are appropri-
ate for finding top remunerative customers? Who are the
top frequent callers? We use the generated samples to run
real time queries for specific applications, like finding top
influential players using Eigen Vector Centrality (EVC).

3. SAMPLING ALGORITHMS AND METH-
ODS

In this section we present the algorithms that we have
used for generating samples. These algorithms can be im-
plemented by using two types of methods. One is node based
sampling and the other is edge based sampling method. By
using these two methods we also present results and ob-
servations to find an appropriate technique for generating
real-time samples.

3.1 Sampling Algorithms

3.1.1 Space Saving Algorithm
The Space Saving Algorithm [6] is the most approximate

and efficient algorithm for finding top frequent elements
from the stream. The algorithm maintains partial interest

of information as it monitors only a subset of elements from
the stream. It maintains counters for every element in the
sample and increments its count when the element re-occurs
in the stream. If a new element is encountered in the stream
it is replaced with an element with the least counter value
and its count is incremented.

3.1.2 Reservoir Sampling
This is a well known algorithm of Reservoir Sampling

(RS), denoted as Algorithm R in [10]. The author mentioned
in this work that all the algorithms using a reservoir of ele-
ments from the original data to generate samples are a kind
of reservoir sampling. In algorithm R the author maintained
a reservoir of elements with a predefined sample size. In the
streaming scenario, initially the reservoir is filled with the
initial elements from the stream. Every element after that,
is computed for the probability of being inserted and a ran-
dom number is generated to pick an element already in the
sample. If the probability of the new element is greater than
the probability of the selected element then the new element
replaces and old one, if not it is discarded. By the end ev-
ery element in the sample is selected with equal probability.
Consequently, the items are inserted into the reservoir with
decreasing probability. Therefore, it leads to samples with
very old items from the stream, as also discussed in [1].

3.1.3 Biased Random Sampling
We have known the random sampling techniques with

all the elements in the sample with equal probability. In
this section we present a biased random sampling technique
where we sample items/objects with unequal probability.
Biased Random Sampling (BRS) is based on the idea of
reservoir sampling but it ensures that every item in the
stream definitely enters the reservoir.

input : Unbounded stream
output: Realtime sample of size k

Filling the reservoir with first k items/objects;
for i = 1 to k do

sample[i] ← stream[i];

end
Inserting all new items into the stream;
while stream!= EOF do

i = i + 1;
pos← Random(1, k);
sample[pos]← stream[i];

end
Algorithm 1: Biased Random Sampling Algorithm

Algorithm 1 represents BRS. As a general initial step, the
reservoir is filled with the first items from the stream. Then,
we do not compute the probability of later items, as every
item definitely enters stream. For replacing an item already
in the sample, a random number is generated between 0 and
the size of reservoir. The element at the position of random
number is replaced with the item from stream. Here the
probability of every item entering the reservoir is equal as
every item enters the stream, but the probability of every
item in the reservoir is not equal. Hence, this technique is
biased towards new items from the stream. It can be used
in the scenarios where old items are considered stale or not
useful. In [1] the author also presented a biased sampling

algorithm, where he flips a coin for every point arrived in
the stream. In the event of success, the new point replaces
an old point already in the sample at random, if not a new
slot is created and the point is added to it. We did not assay
this technique as we compared samples with fixed size.

3.2 Node Based Methods
Node based methods in general, sample a set of nodes

from the original graph. The resultant samples contain a
set of vertices from the graph stream and showing no con-
nections between them. The samples posses only nodes and
no structure. To evaluate this method, we have implemented
the space saving algorithm by sampling top frequent nodes
and call it as (SSN), detailed in section 5.

3.3 Edge Based Methods
As the name suggest, these samples are generated by se-

lecting a subset of edges from the original graph. The resul-
tant graph is a subgraph of original graph with nodes and
edges. The algorithms that can be implemented in the nodes
based methods, can also be implemented using edge based
methods in our scenario. We have conducted rigorous ex-
periments implementing algorithms in section 3.1 using edge
selection for sampling, i.e. RS, BRS and space saving algo-
rithm by sampling edges (SSE). In section 5, we discussed
the experiments in detail.

4. CASE STUDY

4.1 Telecommunication Networks
Sampling on graphs have been studied in different do-

mains, with petty work in telecommunication networks. In
this work, we apply the sampling algorithms in this scenario.
Call Detail Records (CDR’s) from TN are one of the largest
and fastest data streams with stupendous mass of informa-
tion hidden. We made use of such anonymous CDR stream
of 386,492,749 calls made by 11,916,442 subscribers over 31
days . Spread across 24 hrs per day and gathered from geo-
graphically distributed sources.

Figure 1: Evolution of nodes and edges in our graph
stream

4.2 Semantics of Call Graphs
We modeled telecommunication call graphs as nodes cor-

responding to callers and callees. The edges between them
represent calls. These edges can be weighted using fre-
quency of calls, duration of call, etc. In our scenario, we

have weighted our samples based on frequency of calls. The
edges are bidirectional, corresponding to incoming and out-
going calls. The snapshots of number of nodes and edges
per day stream are shown in figure 1. The figure shows de-
creased call activity on Sundays compared to other days of
week.

5. EXPERIMENTAL EVALUATION

Figure 2: Evolution of nodes and edges using SSN

To evaluate the node based methods we have used the SSN
by sampling top frequent callers. We generated 15 sample
snapshots for 15 days of stream each from the beginning day
1. The samples generated using this method have only nodes
and no structure, therefore we also acquire the correspond-
ing edges of nodes in the real time. As the number of edges
incident upon the sampled nodes increases, so are the adja-
cent nodes. As a result, we have a subgraph with increased
number of nodes, derived from the associated edges. The
time for computation of such methods also increases sub-
stantially with the added time for acquiring edges and their
corresponding nodes. The evolution of number of nodes,
edges and properties of graph are represented in figures 2
and 3. We did not proceed with the other algorithms for
node based method, because of the space and time com-
plexity mentioned above.

For evaluating edge based methods we have generated 31
sample snapshots of size 104 edges from 31 days of call graph
streams each from the beginning. This is done for three sam-
pling algorithms using edge selection, i.e SSE, RS and BRS.
Number of nodes and edges in the resultant subgraphs are
shown in figures 4 and 5. Figure 5 shows number of distinct
edges in each sample. BRS samples contains less number

Figure 3: Evolution of metrics using SSN

Figure 4: Number of nodes

Figure 5: Number of edges

of distinct edges and more number of repetitive edges/calls
exhibiting calling behavior of callers. This indicates BRS
samples are good at generating weighted samples based on
frequency. In our scenario, we map the multi-graph of calls
onto weighted network, thus the weighted edges indicate fre-
quency of calls between two nodes/callers. SSE samples un-
weighted edges, as it selects the top frequent edges but not
the frequency of edges. Subgraphs of RS has a negligible
amount of weighted edges based on frequency of calls.

Figure 6: In-degree Centralities

Figure 6 and 7 plots the IC and OC of top 6 IC and OC
nodes of three samples, we observe that SSE samples contain
nodes with high IC’s and OC’s while RS samples have nodes
with least IC and OC. When we compare both the IC and
OC we find that all the three samples are biased towards
high in-degree nodes and low out-degree nodes. This suggest

Figure 7: Out-degree Centralities

Figure 8: Average Degree Centrality

the structure of original graph with high number of incoming
calls and less number of outgoing calls for each node on an
average.

5.1 Community Structure
In our experiments we have used degree centralities to

evaluate the community structures in subgraphs. Figure 8
depicts the ADC of the three methods. RS shows least av-
erage degree centrality than SSE and BRS which are almost
the same. This suggests that RS is biased towards very low
degree nodes. While SSE and BRS show similar degree cen-
tralities throughout the evolutionary stream. Figure 9 plots
the AWDC of three samples. Comparing both the above ref-
erenced plots, we can observe that the ADC’s of SSE and RS
are similar to their respective AWDC’s. While the AWDC of
BRS is more compared to its ADC. When ADC and AWDC
are similar, the edges in the samples have no weights. When
AWDC is greater than ADC the samples contain weighted
edges. In both the figures 8 and 9, SSE and BRS show
low graph centralities on Sundays as related to the original
graph with low activity on Sundays. While RS curve shows
no deviations.

Figure 10 plots the logarithmically binned degree distri-
bution of nodes in the samples. We observe that 99.4%
of nodes from the RS sample has degree 1. which indicates
that large number of nodes are sparsely connected displaying
least community structure. Figure 11, depicts the number
of communities in each sample, from which we notice that
RS contains maximum number of communities. From both
the above results, we infer that RS samples have maximum
number of communities with minimum degree than SSE and
BRS. The above results confer that RS has least community

Figure 9: Average Weighted Degree Centrality

Figure 10: Degree Distribution

structure with more number of nodes sparsely connected.

Figure 11: Number of Communities

5.2 Component Structure
Figure 12 shows NC’s in the three samples. We iden-

tify RS samples contain maximum NC’s for all the days.
BRS sample contain least NC’s. Figure 13 plots the ACS
of each sample, where SSE and BRS has similar ACS sam-
ples and greater compared to RS. From both the figures it is
evident that RS samples exhibit least component structure
with more NC’s having least ACS compared to SSE and RS.

5.3 Time Complexity
To measure the time complexity of three algorithms we

have used two metrics, one is min time and other is max
time. Minimum time for one pass over the stream of 7845201
edges and maximum time for one pass over the stream of

Figure 12: Number of Components

Figure 13: Average Component Size

15468336 edges. Figure 14 plots the time for computation
by three algorithms using same hardware, from which it is
apparent that the time for computation by SSE is maximum.
RS takes the least time for computation while BRS with
slightly more. However the time for processing each edge as
it arrives in real-time is much lower to approx. 15 ms to 20
ms for SSE, 0.5 to 1 ms for BRS and 0.3 ms to 0.4 ms for
RS.

Figure 14: Time Complexity

5.4 Running Real Time Queries
Which samples are best suitable for running real-time

queries and getting approximate answers to queries like, who
are the top influential players in the network? To answer
questions like these we have used EVC to compute top in-
fluential nodes from the three samples generated by SSE,
RS and BRS. All the three samples generate similar and
accurate results for top 6 nodes, evident from figure 15.

As analyzed by [8] call graphs exhibit a power-law distri-
bution with few nodes displaying high activity and majority
of nodes displaying least activity. The above results imply
that the referenced sampling techniques capture highest ac-
tivity nodes. However, the results of the three samples begin
to differ as the number of top influential nodes increases.

Figure 15: Eigen Vector Centrality

6. EMPIRICAL OBSERVATIONS
After analyzing the samples generated using four tech-

niques discussed in section 3, we observe that: For gener-
ating structured subgraphs from node based methods, we
need to acquire the edges associated with nodes, which in-
creases the time for computation. The evolution analysis
of temporal samples generated using SSN shows a gradual
increase in the size of samples. For edge based methods, we
observe that RS is biased to nodes with low degree centrali-
ties and BRS and SSE nodes exhibit higher degree centrali-
ties compared to it. BRS best suits for measuring weighted
centralities based on frequency of edges. Hence, it is also
suitable for running real-time queries for finding frequent
items over the sample. BRS and SSE sample communities
with high average degree centralities. That shows a better
community structure when compared to RS. Therefore BRS
and SSE would be more suitable for applications analyz-
ing community structure. SSE and BRS generates samples
with better component structure compared to RS. RS and
BRS has good performance with runtime compared to SSE.
For using samples to run queries like top frequent items,
SSE would be appropriate as it samples top frequent edges,
while not considering other factors. All the three sampling
algorithms give similar results for applications like finding
most minimum number of top influential nodes using EVC.

7. CONCLUSION
Our purpose in this work, was not to find the best sam-

ple, instead we have compared the samples to find which is
an appropriate sampling technique for a specific application
scenario. We analyzed the properties of samples to compare
the sampling techniques. We have used a real-time massive
stream to evaluate the evolutionary samples. So, that real
time queries and experiments can run over those samples.
Different sampling algorithms have been evaluated in this
work, based on structures, properties, time complexity and
applications. We have evaluated weighted graph samples.
We have also proposed an algorithm with the modification
over Random Sampling Algorithm using Reservoir. We have

found that on an average of all the measures our proposed al-
gorithm has exhibited better performance. Our results drive
many observations related to the biases and appropriateness
of sampling techniques. We have also analyzed the evolu-
tion of samples that can be used for evolution prediction in
future works.

Acknowledgements
Authors acknowledge the support of the European Commis-
sion through the project MAESTRA (Grant Number ICT-
750 2013-612944) and FCT - Portuguese Foundation for Sci-
ence and Technology within project UID/EEA/50014/2013.
The authors also thank WeDo Business for providing the
data.

8. REFERENCES
[1] C. C. Aggarwal. On biased reservoir sampling in the

presence of stream evolution. In Proceedings of the
32nd international conference on Very large data
bases, pages 607–618. VLDB Endowment, 2006.

[2] E. M. Airoldi and K. M. Carley. Sampling algorithms
for pure network topologies: a study on the stability
and the separability of metric embeddings. ACM
SIGKDD Explorations Newsletter, 7(2):13–22, 2005.

[3] J. Gama. Knowledge discovery from data streams.
CRC Press, 2010.

[4] V. Krishnamurthy, M. Faloutsos, M. Chrobak, L. Lao,
J.-H. Cui, and A. G. Percus. Reducing large internet
topologies for faster simulations. In NETWORKING
2005. Networking Technologies, Services, and
Protocols; Performance of Computer and
Communication Networks; Mobile and Wireless
Communications Systems, pages 328–341. Springer,
2005.

[5] J. Leskovec and C. Faloutsos. Sampling from large
graphs. In Proceedings of the 12th ACM SIGKDD
international conference on Knowledge discovery and
data mining, pages 631–636. ACM, 2006.

[6] A. Metwally, D. Agrawal, and A. El Abbadi. Efficient
computation of frequent and top-k elements in data
streams. In Database Theory-ICDT 2005, pages
398–412. Springer, 2005.

[7] M. Papagelis, G. Das, and N. Koudas. Sampling online
social networks. Knowledge and Data Engineering,
IEEE Transactions on, 25(3):662–676, 2013.

[8] R. Sarmento, M. Oliveira, M. Cordeiro, J. Gama, and
S. Tabassum. Social network analysis of streaming call
graphs. In Big Data Analysis: New Algorithms for a
New Society, page In Press. Springer, 2015.

[9] M. P. Stumpf, C. Wiuf, and R. M. May. Subnets of
scale-free networks are not scale-free: sampling
properties of networks. Proceedings of the National
Academy of Sciences of the United States of America,
102(12):4221–4224, 2005.

[10] J. S. Vitter. Random sampling with a reservoir. ACM
Transactions on Mathematical Software (TOMS),
11(1):37–57, 1985.

[11] W. Wei, J. Erenrich, and B. Selman. Towards efficient
sampling: Exploiting random walk strategies. In
AAAI, volume 4, pages 670–676, 2004.

