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Abstract—This paper proposes a fault tolerant control (FTC) 

scheme based on sliding mode control for multi-motor electric 

vehicles. A design method of a sliding mode tracking controller 

with control allocation is developed based on the information 

provide by fault detection and identification (FDI) mechanism. 

The vehicles states yaw rate and longitudinal velocity are 

simultaneously controlled to track their references. A particular 

attention is given to study the effect of non-perfect fault estimation. 

The control allocation explore the over actuated system in order 

to redistribute the control effort when a fault occurs. Simulations 

in various driving scenarios with different faults are carried out 

with a high-fidelity, CarSim, full-vehicle model. Simulation results 

show the effectiveness of the proposed FTC approach. 

Keywords—Fault Tolerant Control, Sliding mode control, 

Control Allocation, electric vehicles, stability control; 

I. INTRODUCTION 

The technological breakthrough in electric vehicles and the 
implementation of multi-motor architecture in ground vehicles 
created an opportunity to explore the advantages of control in 
over actuated systems [1],[2]. The fast transient response of 
electric motors as well as the interesting torque/speed 
characteristic, gives an exciting lead over the combustion 
motors. The capability to control precisely the 
accelerating/braking torque of each wheel independently is also 
an useful feature of multi motor vehicles which enhances the 
typical control strategies [3],[4]. 

Nevertheless the increasing the number of actuators leads to 
an increase of system faults [1]. Therefore, the need for a fault 

tolerant control that can recover the system in the presence of 
motor failure and ensures the stability of the vehicle is required. 
From the control point of view the over actuated systems 
provides an inherit plurality of solution which can be used to 
accommodate system faults and even complete actuator failure 
[5]. 

The loss of effectiveness in an in-wheel motor can lead to 
vehicle instability or deteriorate vehicle handling. For these 
reasons fault tolerant control (FTC) has been an emergent area 
in ground overactuated vehicles [3],[4],[5],[6] and[7]. In this 
paper, we propose a further improvement to [3] by introducing 
the effect of non-perfect fault reconstruction in the design of the 
sliding controller. The focus in this paper is to arrive to a suitable 
control for four wheel independent drive vehicles that can 
sustain multiple actuators fault by distributing the effort to the 
healthy actuators. To address this problem, it is exposed a 
control structure in fig.1 that define the methodology based in a 
non-linear sliding mode control to design a robust controller able 
to guarantee system stability and robustness to system 
uncertainties and disturbances [3] [6].  

The paper is organized as follows. In section II a brief 
introduction to the complete vehicle model with the information 
regarding the actuators fault is given. Section III explores the 
proposed control strategy, as well as the control law for the 
sliding mode controller and the control allocation method. The 
resulting effect from a deficient fault reconstitution is also 
studied in this section. The results obtained with the proposed 
control are presented in section IV. The final conclusions on the 
analysis and results are made in section V. 
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Fig. 1.   Proposed control structure for multi-motor electric vehicle 
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II. FAULTY VEHICLE MODELING  

A. Vehical Planar model 

A model-based fault tolerant controller design requires a 
mathematical description of the vehicle. In this paper we are 
going to explore the planar model, which means that only the 
lateral and longitudinal dynamics are considered.  

The study of the vehicle dynamics is defined by two key 

motions: the translation motion, and the rotational motion of the 

vehicle. Considering only the planar motion of the system it is 

possible to define the forces acting in the vehicle by the second 

law of Newton and the rotational moment by the Euler 

equation, obtaining the Newton-Euler equations of motion for 

a rigid vehicle[8]: 

{
  
 

  
 𝑣̇𝑋 =

1

𝑚
(𝐹𝑋𝐹𝐿 + 𝐹𝑋𝐹𝑅 + 𝐹𝑋𝑅𝐿 + 𝐹𝑋𝑅𝑅 − 4𝐹𝑅 − 𝐹𝑤𝑖𝑛𝑑𝑥) + 𝑣𝑌 . 𝜓̇

𝑣̇𝑌 =
1

𝑚
(2𝐶𝑓 (𝛿 −

𝑣𝑌

𝑣𝑋
−

𝑙𝑓𝜓̇

𝑣𝑋
) + 2𝐶𝑟 (

𝑙𝑟𝜓̇

𝑣𝑋
−

𝑣𝑌

𝑣𝑋
)) − 𝑣𝑋. 𝜓̇

𝜓̈ =
1

𝐼𝑧
(2𝑙𝑓𝐶𝑓 (𝛿 −

𝑣𝑌

𝑣𝑋
−

𝑙𝑓𝜓̇

𝑣𝑋
) − 2𝑙𝑟𝐶𝑟 (

𝑙𝑟𝜓̇

𝑣𝑋
−

𝑣𝑌

𝑣𝑋
)) + 𝑀𝑧

 

 

where the longitudinal vehicle speed vx, the lateral vehicle speed 

vy and vehicle yaw rate 𝜓̇ being the state variables of the 
nonlinear model. The mass of the system is defined as 𝑚 and the 
inertial moment of the vertical axis is 𝐼𝑧. The 𝑀𝑍 defines the 
external moment component generated from the longitudinal 
forces applied in which wheel can be written as [9]: 

𝑀𝑧 = (𝐹𝑋𝐹𝑅 − 𝐹𝑋𝐹𝐿 + 𝐹𝑋𝑅𝑅 − 𝐹𝑋𝑅𝐿)
𝑙𝑠

2
             (2) 

This system can be exploited in the matrix form as presented 
in (3). 

[

𝑣̇𝑌
𝑣̇𝑋
𝜓̈

] = 𝑓(𝑥) + 𝐶. 𝛿 + 𝐵. 𝑢                       (3) 

𝑓(𝑥) = [

𝑓1(𝑥)
𝑓2(𝑥)

𝑓3(𝑥)
] =

[
 
 
 

𝑎1𝑣𝑌 + 𝑎2𝜓̇
1

𝑚
(−4𝐹𝑅 − 𝐹𝑤𝑖𝑛𝑑𝑥)

𝑎3𝑣𝑌 + 𝑎4𝜓̇ ]
 
 
 

 

where u is the input variable of our system: 

𝑢 = [𝐹𝑋𝐹𝐿 , 𝐹𝑋𝐹𝑅, 𝐹𝑋𝑅𝐿 , 𝐹𝑋𝑅𝑅]
𝑇                   (4) 

and 𝐹𝑅 and 𝐹𝑊𝑖𝑛𝑑𝑥 are respectively the rolling resistance force 

and the wind resistance force. A complete formulation of 

vehicle model is beyond the scope of this paper, but a detailed 

discussion can be found in [8],[9].  

𝐶 = [𝑐1 0 𝑐2]
𝑇 

𝐵 =

[
 
 
 
 
0
1

𝑚

−
𝑙𝑠
2𝐼𝑧

0
1

𝑚
𝑙𝑠
2𝐼𝑧

0
1

𝑚

−
𝑙𝑠
2𝐼𝑧

0
1

𝑚
𝑙𝑠
2𝐼𝑧]

 
 
 
 

 

Whose ai and ci parameters take the form: 

 

𝑎1 = −
2(𝐶𝑓 + 𝐶𝑟)

𝑚𝑣𝑋
             𝑎2 =

2(𝐶𝑟𝑙𝑟 − 𝐶𝑓𝑙𝑓)

𝑚𝑣𝑥
− 𝑣𝑥 

𝑎3 =
2(𝐶𝑟𝑙𝑟 − 𝐶𝑓𝑙𝑓) 

𝐼𝑧. 𝑣𝑋
      𝑎4 = −

2(𝐶𝑟𝑙𝑟
2 + 𝐶𝑓𝑙𝑓

2)

𝐼𝑧. 𝑣𝑥
 

𝑐1 =
2𝐶𝑓

𝑚
       𝑐2 =

2𝐶𝑓𝑙𝑓

𝐼𝑧
  

B. Actuator Faults 

The previous mathematical model does not describe the 
consequence of actuator fault in the vehicle. Basically is a fault-
free model. In order to modelling the effect of actuator faults, it 
will be assumed that the occurrence of a fault has a direct impact 
in the available torque of the actuator. In the literature three 
types of actuator faults are considered [5]. The first one is the 
additive fault where the actuator fault is modeled as additive 
unknown signals that are superposed onto the control signal. The 
second one is the loss-of-effectiveness of actuator and the third 
fault type is the actuator’s control effect stuck-at-fixed-level. In 
this paper, we only considered the second type which is modeled 
by multiplying a factor to the control signal. Considering a 
matrix K that represents the actuator fault as expressed in (5) [5]. 

𝐾 = 𝑑𝑖𝑎𝑔(𝑘𝐹𝐿 , 𝑘𝐹𝑅 , 𝑘𝑅𝐿 , 𝑘𝐹𝑅)                      (5) 

with, 𝑘𝑗𝑤 ∈ [0,1], where 𝑘𝑗𝑤 expresses loss-of-effectiveness of 

the jwth actuator. The fault gain express the severity of the 

actuator fault ranging from 1, which represent a complete 

failure of the actuator, to 0 that express the absence of fault [3]. 

Therefore, a mathematical model representing a faulty vehicle 

model can take the following form: 

[

𝑣𝑌̇
𝑣𝑋̇
𝜓̈

] = 𝑓(𝑥) + 𝐶. 𝛿 + 𝐵(𝐼 − 𝐾)𝑢.                     (6) 

This state-space model is used for the controller design in the 
next section. 

III. FAULT TOLERANT CONTROLLER DESIGN 

In this section, the design of FTC will be explains in details. 
The main objective of the design is to derive a control law for 
(6) and, at the same time, reduce relevant disturbances and 
mitigate the systems faults. However, available controller may 
not meet all requirements needed. In particular this work 
deepens the initial work with respect to the effect of non-perfect 
fault reconstruction.  

The main purpose of the control is to track Vxref and 𝜓̇ref, 
treating the lateral speed as an unknown disturbance. In this 
paper the FDI system will not be discussed, however we will 
assume that the faults introduced in the system are promptly 
detected using a subsystem capable to detect and identify the 
origin of the fault. The information obtained by FDI is send to 
the proposed controller that is capable to reconfigure the control 
allocation in order to eliminate the actuator fault. The detection 
and isolation of the faults that occurs in the system is a relevant 
subject that will be studied in subsequent works. 

(1) 



A. Control Structure 

The input given by the driver is used to obtain the desirable 
yaw rate as well as the desirable speed of the vehicle. The input 
u of the system (6) is assumed to be independent of the vehicle 
states. Thus, we substitute it by a virtual control variable to 
simplify the control design task and to decouple it from an 
upper-level controller to track the vehicle dynamics desired by 
the driver and a low level controller for individual wheel torque 
control allocation algorithm. The control of the state variables 
are treated as independent of each other enabling a decoupled 
study as well as a separated control of each variable. The control 
allocation is design to distribute the effort of the actuators in an 
optimal way and to eliminate the disturbance created by the 
actuators faults. Note that the wheel torque allocation algorithm 
is responsible to manage the system faults. 

B. Control Allocation 

The control allocation algorithm is a key element in the 

proposed fault tolerant control approach. The information 

obtained from the FDI subsystem will be considered perfect in 

this section. 

Let 𝐵 ∈ ℝ𝑛𝑥𝑚 and m is the number of actuators of the 

system. The B matrix can be reordered as [5]: 

𝐵 = [
𝐵1
𝐵2
]                                   (7) 

With 

𝐵2 = [

1

𝑚

−
𝑙𝑠
2𝐼𝑧

1

𝑚
𝑙𝑠
2𝐼𝑧

1

𝑚

−
𝑙𝑠
2𝐼𝑧

1

𝑚
𝑙𝑠
2𝐼𝑧

] 

where 𝐵1 ∈ ℝ
(n−l)×m and 𝐵2 ∈ ℝ

l×m has rank l. The B1 matrix 

is null which means that all the effort of the control is due to B2 

matrix. 

The 𝐵2 matrix can be transformed in such a way that 

𝐵2𝐵2
𝑇 = 𝐼𝑙  and therefore ‖𝐵2‖ = 1. This is always possible 

since 𝑟𝑎𝑛𝑘(𝐵2) = 𝑙 [5]. The resulting matrix is defined in (9). 

𝐵2 = [

1

2

−
1

2

1

2
1

2

1

2

−
1

2

1

2
1

2

] 

The control allocation and the control law are designed 

separately so it is necessary an intermediate virtual control. The 

transformation performed in (9) must be accommodated by 

defining a suitable virtual control variable:  

𝑣 = [
𝑚

2
𝐹𝑋 ,

𝐼𝑍
𝑙𝑠
𝑀𝑍]

𝑇

 

The virtual control variable 𝑣 can be expressed as a result 

of the control variable u in (8) and it summarizes the total 

longitudinal force and the total yaw moment acting on the 

center of gravity of the vehicle. 

𝑣 = 𝐵2𝑢                                     (11) 

 

From direct manipulation of (11) gives [5] 

𝑢 = 𝐵2
†𝑣                                    (12) 

where 𝐵† represent the right pseudo-inverse matrix of B2. The 

choice of the pseudo inverse matrix, 𝐵† is obtained by solving 

a minimization problem [5]: 

min
𝑢
𝑢𝑇𝑊−1𝑢           𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝐵2𝑢 = 𝑣          (13) 

where 𝑊 ∈ ℝmxm is a positive diagonal weighting matrix. The 

function in (13) minimizes the weighted sum of squares 

associated with the control vector u. The optimal solution is 

obtained with (14) [5]. 

𝐵2
† = 𝑊𝐵2

𝑇(𝐵2𝑊𝐵2
𝑇)−1                     (14) 

C. Weighting Matrix 

The weighting matrix W is chosen in order to: 

1) Redistribute the control in the presence of faults in the 

system; 

2) Explore the tire load to improve the grip. 

The presence of faults can be explored by a fault matrix K 

expressed in (5). So it is possible to define a weighting matrix 

M that exploit the actuator effectiveness [5]. 

𝑀 = (𝐼 − 𝐾)                                 (15) 

The tire vertical load of each tire can be define as followed 

[9],[4]: 

{
  
 

  
 𝐹𝑍𝐹𝐿 =

1

2

𝑙𝑟

𝑙
𝑚.𝑔 − 𝜌𝑓𝑎𝑌𝑚

ℎ𝑔

𝑙𝑠
− 𝑎𝑋𝑚

ℎ𝑔

𝑙

𝐹𝑍𝐹𝑅 =
1

2

𝑙𝑟

𝑙
𝑚.𝑔 + 𝜌𝑓𝑎𝑌𝑚

ℎ𝑔

𝑙𝑠
− 𝑎𝑋𝑚

ℎ𝑔

𝑙

𝐹𝑍𝑅𝐿 =
1

2

𝑙𝑟

𝑙
𝑚.𝑔 − 𝜌𝑟𝑎𝑌𝑚

ℎ𝑔

𝑙𝑠
+ 𝑎𝑋𝑚

ℎ𝑔

𝑙

𝐹𝑍𝑅𝑅 =
1

2

𝑙𝑟

𝑙
𝑚.𝑔 + 𝜌𝑟𝑎𝑌𝑚

ℎ𝑔

𝑙𝑠
+ 𝑎𝑋𝑚

ℎ𝑔

𝑙

          (16) 

where 𝜌𝑓 and 𝜌𝑟 are respectively the front and rear roll 

coefficient, ℎ𝑔 is the height of the center of gravity of the 

vehicle. 

There is a direct relationship between the longitudinal 

force 𝐹𝑋, the lateral force 𝐹𝑌 and the vertical force 𝐹𝑍 that must 

be satisfied [9],[4]: 

√𝐹𝑋
2 + 𝐹𝑌

2 ≤ 𝜇𝐹𝑍                            (17) 

where 𝜇 is the friction coefficient of the road. From (17) is 

noticeable that the magnitude of the force that the tire generates 

in contact with the road should not exceed the product of the 

vertical load of the tire and the friction coefficient. The vector 

created by the result of the two components of the tire/road 

must be restricted to the friction circle with 𝜇𝐹𝑍 radius [9], [4]. 

The workload of each tire can be expressed as shown in (18) 

by considering that the lateral forces that the tire originates are 

negligible (𝐹𝑌𝑗𝑤 ≪ 𝐹𝑋𝑗𝑤).  

(8) 

(10) 

(9) 



𝑛𝐹𝐿 =
𝐹𝑋𝐹𝐿
𝜇. 𝐹𝑍𝐹𝐿

;           𝑛𝑅𝑅 =
𝐹𝑋𝐹𝑅
𝜇. 𝐹𝑍𝐹𝑅

;  

𝑛𝑅𝐿 =
𝐹𝑋𝑅𝐿
𝜇. 𝐹𝑍𝑅𝐿

;           𝑛𝑅𝑅 =
𝐹𝑋𝑅𝑅
𝜇. 𝐹𝑍𝑅𝑅

;  

(18) 

A weighting matrix J regarding the tire workload can be 

expressed as [3]: 

𝐽 = 𝑑𝑖𝑎𝑔((𝜇. 𝐹𝑍𝐹𝐿)
2, (𝜇. 𝐹𝑍𝐹𝑅)

2, (𝜇. 𝐹𝑍𝑅𝐿)
2, (𝜇. 𝐹𝑍𝑅𝑅)

2)  (19) 

The final weighting matrix W can be obtained by combining 

the M matrix (15) relative to the system faults with the load 

restriction [3],[4] obtaining: 

𝑊 = 𝑑𝑖𝑎𝑔((1 − 𝑘𝐹𝐿)(𝜇. 𝐹𝑍𝐹𝐿)
2, (1 − 𝑘𝐹𝑅)(𝜇. 𝐹𝑍𝐹𝑅)

2, (1 −

𝑘𝑅𝐿)(𝜇. 𝐹𝑍𝑅𝐿)
2, (1 − 𝑘𝑅𝑅)(𝜇. 𝐹𝑍𝑅𝑅)

2)          (20) 

D. Non-Perfect Fault Reconstruction 

Until this point the fault reconstruction was assumed as 

perfect, now it will be exposed the effect of an imperfect 

reconstruction of the system fault. 

Consider now 𝐾 as the estimated actuator efficiency based 

on the FDI information and we suppose that 𝐾 ≠ 𝐾. Thus it is 

possible to define the faults weighting matrix as [5]: 

𝑀̅ = 𝐼 − 𝐾                                   (21) 

By assuming Δ=diag{∆𝐹𝐿 , ∆𝐹𝑅 , ∆𝑅𝐿 , ∆𝑅𝑅}, which represents 

the level of imperfection of the fault reconstruction, the actual 

faults weighting matrix can be expressed as [5]: 

𝑀 = (𝐼 − Δ)𝑀̅                                (22) 

The weighting matrix M was defined in (19). By replacing 

the result (22) in the model (6) results the effect of the non-

perfect fault reconstruction [5]: 

[

𝑣̇𝑌
𝑣̇𝑋
𝜓̈

] = 𝑓(𝑥) + 𝐶. 𝛿 + 𝐵(𝐼 − Δ)𝑀̅. 𝐵2
†𝑣          (23) 

By defining 𝑣̅ = (𝐵2𝑊̅𝐵2
𝑇)−1𝑣 the error in fault 

reconstruction becomes explicit [5]: 

[

𝑣̇𝑌
𝑣̇𝑋
𝜓̈

] = 𝑓(𝑥) + 𝐶. 𝛿 + [𝐵1𝐵2
𝑇

𝐼
] 𝑣̅ − [

𝐵1(𝐼 − 𝑀̅
2)𝐵2

𝑇

𝐵2(𝐼 − 𝑀̅
2)𝐵2

𝑇] 𝑣̅ 

−[
𝐵1Δ𝑀̅

2𝐵2
𝑇

𝐵2Δ𝑀̅
2𝐵2

𝑇] 𝑣̅                           (24) 

In the system expressed in (24) is evident the presence of an 

uncertainty that can be explicitly defined as: 

[

∆𝑣𝑌
∆𝑣𝑋
∆𝜓̇

] = [
𝐵1Δ𝑀̅

2𝐵2
𝑇

𝐵2Δ𝑀̅
2𝐵2

𝑇] 𝑣̅                     (25) 

E. Sliding mode Control – yaw rate  

From the algebraic manipulation of the model presented in 

(6) results (26) [7]. 

           𝐼𝑧. 𝜓̈ = −
2(𝑙𝑓2𝐶𝑓+𝑙𝑟2𝐶𝑟)

𝑣𝑋
𝜓̇ + 2. 𝑙𝑓. 𝐶𝑓𝛿 − 2(𝑙𝑓. 𝐶𝑓 −

                                      𝑙𝑟. 𝐶𝑟)
𝑣𝑌

𝑣𝑋
+𝑀𝑍𝑒𝑥𝑡 + Δ𝜓̇  

Where Δ𝜓̇ represents the effect from a non-perfect 

reconstruction defined in (25). 

The sliding variable will be defined as (27) in the proposed 

yaw rate control [7]. 

𝜎 = 𝜓̇ 𝑟𝑒𝑓 − 𝜓̇                               (27) 

The total bounded disturbances in the system can be defined 

as: 

𝜗(𝑥, 𝑡) = 𝜓̈𝑟𝑒𝑓 −
2(𝑙𝑓. 𝐶𝑓 − 𝑙𝑟. 𝐶𝑟)𝑣𝑌

𝐼𝑧. 𝑣𝑋
−
Δ𝜓̇ 

𝐼𝑧
 

‖𝜗(𝑥, 𝑡)‖ ≤ 𝑇 > 0                           (28) 

The control law chosen is defined as a result of two 

complementary control laws [10]: 

𝑀𝑍𝑒𝑥𝑡 = (𝑢𝑒𝑞 + 𝑢𝑑)                           (29) 

One component is the equivalent control law which is the 

control function necessary after reaching the sliding surface 

σ=0 to ensure that the system remains in the trajectory [10].  

𝑢𝑒𝑞 = −
2(𝑙𝑓2𝐶𝑓+𝑙𝑟2𝐶𝑟)

𝑣𝑋
𝜓̇ + 2. 𝑙𝑓. 𝐶𝑓. 𝛿              (30) 

The second component is chosen to eliminate the bonded 

disturbances defined in (28) and can be selected as (31) [10],[7]. 

𝑢𝑑 = [𝐾𝑝. 𝑠 + 𝐾𝑠. 𝑠𝑖𝑔𝑛(𝑠)]. 𝐼𝑧                   (31) 

To prove the stability of the proposed control we used the 

following Lyapunov equation [10]: 

𝑉 =
1

2
𝜎2                                    (32) 

Once the control law is completely defined it is possible to 

prove the stability of the system by substituting the control law 

in the equation (29) in the derivation of Lyapunov function 

defined in (32) resulting the condition (33). 

𝑉̇ = |𝜎|(𝑇 − 𝐾𝑠) − 𝐾𝑝. 𝜎2 < 0                  (33) 

 From the condition in (33) it is clear that the stability is 

reach by choosing Ks>0 which is the control parameter, that is 

tuned to eliminate the bounded disturbance T, and Kp>0, this 

last parameter define the converge rate of the controller [7]. 

 

(26) 



TABLE I.  PARAMETERS OF THE VEHICLE MODEL FROM CARSIM 

Vehicle Parameter Value 

Cf– Cornering stiffness front 24.5 kN/rad 

Cr– Cornering stiffness rear 23.1 kN/rad 

Iz – Vehicle inertia around z-axis 1130 kg 𝑚2 

m – Vehicle mass 830 kg 

lf– Distance from COG to front axle 1.103 m 

lr – Distance from COG to rear axle 1.244m 

ls – Width of the vehicle 1.78 m 

IV. RESULTS AND DISCUSSION 

The numerical experimental has done based on the car of 

class A model. Table I shown the parameters used for the 

numerical experimental proposed. The controller was 

developed in Matalab-Simulink environment. The real 

parameters are imported from CarSim to Simulink then 

exported to the CarSim as a feedback signal from the controller. 

To evaluate the performance of the proposed control three 

different simulations were performed: a J-turn, a Double Line 

change and a Single Line change. In the referred simulation are 

presented extreme situations of road friction and actuators 

faults in order to infer about the controller performance.  

A. J-turn 

In this maneuver there is a first segment in straight line 

followed by a J-turn of 45 degrees. To evaluate the control 

response to different friction coefficients this maneuver is 

carried with a split µ, having a lower friction coefficient in the 

left side of the road (µ=0.1) and a higher coefficient in the right 

side (µ=0.5). 

During the straight line it is introduce a fault in the front left 

tire and the effectiveness of that motor decreases 10% per 

second  from the first second until the end of the maneuver 

finishing with only 30% of effectiveness. The yaw rate follows 

the reference with the proposed control as opposed to the 

system without control as seen in Fig. 2. 

The dynamic of the longitudinal velocity is also explored, 

by raising the vehicle speed during the straight line and 

maintaining the speed in the turn (see Fig. 3). The initial speed 

is 45Km/h entering the curve at 50Km/h. 

The effort of each motor in the maneuver is presented in 

Fig. 5. At t=0.5s, the applied torque rises to satisfy the increase 

of longitudinal speed. The fault applied in the first second 

decreases the effectiveness of the motor in the rear right wheel, 

as a result the motor of the front right wheel increases the 

torque. The J-turn initiated at t=5s removes the controller from 

the sliding surface, but it rapidly returns to the surface at t=5.5s 

as it is shown.  

B. Double line change 

In this second simulation it is explored a more difficult 

maneuver with low friction coefficient (µ=0.3). The system is 

exposed to two faults in two different actuators in order to 

expose the performance of the control allocation system. The 

vehicle speed is maintain unchanged during the entire 

maneuver with a constant speed of 60Km/h.  

At t=2.5 it is introduced a fault in the actuator of the front 

left wheel. Fig 5 shows the yaw rate for the FTC control and 

without control. It is obvious in Fig. 5 that the vehicle yaw rate 

can precisely track the desired reference expected by the driver 

with control. Without control the system cannot assure the 

desired yaw rate especially if the road friction coefficient 

decreases. The effect of the fault in the vehicle global position 

is obvious and shows the importance of the proposed control 

(see in Fig. 6). 

The presence of the fault at t=2.5s is equalized by the 

increase of the torque applied in rear tire actuator. Fig. 7 shows 

the motor torque in the front left wheel decreases his 

 

Fig. 2. Yaw rate in J-turn manuever 

 

Fig. 3. Vehicle longitudinal speed in J-turn manuever 

 
Fig. 4. Torque allocation in J-turn manuever 

 



effectifeness to 30% and the motor in rear left wheel respond to 

the fault by increasing its torque.  

C. Single line change 

In this maneuver the vehicle changes line at 90Km/h in a 

dry road (u=0.85) and it is explored the effect of the non-perfect 

fault reconstruction of the FDI subsystem by imposing a level 

of imperfection of ±10%, ±20%, and ±50%. The resulting 

virtual control imposed by the controller is presented in Fig. 8. 

The fault occours at t=2s in the motor of the front right wheel, 

at this time the actuator lost 80% of effectivness. The yaw rate 

and the speed of the vehicle follows the reference perfectly 

even in the presence of a 50% imperfection. Fig. 8 

demonstrates the robustness of the controller to disturbances. 

The desired yaw rate does not change in the presence of these 

uncertainties as long as the actuators do not reach their 

limitations. 

V. CONCLUSION AND FUTURE WORK 

The present paper explore and validate the Fault Tolerant 

Control structure proposed based in sliding mode control for 

four-wheel independent drive vehicles. The faulty model was 

completely defined as well as the effect of a non-perfect 

reconstruction of the faults. The control redundancy is explored 

in such a way that the actuator fault do not influence the system 

overall performance, by redistributing the control effort to the 

remaining actuators and by exploring the tire with the most 

vertical load, improving the overall performance of the system. 

Numerical simulations have shown the performance of the 

proposed controller. Additionally, an investigation for the 

application fault detection and identification will be in focus of 

our future work. 
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Fig. 5.   Yaw rate in DLC manuever 

 
Fig. 6.   Vehicle Global position in DLC manuever 

 

Fig. 7.   Torque allocation in DLC manuever 

 

Fig. 8.   Mz variation to fault imperfetion in SLC manuever 

 

 

 


