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A traffic tensor or simply origin� destination� time is a new data model for conventional origin/desti-
nation (O/D) matrices. Tensor models are traffic data analysis techniques which use this new data model
to improve performance. Tensors outperform other models because both temporal and spatial fluctua-
tions of traffic patterns are simultaneously taken into account, obtaining results that follow a more

traffic flows, alterations to the network topology and chaotic behaviors. How can we detect events in a
system that is faced with all types of fluctuations during its life cycle? Our initial studies reveal that the
current design of tensor models face some difficulties in dealing with such a realistic scenario. We
propose a new hybrid tensor model called HTM that enhances the detection ability of tensor models by
using a parallel tracking technique on the traffic's topology. However, tensor decomposition techniques
such as Tucker, a key step for tensor models, require a complicated parameter that not only is difficult to
choose but also affects the model's quality. We address this problem examining a recent technique called
adjustable core size Tucker decomposition (ACS-Tucker). Experiments on simulated and real-world data
sets from different domains versus several techniques indicate that the proposed model is effective and
robust, therefore it constitutes a viable alternative for analysis of the traffic tensors.

& 2016 Elsevier B.V. All rights reserved.
1. Introduction

The understanding and characterization of traffic tensors has
many applications in network information systems, transportation
systems and many other areas. In particular, event detection in
these systems enables operators to make better decisions about
emerging problems and perform some prevention tasks. Some
intuitive examples include the identification of attacks and mal-
icious activities inside networks and traffic jams in transportation
systems. However, one of the most serious problems in event
detection from traffic tensors is the complexity and diversity of
event types. Fig. 1 illustrates a simplified scenario of a hypothetical
bike sharing system during the operational period of 100 days. The
stations are specified by letters A to F and the connections
between them are represented by directed lines. For extra sim-
plicity let us assume that the system shows a normal behavior
with stable traffic among four stations of A, B, C and D and no
traffic from nodes E and F until day 95. Let us also presume that
events take place in the system exclusively during days 95–100.

The first event type occurs on days 95 and 96 when the system
experiences an increase in traffic flow throughout the network. As
).
we can see, a constant amount is added to the volume of traffic
between all stations. This is similar to what happens in a large
impact citywide event such as a big festival which affects the city's
whole population. For this example, t¼95 relates to a severe event
and t¼96 to a low-scale event. Note that the alteration in traffic
volume is not necessarily additive. Weather-related events such as
rain lead to the same patterns, but in a subtractive form. For
instance, in a normal working day, heavy rain may remarkably
reduce the requests for bike rental.

The next event type occurs during days 97 and 98 when some
new connections are established between stations in a part of the
network. As we see, traffic between main stations remains
unchanged as the system behaves normally, but moderate traffic
shows up from stations E and F to C. This kind of event can appear
due to operational changes or occurrence of some regional events.
For instance, let us imagine a scenario in which stations E and F are
out of service for a long period and suddenly become available. Or
in another possible scenario, if users do not find available bikes in
station B they may refer to the closer stations E and F. Some local
events such as a sports rivalry can also account for this type of
events. We know that during a football rivalry, people come from
different regions to the event's location. Hence, many rare links
with zero traffic might be connected by these users. For instance, a
user who lives far away from the stadium may establish a new
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Fig. 1. Motivational example: a simplified hypothetical scenario in bike-sharing network. Between t¼1 and 94 the system has a stable behavior. At t¼95–96 a mutation
occurs through whole network. In t¼97 and 98 topology of traffic changes in a part of the network. During t¼99–100 a chaotic behavior shows up in a part of the network.
How can we accurately detect these events via a unified model?.

Fig. 2. Four major traffic data analysis techniques. Numbers in the figure are derived from the example scenario in Fig. 1.
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connection from a station close to his neighborhood to the stations
close to the stadium's location.

Finally, during the last two days, i.e. t¼99, 100 we observe a
chaotic behavior in a part of the network where events do not
follow any regular pattern. For instance, even though the traffic
pattern at t¼99 seems similar to the expected for stable condi-
tions, links A to D and C to D exhibit an odd behavior. In one of
them we observe a very slight change while in the other one the
fluctuation is very intense. Likewise, in t¼100 we perceive a
mutation in the network topology as well as an irregular incon-
stancy in the flow volume. The reason for this type of events is not
evident, because multiple factors are usually involved in their
occurrence. An intuitive example of such a chaotic behavior can be
an occurrence of various events at the same time such as a football
rivalry, alongside a blackout event in some stations added to a
weather-based event like rain.

As we can notice in the above cases, some events are associated
with fluctuations in flow (e.g. days 95 and 96), while some are
linked with alterations to the network topology (e.g. days 97 and
98) and others, such as 99 and 100 to a chaotic behavior in part of
the network. This kind of patterns may be repeated several times
and are not necessarily limited to a specific type. In a practical
manner, most of these patterns take place in the system during its
life cycle. The question is how to construct a model that simulta-
neously detects all these types of events. The answer to this
question is the matter of this research and will be discussed in the
following, but before that let us briefly review the existing solu-
tions for this problem.
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Traffic data analysis is a commonly studied area in network
information systems and transportation systems, many methods
have been developed in these two domains. The techniques, as
illustrated in Fig. 2 depend on the data's structure and the ana-
lyzed components are classified into four major models.

Vector models are the most basic solutions for analyzing traffic
data. For this kind of approach we generate a flow time series for
each link (or O/D pair) and then apply a time series method such
as Autoregressive Integrated Moving Average (ARIMA) [1] or a
regression model [2]. The application of these techniques is lim-
ited, because they do not take into account the correlation among
links, hence it is not ideal for handling noises and missing values
in data.

Alternatively matrix models attempt to model all links simul-
taneously and, therefore do not face the problem of vector models.
With these methods [3,4], a matrix is constructed from the com-
plete set of links, rows are links and its columns are time instants
(see Fig. 2). The next step is to apply a matrix decomposition
solution such as Principal Component Analysis (PCA) [5] on the
link matrix. PCA is able to interpret data in terms of a small
number of independent variables (or components) which conse-
quently enables us to identify anomalies and irregular patterns.
Although PCA provides a better model quality against vector-based
methods, it suffers from two major issues. To begin with, regular
PCA performs poorly on traffic matrices that are polluted by the
large volume of outliers [4]. Secondly, PCA relaxes the natural
three-dimensional structure of data into a bi-dimensional form,
hence, it is not able to capture existing spatio-temporal fluctua-
tions in traffic data.

There is another class of matrix-based methods which rely on
Singular value decomposition (SVD) [6]. In [7] authors propose a
new approach based on SVD that tracks the angle of the dominant
left singular vector along with the principal eigenvalue over time,
aiming at the detection of faults in a simulated web traffic data set.
Although SVD-based methods seem fitting for anomaly detection,
in contrast to PCA, are not applicable for modeling and forecasting.

There exists a new branch of matrix-based methods which we
will name matrix residual models to differentiate from previous
matrix-based models. These models incrementally apply a matrix
decomposition method on each origin/destination matrix in each
instant and then construct a time series of model errors. For
instance, in [8] a variant of PCA called Compact Matrix Decom-
position (CMD) is applied to traffic flow matrices, followed by the
creation of a time series of the reconstruction's errors which is
then analyzed for anomaly detection. Similarly, in [9] authors
apply a strategy for anomaly detection from evolving Internet
networks. These methods, even though they are good choices for
the detection of anomalous traffic links have a limited application
for event detection. The main reason is that their incrementali-
zation over time mode causes the loss of some temporal infor-
mation, which is essential for event detection. Additionally, they
are vulnerable to seasonal effects [9] and as a consequence they
are not ideal for modeling human-generated data sets [10].

There is another category of methods called graph-based
techniques [11] that are being developed in the social network
analysis community. For instance, Markov chains can be used to
model the evolution of (social) networks [12,13]. However, these
methods are less relevant to the present study, as we are more
interested in global events rather than anomalous nodes, edges or
communities.

Tensor models are sophisticated tools used for traffic data
modeling, these do not include the majority of the above-
mentioned limitations. The need for tensors in traffic data mod-
eling has emerged in recent years in two research communities,
including data mining [14–17] for network anomaly detection and
transportation systems [18–22] for traffic estimation and
imputation. The majority of related works are covered in the
recent survey paper of [23].

Tensor decomposition, an essential technique used in these
models is a powerful tool for the analysis of multiway data with
many applications [24] in psychometrics, chemometrics, neu-
roscience, signal processing, bioinformatics, computer vision and
data mining. Tensor solutions, opposed to other techniques, are
able to model spatio-temporal fluctuations [25]. Therefore, they
are capable to generate a more natural model from data and
consequently discover more realistic patterns. Despite great flex-
ibility and quality of tensor models, the current form of these
techniques still have some difficulties in detecting complex event
patterns, especially in traffic tensors.

In traffic tensors, as opposed to other kind of tensors, we deal
with some complex fluctuations that require a more thorough
consideration. Our preliminary analysis indicates that a higher
variance of the models's quality, is related to a lower sensitivity to
topological fluctuations by the tensor models. Hence, the current
form of naive tensor models, may not yet be sufficiently prepared
for traffic tensors.

In this work we address this delicate problem and propose a
hybrid tensor model that simultaneously takes into account both
flow rates and network topology in a unified model. Another
problem about tensor models is that they require a complicated
input parameter which is usually very difficult to choose. This
leads to the incorrect parameter selection risk [26] which directly
influences the model quality. In order to solve this problem we
examine the application of a novel adjustable core size Tucker
decomposition technique (ACS-Tucker) [27] that takes into
account core size determination as a part of the solution in the
optimization process.

To the best of our knowledge, this is the first work that
addresses the problem of mixed event detection in traffic tensors.
Moreover, we propose for the first time a statistical framework for
the combined flow and topology tensors in a unified detection
mechanism. It is also the first research that studies the application
of tensor rank estimation techniques for event detection.

The rest of the paper is organized as follows: Section 2 outlines
the preliminary concepts. In Section 3 we describe our hybrid
tensor model and its components. Section 4 defines the experi-
mental settings. In Sections 5 and 6 we respectively present the
result of our simulation and some real case studies. We discuss
scalability issues in Section 7. Finally, the last section concludes
the exposition, presenting the final remarks.
2. Preliminary concepts

In this section we elucidate some necessary notations and
concepts required for further description of the proposed method.

2.1. Notations

Following [28], throughout the paper, scalars are denoted by
non-bold lowercase letters (e.g. i), vectors are denoted by boldface
lowercase letters (e.g. a), matrices are denoted by boldface capital
letters (e.g. A) and tensors are denoted by calligraphic letters (e.g.
X). A tensor is a multi-dimensional array and its order is its
number of dimensions, also known as ways or modes. Vectors,
matrices and tensors are respectively equivalent to the first, sec-
ond and dth order tensor where dZ3.

2.2. Tensor decomposition

Traditional data analysis techniques, such as the PCA, cluster-
ing, regression, etc. are only able to model bidimensional data and
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they do not consider interactions between more than two
dimensions. However, in several real-world phenomena, there is a
mutual relationship between more than two dimensions, in par-
ticular, when the time dimension is added to the problem. Multi-
way analysis considers all mutual dependencies between the dif-
ferent dimensions and provides a compact representation of the
original data in lower dimensional spaces. The most common
multi-way analysis techniques are Tucker [29] and CP/PARAFAC
[30], which are generalized versions of PCA or, in particular, Sin-
gular Value Decomposition (SVD) for higher order matrices.

2.3. Tucker decomposition

Tucker decomposition is an optimization task, through which a
large tensor can be estimated as the product of a smaller tensor
with predetermined dimensions (called core tensor), multiplied by
factor matrices in each dimension. Formally, the problem can be
defined as follows: Given a tensor XARn1�n2�…�nd , find a core
tensor GARr1�r2�…�rd with pre-defined integers ri with 1rrirni

for i¼1,2,…,d, that optimizes:

min JX�G�1A
ð1Þ�2A

ð2Þ…�dA
ðdÞ J

s:t: GARr1�r2�…�rd ;

AðiÞARni�ri ; AðiÞ
�T

AðiÞ ¼ I; i¼ 1;2;…; d: ð1Þ

In the above model, d represents the dimension of the tensor
(e.g. for three-dimensional tensor, d¼3) and r1, r2,…, rd
(i¼ 1;2;…; d) are model input parameters (core size).
3. Hybrid tensor model (HTM)

Fig. 3 illustrates an example of our proposed hybrid tensor
model. The procedure consists of three major stages. The first is
data modeling, which is specified with numbers 1–3 in the figure.
In these steps, as opposed to existing approaches that rely on only
Fig. 3. An illustrative example of the proposed method (HTM) for event detection from t
matrix; (3) adjacency tensor is built by combining adjacency matrices; (4) ACS-Tucker de
determines core size of (3,3,2) for flow tensor and (1,4,3) for topology tensor; (5) hybrid
topology; (6) Hotelling's T2 statistics is computed from HTF matrix; (7) cumulative distrib
of freedom is computed, p-value is reported as 1-CDF and those instants with α lower t
traffic flow tensor, we construct a new tensor named topology
which is the boolean copy of the original tensor.

The second step of the proposed solution focuses on Tucker
optimal core size estimation problem. Like data clustering, the
number of clusters as an input parameter plays a significant role in
the quality of the clustering model, in Tucker model, core size is
quite important, because it directly influences the model's quality.

Finally, we address the event detection task (numbers 5–7 in
the figure) by combining both topology and flow models using
multivariate statistics and tracking the system's behavior in the
hybrid subspace. This part is the major contribution of this
research. We provide a statistical framework for combining the
subspace of flow and topology tensors and detect events in the
hybrid subspace.

In the following sections, each of the above components is
described in more detail.

3.1. Data model

The original target data set is represented as a graph G¼ ðVðG
Þ; EðGÞÞ where VðGÞ are nodes and EðGÞ is a set of edges. VðGÞ can be
countries, cities or stations and EðGÞ indicates the flow volume
between the nodes (e.g. number of travels or trade volume). In
order to analyse the data in the tensor scheme, we first need to
transform it into an adjacency matrix. G is transformed into a flow
adjacency matrix ODðN �MÞ. The entries of the matrix take values
from the interval ½0;maxðwÞ�, where w represents the volume of
flow between the two corresponding nodes.

In the next step, finite t consecutive adjacency matrices OD1,
OD2, …, ODt are combined, in order to generate a tensor
XARN�M�t . This tensor can be called traffic tensor or flow tensor or
alternatively naive tensor. Thereafter, a boolean copy of X is gen-
erated, replacing all non-zero elements with 1 resulting in what is
named a topology tensor.

We keep the topology tensor in parallel to highlight those
events that are associated with structural fluctuations in the
raffic tensor; (1) Traffic data in graph structure; (2) data is transferred to adjacency
composition is applied on both flow and topology tensors. ACS-Tucker automatically
time factor (HTF) matrix is generated by combining time factor matrices of flow and
ution function (CDF) of the Hotelling's T2 statistics to χ2 distribution with 5 degrees
han α¼ 0:01 are marked as significant events.
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topology of the network. Due to the high rate of variance in the
flow rate, these types of changes can remain invisible if we only
focus on the flow tensor. In other words, the topology as opposed
to the original traffic tensor, is more sensitive to topological
changes and on the other end is non-sensitive to severe variation
in the flow rates.

3.2. ACS-tucker decomposition of flow/topology tensors

In this section we describe the ACS-Tucker decomposition
method [27] which we use for decomposition of flow and topology
tensors. Some notations are borrowed from [27].

Given the traffic tensor XARn�m�t and core sizes ðr1; r2; r3Þ,
Tucker model decomposes the original tensor to an abstract subspace,
including core tensor GARr1�r2�r3 and factor matrices A1ARn�r1 , A2

ARm�r2 and A3ARt�r3 such that X � G�1A1�2A2�3A3.
Determination of Tucker model parameters ðr1; r2; r3Þ in the

above equation is a difficult task. Instead of Tucker we may want
to use more specific models such as PARAFAC that require only one
parameter, but in that case we loose the model generality and
flexibility. The situation gets worse when the tensor is not ortho-
gonally constrained as PARAFAC assumes.

In [27] a new method called adjustable core size Tucker
decomposition (ACS-Tucker) is proposed. It performs Tucker
decomposition with an unspecified size of the core through max-
imum block improvement [31]. The authors apply the method on
known-rank tensors (both simulated and real) and show that ACS-
Tucker is remarkably accurate compared to existing methods.

Given XARn�m�t , the goal of ACS-Tucker is to find the best
approximation of X , as a product of a smaller core tensor and
factor matrices. Here, the dimensions of the core tensor ri are no
longer pre-specified and need to be determined. However, to
prevent ri from being too large, the sum of ri is assumed to be
equal to c, i.e. r1þr2þr3 ¼ c. As we already know for the third-
order tensor X , Tucker decomposition in optimization (1) is
equivalent to the following maximization problem for third-order
tensors [27,28]:

max JX�1ðAð1ÞÞT�2ðAð2ÞÞT�3ðAð3ÞÞT J
s:t: AðiÞARni�ri ; ðAðiÞÞTAðiÞ ¼ I; i¼ 1;2;3: ð2Þ
We need to determine ri. However, these two constraints make

the objective function incompatible to a direct solution. In order to
combine the block variables Ai and ri variables, a new block vari-
able YðiÞARmi�mi is defined such that m1≔minfn; cg;m2≔minfm; cg
;m3≔minft; cg and YðiÞ ¼ diagðyðiÞÞ, yðiÞAf0;1gmi ,

Pmi
j ¼ 1 y

ðiÞ
j ¼ ri. If we

replace the term ðAðiÞYðiÞÞT with Ai in (2) we have:

max JX�1ðAð1ÞYð1ÞÞT�2ðAð2ÞYð2ÞÞT�3ðAð3ÞYð3ÞÞT J
s:t: AðiÞARni�ri ; ðAðiÞÞTAðiÞ ¼ I; yðiÞAf0;1gmi ;

Xmi

j ¼ 1

yðiÞj Z1;
X3
i ¼ 1

Xmi

j ¼ 1

yðiÞj ¼ c; i¼ 1;2;3: ð3Þ

If the nontransferable constraint
P3

i ¼ 1
Pmi

j ¼ 1 y
ðiÞ
j ¼ c is replaced

and a λ is defined, as a penalty parameter, the objective function is
then reformulated to the following maximization problem:

max JX�1ðAð1ÞYð1ÞÞT�2ðAð2ÞYð2ÞÞT�3ðAð3ÞYð3ÞÞT J
s:t: AðiÞARni�ri ; ðAðiÞÞTAðiÞ ¼ I; yðiÞAf0;1gmi ;

Xmi

j ¼ 1

yðiÞj Z1;
X3
i ¼ 1

Xmi

j ¼ 1

yðiÞj ¼ c; i¼ 1;2;3: ð4Þ

In the new formula, each block ðAðiÞYðiÞÞT ; i¼ 1;2;3: can be
separately optimized, while the other blocks are fixed. This new
optimization task can be performed, using the Maximum Block
Improvement (MBI) [31]. As we can see, Tucker core size is not
required to be pre-specified, because it is now included in the
optimization task. After MBI converges, the number of non-zero
entries in Yð1Þ, Yð2Þ and Yð3Þ will be equal to r1, r2 and r3. The full
description of ACS-Tucker is presented in Algorithm 2 of [27].

3.3. Event detection

As illustrated in Fig. 3, after we obtain the factor matrices from
decomposition of flow and topology tensors, we combine time
factor matrices corresponding to both tensors to form a new
hybrid matrix called hybrid time factor (HTF). This matrix has t
rows (total time instants) and k columns where k denotes the
number of columns in flow time factor plus the number of factors
in the topology time factor, however k depends on the ACS-Tucker
output. For instance, in the presented example, HTF matrix
includes 2þ3¼5 columns, because ACS-Tucker outputs core size
of (3,3,2) for flow tensor and (1,4,3) for topology. As we can see,
HTF matrix is equivalent to a multivariate time series. Therefore,
we reformulate the problem to multivariate time series monitor-
ing, and define event as a time instant when the multivariate
series falls out of control.

Hotelling's T2 statistic is a common metric for monitoring
multivariate time series, which is computed as follows [32]:

T2
t ¼ ðXt�μÞTS�1ðXt�μÞ ð5Þ

where μ is the mean, Xt is the multivariate observation at time t
and S is the covariance matrix.

If we assume that under controlled conditions, multivariate
time series (HTF) follows a multivariate normal distribution, T2

should be explained by χ2 distribution with k degrees of freedom
[33, p. 23] where k is the number of time series. Therefore, if some
abnormal event occurs at the specific time instant we should
witness a deviation, either in flow or topology, from the χ2 dis-
tribution at that moment. The Cumulative Distribution Function
(CDF) for the χ2 distribution [34, p. 333], which is shown in Eq. (6)
computes this deviation. Consequently, Eq. (7) is equivalent to the
statistical significance (p-value) for each time instant, which
shows the severity of the deviation in each time, i.e. null
hypothesis: no abnormal event:

CDF ¼ FðxjkÞ ¼
Z x

0

tðk�2Þ=2e� t=2

2k=2Γðk=2Þ
dt ð6Þ

P ¼ 1�CDF ð7Þ
P-values closer to zero represent more severe events. In Eq. (6),

k denotes the degree of freedom, which is equal to the number of
columns in HTF matrix, x refers to the obtained Hotelling's T2

statistics in Eq. (5) and Γ refers to the Gamma function.
4. Experimental settings

In this section we briefly describe the methods that are com-
pared in this paper. Next we define the tools, parameters and
evaluation metrics we use in the experiments.

4.1. Compared methods

There exists no hybrid tensor model in the literature like the
one we propose in this work. Therefore, we develop a similar
baseline method to which we will be able to compare our pro-
posed model. To have an evaluation against naive tensor models
we also compare it against two non-hybrid models. Furthermore
we compare it against two matrix residual models (see Fig. 2)
including DTA-based and PCA-based approaches. These approa-
ches are described in the following. For simplicity, when referring
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to these methods we present their abbreviated names between
parenthesis.

DIFFIT-ALS: In this approach a residual-based tensor rank esti-
mation technique such as DIFFIT [35] is employed on both flow
and topology tensors for estimation of these tensors' rank. Then
we feed the obtained ranks to the Tucker-ALS algorithm. The rest
of the method (event detection part) is similar to our proposed
hybrid model. It means that the baseline approach applies this
process for both flow and topology tensors.

We can mention two main differences between this baseline
method and the proposed model. The first is that the baseline
approach exploits the Alternating Least Square (ALS) [36] for sol-
ving Tucker decomposition while our proposed model uses Max-
imum Block Improvement (MBI) [31]; the second difference is that
the baseline method instead of a single-step decomposition pro-
cedure, uses a two-step classic strategy of rank estimation plus
tensor decomposition.

CP-APR (CPR): In this method we apply CP-APR (nonnegative CP
with alternating Poisson regression) [37] on the flow tensor only.
The detection part is similar to the proposed method, however
Hotelling's T2 is applied only on the time's latent factors.

MBI-log: Borrowing the idea from [38] we apply ACS-Tucker
decomposition only on log non-zero counts of the flow tensor. This
is a solution to reduce the effect of large values when the majority
of cells are of smaller values. The detection part is similar to the
previous method.

DTA-Residual (DTA): Dynamic Tensor Analysis (DTA) is the first
reported tensor-based solution for anomaly detection from tem-
poral network data sets [16]. In this method we apply DTA on the
traffic tensor and then construct the DTA error time series. Finally,
we apply a z-score control chart in this time series for event
detection.

PCA-Residual (PCA): This method is similar to the method pro-
posed in [8], differing with the application of PCA instead of CMD
algorithm. We apply PCA on traffic matrices and then construct the
time series of PCA error. Afterward, we apply a z-score control
chart in the time series for event detection.

4.2. Software

All the experiments are performed in MATLAB on a PC with
Intel Core 2 Duo CPU and 3 GB RAM. Two MATLAB toolboxes are
also used during the experiments: Tensor toolbox 2.5 [39] and ITA
toolbox [40].

4.3. Used parameters

We set c parameter in ACS-Tucker and MBI-log as 5þ5þ5¼15
as well as λ¼ 0:005JX J as the default value proposed by [27].
Note that since we only address temporal event detection it is
expected that the approach should not be very sensitive to para-
meter c. Because, with c¼15 we have 13 degrees of freedom for
the time dimension which is much greater than the usual opti-
mum number of components (normally lower than 10 for traffic
tensors). For DIFFIT we set the max core size as (5,5,5) the same
maximum value we choose for ACS-Tucker. For CPR, PCA and DTA
we try the models with p¼1 to p¼13 and then obtain the best and
worst accuracies (p is the number of components). In terms of
experiments with real datasets we use n-way toolbox pftest for
estimation of the number of components for the CPR method [41].

4.4. Evaluation metric

We use the Area Under ROC curve (AUC) [42] as the main
evaluation metric in this work, due to two reasons. Firstly, the area
under the curve is not dependent of the chosen decision threshold,
hence making the evaluation disregard the p-value threshold. This
is an important criterion for an event detection application where
only a single threshold discriminates events from non-events.
Secondly, the ROC curve takes into account the trade-off between
false alarms and true alarms. Therefore, it is more appropriate than
metrics such as false alarms-only or true alarms-only. The output
of all methods is p-value for each time instant. So, to compute the
AUC, the p-value threshold varies from 0 to 1 with increments of
0.0001 in all compared methods. For a labeled data set we are able
to measure the ability of methods in the detection of events, with
respect to the p-value in the loop. After computing false and true
alarms rates, we plot the ROC curve and only then do we compute
the AUC.
5. Simulation study

In this section we describe our methodology for the creation of
simulated data sets and subsequently report the obtained results.

5.1. Simulation of artificial events in real traffic data

Among different simulation strategies, the injection of artificial
events into real background data provides more accuracy than
wholly-simulated test sets [43]. Therefore, in our simulation study,
instead of simulating both background data and events, we create
artificial fluctuations with different properties in the real back-
ground data. The critical part, however, is that the background
data should be free of any events or outliers. Otherwise, the cre-
ated events will conflict with the existing anomalies, resulting in a
misleading conclusion.

An ideal data set for evaluating the proposed method is
required to meet two conditions. The first is that it should contain
a very low amount of outliers, anomalies, or other events. And
second, some amount of prior knowledge should be available via
external sources. Among different data sets, we found world trade
data [44,45] more suitable according to the above-mentioned
requirements. The data set contains trade flows for pairs of
world countries between 1870 and 2009. We first remove the
years corresponding to the global economic crisis (2007–2009)
based on our prior knowledge. Then the severe outliers and
anomalies in the data set are removed, based on a proposed
approach in [46], which is based on a combination of Tucker
decomposition, clustering and visualization. During this process,
we remove information for about 30 years of the raw data. The
final tensor country� country� years is produced with a size of
207� 207� 110.

As depicted examples in Fig. 1 we inject three types of artificial
events:

� Event type 1 (mutation in overall traffic flow) : a random
positive integer from range ðmax=8;maxÞ is added to all ele-
ments of the matrix.

� Event type 2 (alteration of only topology in part of the network)
: a random positive integer from range ð1; avgÞ is added to the
zero elements in a� a area.

� Event type 3 (chaotic behavior in part of the network) : each cell
in a a� a area is replaced with a random integer from the range
ðmax=8;maxÞ

These three injected event types are illustrated in Fig. 4. First,
the maximum (max) and the average (avg) of the tensor are
computed, then for type 1, a matrix of uniformly distributed ran-
dom integers is generated from the range ðmax=8;maxÞ. Subse-
quently, the generated matrix is added to all elements within the
adjacency matrix. For the second type, a a� a area is selected and



Fig. 4. Illustrative example of injection of artificial events.

Table 1
Average AUC for event injection on the 15 areas from 2� 2 to 30� 30. The total possible injection area is 207� 207 and total number of time instants (matrices) is 110.
Scenario 1: four matrices are injected with event type 1. Scenario 2: four matrices are injected with event type 2. Scenario 3: four matrices are injected with event type 3.
Mixture scenario: four matrices are injected with event type 1, four with type 2 and four with type 3, in total 12 matrices.

Scenario Hybrid tensor models Naive tensor models Matrix models

DIFFIT-ALS HTM (proposed) MBI-log CPRBest CPRWorst PCABest PCAWorst DTABest DTAWorst

1 0.9602 0.9644 0.9906 0.9992 0.9297 0.9996 0.5057 0.9910 0.8857
2 0.9243 1.0000 1.0000 1.0000 0.9971 1.0000 0.3895 1.0000 0.2084
3 0.4804 0.7666 0.4682 0.8431 0.4677 0.6142 0.4977 0.7666 0.4386
Mixture 0.7606 0.8835 0.8111 0.8478 0.6561 0.7838 0.6537 0.6821 0.4648
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a random integer from the range ð1; avgÞ is added to the existing
zero elements in the area. For the third type, a a� a matrix of
uniformly distributed random integers is generated from the range
(max=8;max) and is replaced with a selected area of a� a in the
adjacency matrix.

Datasets are generated using four scenarios: In the first sce-
nario, we only create type 1 events in adjacency matrices corre-
sponding to four time instants. In the second scenario, we inject
type 2 events in four instants while in the third scenario we inject
type 3 events in four matrices. Finally, in the fourth scenario, we
inject a mixture of events type 1, type 2, and type 3, each type is
injected on four time instants, for a total of 12 time instants.
We also simulate low-scale events by varying the a parameter
from 2 (1% of nodes) to 30 (15% of nodes) with steps of 2 and large-
scale events by varying a from 50 (quarter of nodes) to 200 (almost
all nodes) with steps of 10.

The events in these data sets are labeled for the injected
instants. Hence, we only need to apply the methods on the created
data sets and evaluate the performance in detecting artificial
events.

5.1.1. Evaluation of methods in detection of different event types
Table 1 demonstrates the average AUC for low-scale events,

regarding four simulation scenarios, i.e. event types 1, 2 and 3 and
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their mixture. To have a fair comparison we perform experiments
for p¼1 to p¼13 for CPR, PCA and DTA (p is the number of
components) and present their worst and best results.

All methods except PCA have a very good performance for the
detection of type 1 events indicating that detection of this kind
(overall mutation in traffic flows) is relatively straightforward.
Although the performance of PCAbest is the best for the type 1, it is
the worst for PCAworst which makes PCA very sensitive to the k
parameter and thus unreliable. Another interesting point that we
can observe is that the incorporation of the topology model has a
negative effect of almost 5% (comparing hybrid models versus
naive models for type 1 and type 2 events). The main reason is that
hybrid models manifest hypersensitivity to the small topological
fluctuations in this scenario and therefore raise more false alarms
and consequently lower AUC.

For type 2 event matrix residual models (i.e. DTA-R and PCA-R)
seem very sensitive to the k parameter. Therefore, they are con-
sidered very risky to use. We recall that event type 2 events
simulate topological alterations in part of the network. The
obtained results reveal that the matrix residual models are unable
to detect topological fluctuations. Comparing HTM against the
other hybrid model also reveals that ACS-Tucker has been a quite
helpful strategy in comparison of the traditional
DIFFITþTucker model.

In terms of the type 3 events, HTM outperforms DIFFIT-ALS
demonstrating the effectiveness of the MBI-based Tucker decom-
position. Although CPR beats HTM in its best accuracy, it seems
risky, because in its worst case can result in a 0.30 lower accuracy.
DTA also in its best case can have a performance equal to HTM and
in its worst case presents almost 0.3 less accuracy.

If we know, in advance, that the system only faces a specific
event type, we may use either of the compared methods when
they seem more successful. However, in reality, we do not have
any prior knowledge about the types of events that the system is
faced with, rather we deal with a mixture of these events in the
system's life cycle. In such cases, we need to rely on a method that
performs reasonably in handling all types of events. The mixture
event simulation is designed to evaluate methods that handle such
realistic circumstances. The results in Table 1 clarify the super-
iority of our proposed method over other techniques. As we can
see, HTM has a better overall performance when dealing with
mixture events: over matrix-based models (10–20% better), the
baseline hybrid method (12% improvement) and baseline naive
methods (4–13%).

5.1.2. Effectiveness of hybrid model
Here we study the effect of our hybrid strategy in the presence

of low-scale and large-scale mixture events. In particular, we are
interested to know how topology tensors improve the naive
model. Therefore, we focus on the two tensor models including
our proposed one and the baseline method described in Section
Table 2
Average AUC for event injection with a mixture scenario for low-scale (15 areas
from 2� 2 to 30� 30) and large-scale (16 areas from 50� 50 to 200� 200). Flow:
only the naive tensor model is used. Topology: only the topology tensor model is
used. Hybrid: our proposed hybrid model that combines both naive and topology
models is used.

Used tensor Low-scale events Large-scale events

DIFFIT-ALS HTM (proposed) DIFFIT-ALS HTM (proposed)

Flow 0.6706 0.8111 0.6872 0.8490
Topology 0.5032 0.6388 0.7762 0.8216
Hybrid 0.7606 0.8835 0.8449 1.0000
4.1. We compute the mean AUC for a mixture event scenario for
two situations: low-scale and large-scale events.

The obtained results for low-scale mixture events presented in
Table 2 indicate that the hybrid tensor strategy considerably
improves the detection accuracy for both low-scale and large-scale
events. In other words, if we rely only on the flow tensor,
depending on the scale of events we will have 7–16% lower per-
formance comparing to the hybrid model.

We also observe that in large-scale events when the majority of
the nodes get involved, the events are much easier to discover. Our
conclusion for low-scale events is valid for large-scale events as
well. However, in reality we barely experience large-scale events,
because it is very rare for the whole system to get affected by a
chaotic or topological mutation. Despite this, we observe that
incorporating the topology model works out better for large-scale
events than for low-scale events.
6. Real case studies

There exist some popular traffic data sets such as KDD Cup 99
[50] that are widely used for analysis of Internet traffic or PeMS
[51] that is used for experimenting with transportation data.
However, two problems exist about these data sets. The first is that
in some data sets such as PeMS we do not have any knowledge
about real events, and worse, there is no external knowledge
source for labeling events [52]. Benchmark data sets such as KDD
Cup 99 are also repeatedly criticized in different aspects related to
the quality of ground truth (e.g. in [53]). In this study as listed in
Table 3 we consider four publicly available real-world traffic data
sets from three domains with various temporal scales and diverse
mobility structures. The fact that makes these data sets interesting
is that we can partially label these data sets via existing external
knowledge sources.

We evaluate each case study with various metrics such as AUC,
hypothesis testing (p-value) and false/true alarms to gain a more
comprehensive assessment. In the following subsections, each
data set will first be described in detail and then we will present
the obtained results. Note that the experiments’ settings are the
same as in Section 4. However, we skip matrix-based methods for
the real experiments since they were beaten by tensor-based
methods in the simulation study. For CP-APR we select the num-
ber of components via pftest in N-way toolbox [41].

6.1. Bike-sharing data set

Bike sharing systems are a new generation of traditional bike
rentals, where the whole process from membership, rental and
return has become automatic. These systems enable users to easily
rent a bike from a particular position and return it at another.
There exists a great interest in bike-sharing systems due to their
important role in transportation and environment. What makes
bike sharing data more attractive is that opposed to other trans-
portation services, such as bus or subway, the duration of travel,
Table 3
Real-world data sets used in the experiments.

Data set Dimensions Size

World trade data [45,44] Country� Country� Year 207� 207� 140
US flight data [47] Airport � Airport �Month 169� 368� 195
Bike sharing, Washington D.C.

[48]
Station� Station� Day 157� 157� 731

Bike sharing, Boston [49] Station� Station� Day 95� 95� 327



Table 4
AUC for bike sharing data sets. The ability of methods in detection of events from
Boston and Washington, D.C. data sets. For CPR p¼6 and p¼4 are obtained by
running a pftest for respectively Washington D.C. and Boston datasets.

Method family Method name Boston data
set

Washington, D.C. data
set

Hybrid tensor
models

DIFFIT-ALS 0.7529 0.6367
HTM (proposed) 0.8188 0.7414

Naive tensor
models

CPR 0.7145 0.6767
MBI-log 0.6771 0.7153

Table 5
Statistical significance (p-value) of events related to the world financial crisis 2007–
2009. The events with p�valuer0:05 are shown boldface. For CPR the number of
components is selected as p¼5 based on pftest.

Method family Method name 2007 2008 2009

Hybrid tensor
models

DIFFITþALS 3:06� 10�6 2:05� 10�9 4:46� 10�7

HTM (proposed) 7:15� 10�5 4:84� 10�8 1:42� 10�6

Naive tensor
models

MBI-log 0.72 0.58 0.68
CPR 4:90� 10�11 2:09� 10�13 6:66� 10�9
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departure and arrival position is explicitly recorded in these sys-
tems. This feature turns the bike sharing system into a virtual
sensor network that can be used for sensing mobility in the city.
Hence, it is anticipated that most of the major events in the city
could be detected via the monitoring of this data [52].

Our objective in this case study is the examination of methods
in terms of model quality and stability. Our expectation of a good
model is that it not only presents a good performance, but also
behaves stably on two data sets from same domain. To evaluate
this, two data sets are extracted from the bike-sharing networks in
two different cities Washington, D.C. and Boston, both in the
United States. Characteristics of these data sets are described in
the following.

6.1.1. Washington, D.C. bike-sharing data set
The Washington, D.C. bike-sharing data set [48] includes a

historical usage log of all transactions in the bike-sharing network
from a two-year window from 01 January 2011 to 31 December
2012 for a total of 731 days. There are 207 bike stations in the
network, however, some stations have zero or rare connections.
From the whole set we select the top 157 stations that have more
frequent trips. Hence, for each day, we create an O/D matrix with a
size of 157� 157, so that each element in the matrix represents
the number of passengers who traveled from one station to
another on that day. The network data is directed and weighted.
Thus, we account for the number of passengers in the opposite
direction as well (i.e. A to B and B to A). Each user can also rent a
bike from one station and return it to the same station. Therefore,
the nodes can have a relationship with themselves, as well.
Combining all O/D matrices as the tensor model shown in Fig. 2
results in a traffic tensor sizing 157� 157� 731.

6.1.2. Boston bike-sharing data set
Boston bike-sharing data set has been extracted from hub-way

data challenge 2013 [49]. It includes a historical usage log of all
transactions in the network from 28 July 2011 to 01 October 2012,
exclusive to the system's off-days in the winter, a total of 327 days.
There are also 95 stations in total. After creating adjacency
matrices for each day, the generated traffic tensor will be in size of
95� 95� 327.

6.1.3. Event labeling and evaluation strategy
It is expected that events in the city affect users' behavior,

because bike users are a sample of the city population and their
behavior can be considered a sample of the entire city's popula-
tion. For instance, sports rivalries events, festivals, demonstrations,
blackouts, natural hazards, such as hurricane and storms, etc. all
affect these sample populations.

In the simulation study, we demonstrated the merits of the
hybrid model. Here, we are interested to evaluate the hybrid
model on a real-world data with its complex event patterns. In
[52] some of the most significant events are reported in
Washington, D.C. in 2012. With a similar strategy introduced in
this work we extract the significant events in Boston as well.
Finally, we label the Washington, D.C. and Boston data sets with
respectively top-10 and top-7 most significant events

6.1.4. Results
We compare the performance of naive models versus the

hybrid methods focusing on their ability to detect the labeled
events. In this case study, we use AUC for the evaluation. The
results in Table 4 indicate that our proposed model has a better
and more robust performance for both data sets. However, it is
interesting to observe that the naive models have a better per-
formance than a hybrid model like DIFFIT-ALS on the Washington
D.C. data set. Therefore DIFFIT and Tucker-ALS might not be very
robust tools for being incorporated in our proposed hybrid model.
MBI-log also has a relatively good performance on the Washington
D.C. data set but is the worst method for the Boston data set.

6.2. World trade data set

The world trade data set [45,44] includes the bilateral trade
flows between countries for the period from 1870 to 2009. The
objective is to investigate the ability of the methods in detecting
the well-known global financial crisis in the period of 2007–2009
[54].

Transforming the raw data to the Country� Country� Year
scheme results in a tensor with a size of 207� 207� 140. We
apply the event detection methods and measure their corre-
sponding p-value for the 2007–2009 crisis period. The p-value in
this case study can be specifically interpreted as the probability of
an abnormal event occurring in years 2007–2009. In other words,
our null hypothesis is “no event occurrence” and it will be rejected
if p-value is sufficiently low. Informally, pr0:01 and 0:01opr
0:05 are interpreted respectively very strong and strong pre-
sumptions against the null hypothesis. It is anticipated that a good
model rejects the null hypothesis as strongly as possible for
these years.

The p-values obtained for the years 2007–2009 are reported in
Table 5. The p-values lower than 0.05 are shown boldfaced. As we
can see, the MBI-log method totally fails in detecting the crisis
period, while other methods are able to detect the crisis years.

Also a comparison of p-values for the years 2007, 2008 and
2009 shows that all methods report lower p-values for the year
2008 in comparison to 2007 and 2009. This leads to a new insight
about the crisis, apparently the most severe situation was in 2008.

6.3. US international flights data set

USA international air passenger statistics [47] reports the
commercial traffic between international points and U.S. airports
from 1990 to 2013. We transform the raw data to a flow tensor
Airport � Airport �Month in size of 169� 368� 195. Our objective



Table 6
Detection of bankruptcies in the United States airlines. Boldfaced values are related
to true alarms and the other values are associated with false alarms (α¼ 0:05). For
CPR the number of components is selected as p¼2 based on the pftest.

Method family Method Name Alarms

Hybrid tensor models DIFFIT-ALS 1991/02, 2002/08, 2006/02
HTM (proposed) 1991/02, 2002/08

Naive tensor models CPR 1996/01 1997/01, 1997/02, 2000/08,
2004/07, 2005/07

MBI-log None
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is to evaluate the capability of the methods in the tracking of
events related to the major airline's bankruptcy records in USA.

We consider three of most influential airline bankruptcies that
are related to three major airlines: Pan Am World Airways, Eastern
Air Lines and US Airways who filed bankruptcy, respectively in
8 January 1991, 18 January 1991 and 11 August 2002 [55].

In this case study, we want to have a better look at both true
and false alarms. Hence, we report all alarms raised by the
methods for α¼ 0:05.

The results are demonstrated in Table 6. The months related to
the aforementioned bankruptcies are shown boldfaced, while false
alarms are specified with a regular font.

The first significant month is February of 1991 that coincides to
the bankruptcy of two major airlines Pan Am World Airways and
Eastern Air Lines. Among methods, only the hybrid tensor models
have been able to track this event. The second most influential
month is August 2002 which is related to the bankruptcy of
another major airline US Airways. As it can be seen, only hybrid
methods, including HTM and DIFFIT-ALS have been able to identify
this event. In fact, the hybrid tensor models are the only approa-
ches that detect both of these two major events. Even HTM per-
forms better than the baseline method. On the other hand, it
appears that naive tensor models do not present an acceptable
performance. CPR signals 6 false alarms and MBI-log is unable to
detect any event.
7. Scalability issues

Tensor models in principle are known to be computationally
expensive. For decomposition of a cubic n� n� n tensor with
HOSVD we require Oðn4Þ time and Oðn3Þ space. Our hybrid model
in this study has the same complexity as the naive tensor models,
both in terms of time and space. However, since we require two
tensor models, the execution time is doubled with no change in
required memory. Even though such complexity can become a
serious issue when we deal with a large-scale data.

Fortunately, traffic tensors are, to a great extent, sparse. It
means that the majority of elements in traffic tensors are zero. For
instance, over 90% of elements in four of the data sets we consider
in this work are filled with zero elements. If we do not optimize
tensor decomposition for such sparse tensors, we will be faced
with the intermediate data explosion problem [56,14]. Many solu-
tions have been developed for coping with this problem in the
recent years. For instance, in [14] a new extension of Tucker
decomposition named Memory-efficient Tucker (MET) is proposed
which space complexity is linear with the number of non-zero
elements in tensor (i.e. O(nz)), this is very helpful for sparse traffic
tensors. Similarly, [56] proposes a distributed version of PARAFAC
implemented in MapReduce [57] that scales up to 100 times in
terms of space complexity for sparse tensors and nearly linear to
the number of machines in time complexity.
In a more recent work [58], a different distributed framework is
proposed for PARAFAC that divides the tensors into some small
sub-tensors and solve sub-tensors problems in different machines.
Similar to this work, [59] proposes a parallelized version of PAR-
AFAC called ParCube which is optimized for sparse tensors and
provides an acceleration of 14 times in runtime. In [60] authors
propose a new PARAFAC-based method based on general-purpose
computing, on the graphics processing unit(GPGPU) which results
in a runtime acceleration of 360 times comparing to conventional
CPU-based methods. There exist many more algorithms and
methods for scalability of tensor decompositions which are out of
the scope of this paper. However, interested readers can refer to
recent works such as [61–63].
8. Conclusion and future works

We address the problem of event detection in traffic tensors.
We provide some evidences that detection accuracy can be
increased up to almost 10% by the separation and inclusion of
network's topology in the naive tensor model. Our simulation
experiments show that the proposed hybrid approach has
increased detection performance up to 10–20% in comparison to
matrix-based approaches when dealing with mixture events.
Furthermore, our experiments on two data sets from a single
domain reveal that the proposed approach is more robust-to-
domain than the matrix models. We also confirm the findings in
[27] that the MBI-based adjustable core size Tucker decomposition
is more powerful than the traditional strategy of DIFFITþTucker.

Additionally, we present some intuitive examples from real-life
data sets that endorse our findings in the simulation study about
the robustness and the adequacy of the proposed model. As
observed, HTM exhibits a successful performance on all real data
sets which is in accordance with the results obtained for the
simulated data sets. Although CPR appeared as a good competitor
for hybrid models, it is probably not as robust as the proposed
hybrid model. The data sets introduced in this paper are also found
useful and can be potential choices for assessment of future traffic
analysis approaches.

Some challenges will remain for future work. One is the real-
time extension of the proposed model which is basically a difficult
problem. Our findings in this research reveal that an incremental
approach like DTA is not reliable for every event type. Hence, for
solving this problem, other possibilities should be taken into
account. One other direction would be testing different tensor
factorization techniques for the HTM model.
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