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Abstract—A new methodology for fault detection on wearable
medical devices is proposed. The main strategy relies on correctly
classifying the captured physiological signals, in order to distin-
guish whether the actual cause is a wearer health abnormality
or a system functional flaw. Data fusion techniques, namely
fuzzy logic, are employed to process the captured data, like
the electrocardiogram and blood pressure, to increase the trust
levels with which diagnostics are made. Concerning the wearer
condition, additional information is provided after classifying
the set of signals into normal or abnormal (e.g. arrhythmia,
chest angina, and stroke). As for the monitoring system, once an
abnormal situation is detected in its operation or in the sensors,
a set of tests is run to check if actually the wearer shows a
degradation of his health condition or if the system is reporting
erroneous values.

I. INTRODUCTION

The advances on sensors, wireless communications and in-
formation technologies have resulted in the rapid development
of various wellness or disease monitoring systems, which
enable extended independent living at home and improve the
quality of life. Traditionally, medicine has been based on an
intervention basis (drugs, surgeries, prosthesis, etc.) to treat
them. Nowadays, and regardless of the patients’ age, the health
care community is trying to focus on prevention and wearable
monitoring systems have been proposed to meet this task.

Remote health monitoring can be used only if the monitor-
ing device is based on a comfortable sensing interface, easy
to use and customizable. Its interface must allow continuous
remote control in a natural environment without interference
or discomfort for the users. The textile approach to the
implementation of sensing elements embedded in clothing
items allows for low cost and long-term monitoring of patients
and to easily customize the sensor configuration according
to the needs of each individual [1]. Applying this concept it
is possible to reduce health care costs maintaining the high
quality of care, shift the focus of health care expenditures
from treatment to prevention, provide access to health care
to a larger number of patients, reduce the length of hospital
stays and address the issue of specific requirements for elderly
population and/or chronically ill patients.

Because these wearable monitoring systems are to be used
for medical purposes (continuous monitoring, diagnosis, etc.),
the reliability and safety of the system have to be perfectly

controlled. Unfortunately, the complexity and the functional
specificities of these systems make the existing dependability
techniques developed for the aeronautics, space and automo-
tive applications not totally appropriate for the medical field.

To overcome the lack of a dependability model that can
be used for the development of complex pervasive medical
monitoring devices, a fault tree analysis approach is being
developed to identify the main risk of failure. A typical
wearable device (hereafter the system) comprises a module
to capture the biosignals, including the electrodes and the
analogue front-end, a microcontroller, and a radio-frequency
module to transmit data to a smartphone or personnal com-
puter. In our approach the captured biosignals are received
and analyzed within a smartphone. A rule based algorithm
(fuzzy logic) decides whether these are normal or not. If not,
it is diagnosed if the wearer shows an abnormal situation or
instead the system is faulty. That is, a data abnormality can
be due to a wearer irregular state (pathological condition or
intense physical activity) or due to a degradation of the system
operation.

II. DEPENDABILITY STRATEGY

The SIVIC system, a combined cardiac and coronary
surveillance system under development (Figure 1), provides
the synchronous measurement of a patient’s ECG (electro-
cardiogram) and pressure in the abdominal aneurysm sac,
in order to obtain a more robust and reliable monitoring.
Biologically compatible wireless pressure sensors, which show
suitable linearity and sensitivity [2], are used to capture the
intra-sac aortic abdominal aneurysm (AAA) pressure and
detect endoleaks. An electronic readout unit (ERU) capable of
energizing the pressure sensors and capture the pressure data
is placed in the chest of the patient. This unit provides also the
monitoring of a 12-lead ECG using textile dry electrodes [3].
The electronic unit and the electrodes are built in a customized
clothing. Data is transmitted to a smartphone for further
processing, data display, and eventual communication with a
healthcare center.

A. Feature extraction

The ECG conveys important hemodynamic information,
such has the heart rate (HR). During an ECG cycle three
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Fig. 1: Wearable ECG data capture and transmitter module.

main events take place: the P wave (contraction of the atria),
the QRS complex (corresponding to the contraction of left
ventricle) and the T wave (relaxation of the ventricles) (see
Fig. 2). Their morphologies (amplitude and interval/segment
length) will vary according to the person’s physiological
condition.
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Fig. 2: Typical ECG signal and its main waves [4].

The HR is given by the counting in beats per minute (bpm)
of consecutive R-waves. However, noise contamination such as
baseline wander, power line interference and muscle activities
can corrupt the signal and reduce the clinical value of an
ECG recording. Since wearable devices are more prone to
perturbations by noise, filtering of the ECG is a necessary pre-
processing step to ensure a reduction of the noise components
while preserving the QRS complex shape. The Pan-Tompkins
algorithm is used for ECG filtering and the HR calculation [5].
Other biosignals, such as the blood pressure (BP) can pro-
vide important information about the patient condition. BP
is defined by the systolic (maximum) pressure and diastolic
(minimum) pressure and is measured in millimetres of mercury
(mmHg). BP is affected by the physical activity of the patient
and-associated diseases.

Wearable devices enable the inclusion of other sensors,
such accelerometers, that enable the tracking of the wearer
activity, i.e. if he is sitting, walking or running, which will

influence the heart activity and thus provide useful information
for the diagnosing process. The SIVIC system includes also
an electrode-skin impedance seasuring circuit, which enables
detecting if the electrodes and connected to the patient or are
loose/disconnected. The main features of each signal eventu-
ally measured by the SIVIC system, the extracted features and
the classification of the patient/system condition are presented
in table I.

TABLE I: Data fusion model for the measured signals.

[ Signals | Features [ Classifier |
HR 1
HR II
ECG HR I Normal/Abnormal
Systolic . .
Blood Pressure Diastolic Hypotensive/Normal/Hypertensive
AAA Pressure Mean Pressure Normal/Endoleak
Accelerometer Motion Still/Walking/Running
Electrode-Skin Resistance Connected/Disconnected
Impedance

B. Fuzzy logic

Data fusion techniques have been applied as a means for a
combined analysis of several physiological signals to extract
additional information on a patient’s condition. Kenneth et.
al performed the fusion of ECG, blood pressure, saturated
oxygen content and respiratory data for achieving improved
clinical diagnosis of patients in cardiac care units [6].

Fuzzy logic enables the creation of a decision making
process based on logic and straightforward principles. Its
implementation is relatively easy and thus suitable for imple-
mentation in a smartphone. The existing extensive literature
in the medical field provides a solid knowledge base for the
implementation of a medical decision support system. This
technique can be applied to the monitoring of a patient’s vital
signs during an invasive surgery [7], support medical decisions
in a intensive care unit [8], or cancer diagnosis based on image
processing [9], [10].

In our case, as a first approach, a fuzzy logic system is used
foy the data fusion due to its probability assignment based
on rules. Since the values of the features extracted from the
biosignals can be assigned, in ranges well defined in the med-
ical literature, the rules creation is relatively straightforward
Fable1H. Table II shows common normal values for the HR
and BP, and some examples of pathologies.

The fuzzy logic decision system comprises 4 main com-
ponents: fuzzy rules (knowledge base), fuzzy sets, fuzzy
inference engine and defuzzification (Fig. 3) [11]. The inputs
of the fuzzy logic system are the features previously extracted
from the measured signals (Table I). The outputs are the
Patient Status, System Status and the Global Status, which
can be normal or faulty — i.e., either the patient has a health
condition or the monitoring system is malfunctioning. The
outputs are determined based on the input values of the fuzzy
sets and the rules assigned for each output. The rules to
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TABLE II: Fusion rules for patient condition diagnosis.

[ Signals [ Condition [ Rule
Normal HR between 60 and 100 bpm
ECG Asystole No QRS for at least 4 seconds
Extreme Bradycardia | HR lower than 40 bpm for 5 consec-
utive beats
Extreme Tachycardia | HR higher than 140 bpm for 17
consecutive beats
systolic: 90-139
Normal diastolic: 60-89
BP Hypotension systolic: < 90
(mmHg) yp diastolic: < 60
. systolic: > 140
Hypertension diastolic: > 90
AAA Normal Low pressure (~40 mmHg)
Pressure | Endoleak Sistemic Pressure
define the Patient Status are based in information found in

the literature, the rules for the System Status are defined from
the system specifications, and the rules for the Global Status
include both.

The fuzzy sets include the HR for each channel, the blood
pressure (systolic and diastolic), and can also include the AAA
pressure, the acceleration of the patient’s activity, and the
electrode-skin contact resistance if these data are available.
The signal-to-noise ratio (SNR) of bioelectrical signals is
known to be related to the electrode-skin impedance [3]. Since
the impedance varies for each person and is affected by other
factors like temperature and applied pressure, when-the-system
is-beingused, the electrode-skin impedance is measured when
# is switched on and afterwards js monitored periodically
to establish a normal region for the impedance values, for
which the acquired ECG quality is considered acceptable.
These values are then used for comparison with the measured
impedance during normal operation of the system. In case
the impedance values are higher than expected, signalling a
potential loose connected electrodes situation, the fuzzy logic
system updates the System Status.

Fig. 3: Block diagram of fuzzy logic system.

The trapezoidal curve was chosen for the membership
function. This is a function of a vector, x, and depends on four
scalar parameters a, b, ¢, and d (equation 1). The parameters
a and d locate the “feet” of the trapezoid and the parameters
b and c locate the “shoulders”.
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Fig. 4: Fuzzy sets for the diastolic BP.
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Fig. 5: Fuzzy sets for the systolic BP.

The BP is divided in three sets: low (hypotension), normal
and high (hypertension). Figure 4 displays the membership
functions for the diastolic BP sets and Figure 5 displays the
membership functions for the systolic BP sets.
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Fig. 6: Fuzzy sets for the HR.

The HR includes the following sets: bradycardia, normal
and tachycardia. The vertical black line in 6 represents a HR
measurement of 130 bpm, which has a membership level of
0.3 in the normal set and a level of 0.8 in the tachycardia set.

The output variables Patient Status, System Status and
Global Status have 2 sets: abnormal (from 0 to 0.5) and normal
(from 0.5 to 1). The normal sets from the inputs are assigned
to the normal set of the outputs, and the remaining input sets
are assigned to the abnormal output set.
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C. Fault detection

The proposed fuzzy logic system, with its three levels
(Patient, System, Global) evaluation approach, is extremely
useful in identifying the cause of an occurring fault. The fault
tree displayed in Fig. 7 depicts the system’s main components
and the way how faults propagate. This high level fault tree
is also utilized in the decision making process of the fuzzy
logic system for fault identification purposes. When the fuzzy
logic system outputs a System Status below 0.5 the smartphone
requests the SIVIC system to perform the necessary tests to
detect the problem source and eventually correct it. Some ECG
signal disturbances and testing procedures are listed here:

« ECG signal is out of scale: check the input amplifiers by
disconnecting the electrodes and connecting a known test
stimulus

o ECG signal is corrupted with noise: check the electrodes
impedance, test the analog front-end circuit, and the
communication Bluetooth link

¢ QRS complex with reduced amplitude: verify the linearity
of the analog front-end and the electrode-skin impedance

o Received ECG signals are corrupted

These tests are based on a Failure mode and effects analysis
(FMEA) performed during the system’s design. The FMEA for
the implantable pressure sensors that measure the presence
or absence of endoleaks in the AAA was performed and a
possible testing procedure was already presented [12]. For the
complete SIVIC system our analysis was based on the FMEA
analysis made by [13]. This phase is very important to identify
the most problematic components and functions of the system
and determine which components/blocks should include built-
in self-test (BIST) or other type of testing,

Electrodes
Electronics
nController

Communication

Physical activity

Patient

Pathological

Fig. 7: Fault tree analysis of the wearable monitoring system.

III. RESULTS AND DISCUSSION

Data from the MIT Multiparameter database (MGH/MF)
was used to evaluate the fuzzy logic system using Matlab [14],
[15]. The features from ECG signals (leads I, II and V) and the
arterial blood pressure (ART) were extracted and feed to the
fuzzy logic system. The ECG provides the HR information and
the ART waveform is used to know the systolic and diastolic

pressures. Also an impedance signal was added to the set in
order to test for possible faults.

The fuzzy logic was evaluated for 3 situations:

1) One of the ECG channels (lead I) does not provide useful
information, most likely due to a faulty contact (Figure 8).
The other channels (leads II and V) enable the detection of the
HR. The electrode-skin impedance value enables detecting the
problem is related with the electrode. Result: Patient Status:
81; System Status: 18; Global Status: 81.
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Fig. 8: MGH231 record: lead I is missing.(Grid intervals: time 0.2
s, ECG 0.5 mV, ART 25 mmHg)

2) The recorded signals have good quality, i.e. the SNR
is good enough to identify relevant features, but the pa-
tient’s blood pressure is very high (record MGHO085 from the
MGH/MF database). The System Status is ok, but the Patient
Status indicates a health problem. Result: Patient Status: 14;
System Status: 86; Global Status: 86.

3) Atrial flutter, or arrhythmia, is an abnormality of the heart
rhythm resulting in a rapid and sometimes irregular heartbeat.
The occurrence of atrial flutter in the ECG is recognized by
the presence of characteristic flutter waves at a regular rate
of 240 to 440 beats per minute (Figure 9). In this case the
HR is calculated using lead V, and the ART waveform is also
used for a more reliable HR estimation, since these signals are
related. Result: Patient Status: 14; System Status: 86; Global
Status: 86.
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Fig. 9: MGHO023 record: Atrial flutter. (Grid intervals: time 0.2 s,
ECG 0.5 mV, ART 25 mmHg)

When the data fusion model detects that the System Status is
degraded, further tests can be performed by the system to de-
termine the cause. The smartphone sends an order for specific
tests to be performed depending on the signals features. For
instance if an ECG channel presents a behaviour similar to the
atrial flutter condition, but the remaining channels are normal,
the flutter could be caused by the acquisition system, rather
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than the patient’s heart. An oscillation in the ECG amplifier,
could cause such flutter in the signal. A simple test would
be to interconnect both inputs of the amplifier and observe if
the flutter persists. If not, it is likely that the signal is really
displaying a health condition that is then more visible in this
particular ECG channel.

Also the data fuzzy model is flexible, in the sense that
further inputs can be added to the system with extra infor-
mation regarding the patient and the system. For instance,
behavior identification sensors like accelerometers can be
added to monitor the patient activity. If motion is detected
at the same time the ECG signal is degraded, the system
can determine the degradation of the biosignal as temporary
and not related with any fault from the electronics or the
electrodes. A body temperature sensor allows verifying if a
moderately accelerated HR is due to a fever situation (the
heart rate increases on average 8.5 beats per minute for a 1
degree C increase in body temperature [16]).

IV. CONCLUSION

Several wearable medical monitoring systems are available,
all with different architectures, components, characteristics,
and designs. All authors state that high levels of reliability,
security, safety, availability and maintainability are required.
Such high levels of dependability are difficult to achieve due
to the complexity of these monitoring systems, which have
different blocks and functional layers (sensors, data acquisition
front-end, software, networks, etc). A data fusion model for
wearable medical systems based on fuzzy logic is presented.
It is shown how fuzzy logic can be explored to correlate
data obtained from different sensors in order to obtain status
indicators fer that characterize the operation correctness of a
monitoring system or a pathological condition of the wearer.

ACKNOWLEDGMENT

This work is financed by the ERDF - European Regional
Development Fund through the COMPETE Programme (oper-
ational programme for competitiveness) and by National Funds
through the FCT — Fundagdo para a Ciéncia e a Tecnologia
(Portuguese Foundation for Science and Technology) within
project SIVIC PTDC/EEI-ELC/1838/2012 (FCOMP-01-0124-
FEDER-028937), and grant contract SFRH/BD/81476/2011
(first author).

REFERENCES

[1] R. Paradiso, G. Loriga, and N. Taccini, “A wearable health care
system based on knitted integrated sensors,” Information Technology in
Biomedicine, IEEE Transactions on, vol. 9, no. 3, pp. 337-344, 2005.
C. Oliveira, A. Sepilveda, N. Almeida, B. Wardle, J. Machado da Silva,
and L. Rocha, “Implantable flexible pressure measurement system based
on inductive coupling,” Biomedical Engineering, IEEE Transactions on,
vol. 62, no. 2, pp. 680-687, Feb 2015.

C. Oliveira, J. Machado da Silva, I. Trindade, and F. Martins, “Charac-
terization of the electrode-skin impedance of textile electrodes,” in 20714
Conference on Design of Circuits and Integrated Circuits (DCIS), Nov.
2014, pp. 1-6.

M. Elgendi, B. Eskofier, S. Dokos, and D. Abbott, “Revisiting QRS
Detection Methodologies for Portable, Wearable, Battery-Operated, and
Wireless ECG Systems,” PLoS ONE, vol. 9, no. 1, p. e84018, Jan. 2014.
[Online]. Available: http://dx.doi.org/10.1371/journal.pone.0084018

[2]

[3]

[5]

[6]

[7]

[8]

[9]

[10]

(1]

(12]

[13]

[14]

[15]

[16]

J. Pan and W. J. Tompkins, “A Real-Time QRS Detection Algorithm,”
IEEE Transactions on Biomedical Engineering, vol. BME-32, no. 3, pp.
230-236, Mar. 1985.

E. Kenneth, A. U. Rajendra, N. Kannathal, and C. M. Lim, “Data fusion
of multimodal cardiovascular signals,” in Engineering in Medicine and
Biology Society, 2005. IEEE-EMBS 2005. 27th Annual International
Conference of the, 2005, pp. 4689 —4692.

K. Becker, B. Thull, H. Ksmacher-Leidinger, J. Stemmer, G. Rau,
G. Kalff, and H.-J. Zimmermann, “Design and validation of
an intelligent patient monitoring and alarm system based on a
fuzzy logic process model,” Artificial Intelligence in Medicine,
vol. 11, no. 1, pp. 33-53, Sep. 1997. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0933365797000201

J. HO T. Bates and M. P. Young, “Applying Fuzzy Logic
to Medical Decision Making in the Intensive Care Unit,”
American Journal of Respiratory and Critical Care Medicine,
vol. 167, no. 7, pp. 948-952, Apr. 2003. [Online]. Available:
http://www.atsjournals.org/doi/full/10.1164/rccm.200207-777CP

M. Mahfouf, M. F. Abbod, and D. A. Linkens, “A survey of fuzzy logic
monitoring and control utilisation in medicine,” Artificial Intelligence
in Medicine, vol. 21, no. 13, pp. 2742, Jan. 2001. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0933365700000725
M. FE Abbod, D. G. von Keyserlingk, D. A. Linkens,
and M. Mahfouf, “Survey of utilisation of fuzzy technology
in Medicine and Healthcare,” Fuzzy Sets and Systems, vol.
120, no. 2, pp. 331-349, Jun. 2001. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0165011499001487

L. A. Zadeh, “Fuzzy Logic,” Computer, vol. 21, no. 4, pp. 83-93, Apr.
1988.

C. Oliveira and J. da Silva, “Fault Detection System for a Stent-Graft
Endoleakage Monitor,” in Mixed-Signals, Sensors and Systems Test
Workshop (IMS3TW), 2012 18th International, 2012, pp. 17-21.

M. Cinque, A. Coronato, and A. Testa, “Dependable Services
for Mobile Health Monitoring Systems,” Int. J. Ambient Comput.
Intell., vol. 4, no. 1, pp. 1-15, Jan. 2012. [Online]. Available:
http://dx.doi.org/10.4018/jaci.2012010101

A. L. Goldberger, L. A. N. Amaral, L. Glass, J. M. Hausdorff, P. C.
Ivanov, R. G. Mark, J. E. Mietus, G. B. Moody, C.-K. Peng, and H. E.
Stanley, “PhysioBank, PhysioToolkit, and PhysioNet Components of a
New Research Resource for Complex Physiologic Signals,” Circulation,
vol. 101, no. 23, pp. e215-e220, Jun. 2000. [Online]. Available:
http://circ.ahajournals.org/content/101/23/e215

J. Welch, P. Ford, R. Teplick, and R. Rubsamen, “The massachusetts
general hospital-marquette foundation hemodynamic and electrocardio-
graphic database — comprehensive collection of critical care waveforms,”
J Clinical Monitoring, vol. 7, no. 1, pp. 96-97, 1991.

V. M. Karjalainen J, “Fever and cardiac rhythm,” Arch Intern
Med., vol. 146, no. 6, pp. 1169-71, Jun. 1986. [Online]. Available:
http://dx.doi.org/10.4018/jaci.2012010101


jms
Inserted Text
response

jms
Cross-Out




