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ABSTRACT

Cluster detection methods are widely studied in Proposi-
tional Data Mining. In this context, data is individually
represented as a feature vector. This data has a natural non-
relational structure, but can be represented in a relational
form through similarity-based network models. In these
models, examples are represented by vertices and an edge
connects two examples with high similarity. This relational
representation allows employing network-based algorithms
in Relational Data Mining. Specifically in clustering tasks,
these models allow to use community detection algorithms
in networks in order to detect data clusters. In this work,
we compared traditional non-relational data-based cluster-
ing algorithms with clustering detection algorithms based on
relational data using measures for community detection in
networks. We carried out an exploratory analysis over 23 nu-
merical datasets and 10 textual datasets. Results show that
network models can efficiently represent the data topology,
allowing their application in cluster detection with higher
precision when compared to non-relational methods.

Categories and Subject Descriptors

H.3.3 [Information Search and Retrieval]: Clustering;
1.5.3 [Clustering)]: Algorithms
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1. INTRODUCTION

Data clustering is one of the most important activities
in data mining. Clustering algorithms discover groups and
identify patterns based on object similarity, so that objects
within a group have high similarity and objects in different
groups have low similarity. These algorithms can be applied
mainly to discover underlying structure in data, to perform
natural classification of objects or to better understand the
structure of the data [8].

There is a large volume of literature on clustering al-
gorithms [26, 8], which may be categorized [29] into six
groups: (1) hierarchical clustering; (2) partitional clustering;
(3) density-based clustering; (4) grid-based clustering; (5)
model-based clustering; and (6) graph-based clustering. The
first five groups refer to non-relational algorithms, whereas
the last one refers to a class of relational clustering meth-
ods. Non-relational methods require a propositional repre-
sentation of the data, with examples represented as feature
vectors. On the other hand, relational methods require a re-
lational data representation, with examples represented as
vertices and edges connect related examples.

A relational representation may be created for a non-
relational dataset by building similarity-based network mod-
els [4, 19], in which network vertices represent data instances
and edges connect pairs of highly similar instances. Once
a relational representation exists, network-based measures
and algorithms may be employed in mining tasks, as an al-
ternative to the traditional (non-relational) approaches.

Both types of clustering algorithms have advantages and
disadvantages in specific scenarios. As network-based clus-
tering algorithms require building a relational representation
from an originally non-relational dataset, their application
incurs in additional cost. Since both kinds of algorithms
have similar time complexity, in average, it can be argued
that traditional non-relational clustering require less compu-
tational effort than the network-based. On the other hand,
cluster identification in network models is not biased to-
wards particular shapes or densities, as long as the model
represents groups of highly connected examples separated
by a few edges, so that community detection methods can
be successfully applied to identify relevant clusters.



Recent progress in the analysis of social networks brought
about new algorithms for community detection, which also
could have some potential for the clustering of standard vec-
torial data. However, little to nothing is known about their
performance, specially when dealing with non-relational data.

In this scenario, we are interested in comparing how these
two types of algorithms handle the task of identifying clus-
ters in non-relational data, specially on real-world datasets.
In this work we describe an exploratory study on relational
and non-relational clustering algorithms when applied to
non-relational data. We compared the performance of two
popular categories of non-relational algorithms [16], namely
hierarchical (Single Link, Average Link, Complete Link and
Bisecting K-Means [9]) and partitional algorithms (K-Means
[17]), against graph-based algorithms (kNN [30], kDR [1],
PKNN [2], HSN [18], M ST [29] and EM ST [19)).

This paper is organized as follows. In Section 2 we present
some related work on comparing relational and non-relational
clustering algorithms. In Section 3 we introduce some meth-
ods and background knowledge involved on relational and
non-relational data clustering. In Section 4 we present the
results of our empirical evaluation. Finally, in Section 5 we
conclude and point out some perspectives for further work.

2. RELATED WORK

Many papers address non-relational data clustering. The
contributions by Jain et al. [10, 8] provide a useful sum-
mary of state-of-the-art non-relational data clustering al-
gorithms. Xu and Wunsch [26] compared different non-
relational clustering algorithms in five different applications
(two benchmark datasets, two bioinformatics datasets and
on the Traveling Salesman Problem dataset). They con-
cluded that there is no clustering algorithm that can cor-
rectly solve all problems, pointing out that appropriate pre-
processing and post-processing steps in clustering tasks would
improve clustering results.

Many contributions that compare non-relational algorithms
focus on their performance in specific applications. Jiang et
al. [11] present a survey of clustering algorithms in gene ex-
pression data, pointing out when each method can suitably
solve a given clustering problem in this context. The authors
consider several algorithms that have been applied to clus-
ter gene expression data, such as K-Means, SOM, Hierarchi-
cal Clustering and Model Based Clustering. They catego-
rize their application in gene-based clustering, sample-based
clustering and subspace clustering. Again, the conclusion
was that there is no standard clustering method or evalu-
ation criteria for every application in gene data clustering
and the choice of the most suitable one relies on the user’s
experience. Zhao and Karypis [28] have compared different
criterion functions on partitional document clustering. They
used modifications of K-Means and Bisecting K-Means algo-
rithms, adopting seven different criterion functions in their
clustering processes, four of which have been proposed by
themselves. The results show that the performance differ-
ence observed by the different criterion functions can be at-
tributed to the extent to which these functions are sensitive
to clusters of different degrees of tightness, and the extent to
which they can lead to reasonably balanced solutions. Liao
[15] discusses a variety of clustering algorithms applied to
the time series data clustering problem. Three components
of time series clustering are discussed: the clustering algo-
rithm, the similarity measure and the evaluation criterion.
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Some applications are discussed in business, engineering, sci-
ence, medicine and entertainment.

As far as community detection in networks is concerned,
relevant contributions are distinguished mainly by analysing
networks with different attributes. Danon et al. [3] com-
pared 16 community detection methods on artificial data
sets, analyzing the precision and computational cost, and
concluding that the non-parametric Fast Greedy [20] method
achieves a good compromise of both measures. Lancichinetti
and Fortunato [12] have evaluated multiple community iden-
tification methods in real-world networks with different prop-
erties. The method based on random walk by Rosvall and
Bergstrom [23] did particularly well regarding performance
and versatility, being applicable to weighted and directed
graphs. Leskovec et al. [14] have also compared different
methods regarding their relative performance and the sys-
tematic biases in the clusters identified. Orman et al. [21]
applied five community detection methods on artificial net-
works with real-world network properties, analysing their
precision.

Nonetheless, the previous contributions considered rela-
tional data only. The approach of obtaining a network from
non-relational data has already been employed by Oliveira
et al. [4], who derive a network model and partition it into
communities for cluster identification. In their model each
example is assigned a random initial angle that is gradually
updated considering their neighboring angles until reaching
a stable state. The authors proposed a hierarchical model for
cluster identification based in this network, and applied this
algorithm on artificial datasets and two real-world datasets,
showing it performed better than traditional clustering al-
gorithms (KMeans and Hierarchical Clustering). A major
drawback is the high dependence on two parameters, the
number of neighbors to be considered and the angle updat-
ing rate. In a different approach, Granell et al. [6] use a
data similarity matrix to detect communities in real-world
non-relational data. This similarity matrix is interpreted as
a complete weighted graph and a multi-resolution scheme
(5] is employed for community detection. The method was
applied solely over the Iris dataset, and no comparisons were
performed with traditional clustering methods.

3. BACKGROUND

In this section we present some methods and background
knowledge involved on relational and non-relational data
clustering. These methods are used in the comparisons de-
scribed in Section 4.

3.1 Non-relational clustering

Non-relational clustering algorithms may be divided in
two major categories: partitional and hierarchical cluster-
ing [9]. Partitional algorithms subdivide the dataset into a
set of mutually independent clusters, i.e., generates a single
partition of the dataset. Hierarchical clustering, on the other
hand, aims at obtaining a nested sequence of partitions.

K-Means [17] is possibly the best known partitional al-
gorithm, and operates seeking for an optimal partition of
the dataset by minimizing the sum-of-squared-error crite-
rion. K-Means obtains k clusters from the data, where k is
a predefined parameter. The algorithm starts by randomly
choosing k cluster prototypes (centroids). Then, each ex-
ample z; in the dataset is added to the cluster C; with the
nearest centroid. After this process is done for the n exam-



ples, the prototypes of each cluster C' are updated by cal-
culating the mean of all examples belonging to that cluster.
The assignment of examples to clusters and the centroid up-
dates are iteratively done until clusters become stable. The
time complexity of this algorithm is approximately linear
(O(nkdt), where n is the number of examples, k is the de-
sired number of clusters, d is the number of dimensions and
t is the number of iterations until the algorithm stabilizes).

On the class of hierarchical clustering algorithms, two sub-
categories can be found: the agglomerative and the divisive
algorithms [9]. In agglomerative hierarchical clustering, each
example is considered as a singleton. At each cluster step,
agglomerative algorithms merges the nearest pair of clusters,
until one single cluster remains. The divisive algorithms, on
the other hand, start with all examples in a single cluster
and successively divide them until all clusters are singletons.
The agglomerative algorithms are the most popular, due to
their smaller complexity (O(n?) per step) as compared with
the divisive methods (O(2") per step).

The best-known agglomerative algorithms are the Single
Link, Complete Link and Average Link, distinguished by
the distance matrix updating process in each clustering step.
When a new cluster Cheq is formed by merging two clusters
C; and Cj, the algorithm updates the distance matrix by
calculating the distance di,new of all other point Ci to Crew-
In the Single Link algorithm, di new is the smallest value
among d; r and dj, (da, denotes the distance between two
examples a and b); in the Complete Link algorithm, di new
is the highest value among d; » and d; x; and in the Average
Link algorithm, dg new is the average of d; , and d; k.

On the divisive category, Bisecting K-Means is very popu-
lar (see [24]). It consists in iteratively applying the K-Means
algorithm to split a cluster in two subclusters, thus generat-
ing nested partitions of the dataset. This process is repeated
until each cluster has just one element.

In applying non-relational clustering algorithms, a user
must choose the proper number of clusters to partition the
dataset. A partitioning can be obtained either by a direct
application of partitional algorithms or by cutting the den-
drogram obtained by hierarchical clustering. Cluster struc-
ture quality measures may be employed to assist users on de-
ciding the number of clusters to search for. Considering that
the only information about the examples are the attributes
(i.e., no class information is given), relative validation mea-
sures allow comparing the partitions obtained by different
clustering partitions [25]. Several measures can be applied
in this process. Here we have selected three well-known mea-
sures [25]: Calinski-Harabasz Index, Dunn’s Index and Sil-
houette Width Criterion. The three of them evaluate the
partitions by making geometrical considerations about com-
pactness and separation of the obtained clusters. They allow
evaluating different configurations of a particular algorithm
that lead to different numbers of clusters. The configuration
that maximizes the evaluation measure can be taken as the
best partition for that algorithm.

3.2 Similarity-based networks and community
structure

Tabular data may be transformed into a connected graph,

e.g., based on criteria established by similarity relations amongst

data examples, so that relational clustering algorithms can
be applied. Generally, network vertices represent examples
and edges represent dissimilarity (or distance) relations. Dif-
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ferent graph models may emphasize different connection pat-
terns and data distributions, e.g., groups of highly similar
examples may be strongly connected whereas highly dissim-
ilar ones are loosely connected.

A well-known example is the Minimum spanning tree graph
(MST), which is a sub-graph (a tree) of a complete graph
that has the minimum number of edges. For weighted graphs,
MST has the edge set with minimum total cost. An MST
may be computed from a complete graph built from the data
taking as edge weights the corresponding pairwise distances
between examples. Recently, Zhong et al. [29] used an MST
graph to introduce a novel split-and-merge hierarchical clus-
tering method.

The kNN graph [30] is also a traditional model. It con-
nects each example to its k nearest-neighbors according to
a given distance function, where input parameter k defines
how many neighbors to connect. Usually, obtaining con-
nected graphs requires adopting a high value for k.

Based on the kNN network, Aoyama et al. [1] proposed the
k degree-reduced nearest neighbor graph (kDR) as a fast ap-
proximate similarity search method. Unlike kNN, the kDR,
graph does not include an edge between z and y € Ni(x)
(the k-neighborhood of z) without which a greedy search al-
gorithm can reach z from y along the existing edges. Then
kDR has a smaller average degree than kNN. Construct-
ing the kDR graph requires building a kNN network with
k = 1 and then adopting an incremental procedure on k,
until & = Kmaz (kmaee provided in advance). Initially, the
kDR graph is exactly a kNN graph with k£ equal to 1. Then,
for each kNN graph, the edges are verified and maybe in-
serted in the kDR graph. An edge from z to y is inserted if
in the current kDR graph the distance between = and every
adjacent to y is higher than the distance between x and y.

Bayé and Granitto [2] build similarity-based network mod-
els from kNN graphs to cluster gene expression data. Con-
nectedness is an essential property of those networks, en-
suring that a finite distance path exists between any pair
of examples. Network construction departs from a kNN
graph, which is transformed into a connected graph — Pe-
nalized K-Nearest-Neighbor-Graphs (PKNN). The rationale
is that edges linking nodes in different components are as-
signed weights significantly lower than those edges internal
to a component, and the best strategy to obtain a connected
graph was merging the kNN and MST graphs.

Motta et al. [18] proposed the Hierarchical Similarity Net-
work model (HSN), with few connections linking isolated
examples and many connections linking dense data regions.
This model, however, requires an input parameter that con-
trols the average degree of the resulting network. Moreover,
the agglomerative construction strategy seeks to optimize
the network’s modular structure, even though modularity is
not necesarily a property of the input dataset.

A network model named Extended Minimum Spanning
Tree (EMST), introduced by [19], expands a graph’s Mini-
mum Spanning Tree (MST) by connecting each vertex to its
most similar vertices, employing a criterion that considers
the MST connections. The EMST network is built from the
data in two stages: first a complete weighted graph is cre-
ated, with edge weights given by the pairwise dissimilarity
values between vertices. Departing from the graph’s MST,
edges are added based on connection patterns identified in
the MST. The resulting network preserves the original data
distribution, with vertices in dense data regions highly con-



Table 1: Data sets for experimental evaluation.

[ dataset [ # ex. | # att. | # cl. | [ dataset [ # ex. | # att. | # cl. | [ dataset [ # ex. | # att. [ # cl. |
balance 625 4 3 libras 360 90 15 700 101 16 7
blood-transf. 748 4 2 madelon 600 500 2 Amazon 1500 10000 50
cleveland 298 13 5 mult-features 2000 649 10 CNAE-9 1080 856 9
diabetes 768 8 2 musk-v1 476 166 2 reQ 1504 2886 13
ecoli 336 7 8 satimg 500 36 6 rel 1657 3758 25
glass 214 10 6 sonar 208 60 2 tr23 204 5832 6
habermans 306 3 2 spectf 267 44 2 tr31 927 10128 7
heart-statlog 270 13 2 vehicle 846 18 4 trdl 878 7454 10
ionosphere 351 34 2 vertebral 310 6 3 cbr-ilp-ir-son 675 1423 4
iris 150 4 3 vowels 990 10 11 KDVis 1624 520 4
isolet 1559 617 26 wine 178 13 3 News2011 1771 3731 23

nected and isolated vertices sparsely connected. It does not
artificially enforce a modular structure, because the number
of edges incident to a vertex varies according to the region of
its corresponding example in multidimensional data space.

Once a network is formed, it is possible to obtain clus-
ters by detecting community structure. Several algorithms
have been proposed to identify subgroups of densely con-
nected vertices sparsely connected to other subgroups. New-
man [20] introduced Fast Greedy, an agglomerative hierar-
chical algorithm that does not require the number of commu-
nities as input. At each stage it computes a quality measure,
modularity @, that is maximized when the “ideal” number
of communities is reached. Distinguishing features of this
algorithm are the proposed modularity ¢ and the low com-
putational cost as compared to other methods (O(nlog®n)).

Community detection algorithms may adopt the modular-
ity @ to establish the ideal number of communities to search
for, as in the Adaptive Clustering agglomerative method [27].
It runs in two stages: the first one groups highly connected
vertices, using the Fast Greedy algorithm, and the second
reassigns vertices to groups based on their local connections
and network neighborhood, seeking to maximize Q. It is
shown to produce better decompositions of the network into
communities as compared to Newman’s algorithm [20], at
an equivalent computational cost.

4. EMPIRICAL EVALUATION

We now compare network-based clustering strategies with
the traditional ones, focusing on how homogeneous are the
clusters considering the previously known classes. Evalu-
ation has been conducted on 23 numerical data sets from
the UCT repository’ plus 10 textual data sets (2 from UCI,
5 from the CLUTO project? and 3 from an Internet reposi-
tory®). A summary of these datasets is presented in Table 1,
informing the number of examples, attributes and classes.

We conducted evaluations considering non-relational algo-
rithms based on hierarchical agglomerative clustering (Sin-
gle, Average and Complete), on hierarchical divisive clus-
tering (Bisecting K-Means) and on partitional clustering (K-
Means). These methods require a desired number of clusters
as input, and their performance was thus measured in all
datasets varying the number of clusters from 2 to 50. Three
relative measures of cluster quality, namely Sillhouette Coef-
ficient, Dunn’s Index and the Calinski-Harabasz Index have
been employed to identify the best cluster structure for each
method, generating 15 combinations to compare.

"http://archive.ics.uci.edu/ml/
http://glaros.dtc.umn.edu/gkhome/views/cluto
3http://vicg.icme.usp.br/infovis2/DataSets
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We have also evaluated relational clustering approaches
considering the following network models: kNN, kDR, PKNN,
HSN, MST and EMST. For the first four models, which are
parametric, the input values (k for the first three; degree
for HSN) considered were 3, 5, 7 and 11. For each net-
work, we employed the community detection methods Fast
Greedy [20] and Adaptive Clustering [27], and the modu-
larity measure @ [20] to identify the best community struc-
ture. Then, we have 18 networks and 2 community detection
methods, thus producing 36 possible combinations.

After the cluster identification, validation was conducted
with three state-of-the-art external cluster evaluation mea-
sures: Rand Index [22], Adjusted Rand Index [7] and F-
Score Measure [13]. These measures assign a score to the
cluster result according to the clusters degree of purity, i.e.,
according to the methodt’s capability of generating clusters
that represent classes, establishing a direct relation between
clusters and classes. For this evaluation to be possible we
only considered datasets with a class attribute (which, of
course, has been ignored in the clustering process).

A comprehensive comparison among so many methods
from different categories requires a preliminary filtering of
the alternatives. In a first analysis we compared results ob-
tained within the same category (hierarchical agglomerative,
hierarchical divisive, partitional and graph-based clustering)
to identify the most representative methods. For each cat-
egory it was obtained the average ranking for each evalua-
tion measure, as shown in Table 2. In relational approaches,
the kNN network model was not considered since its major
drawback of limiting the minimum number of clusters that
can be generated is solved in the PKNN, which is very simi-
lar to kNN. Among the two network detection methods, the
Adaptive Clustering was selected, as in general it presented
better results than Fast Greedy.

The analysis pointed to the Average Link as the best ag-
glomerative hierarchical clustering algorithm. For this al-
gorithm, the partition obtained using the Sillhouette Co-
efficient was superior to the one obtained using the Dunn’s
Index and the Calinski-Harabasz Index. For the hierarchical
divisive algorithm (Bisecting K-Means), partitions obtained
using Calinski-Harabasz Index presented a better evalua-
tion score. For the partitional algorithm (K-Means), parti-
tions obtained using the Dunn’s Index had a better evalua-
tion value. Finally, the PKNN model presented the better
results compared to the other parametric network models
and the best results were achieved for £k = 11. The EMST
model obtained better results as compared to the other non-
parametric network model (MST).

In summary, we ended with the following methods to com-



Table 2: Comparison of the average rank for each cluster detection method, separated by their category.

non-relational agglomerative
HC-AL | HC-AL | HC-AL | HC-SL | HC-SL | HC-SL | HC-CL | HC-CL | HC-CL
(Sil) (CH) (Dunn) (sil) (CH) (Dunn) (sil) (CH) (Dunn)
Rand 2,94 3,64 3,58 4,70 3,04 176 3,88 4,00 3,85
Adj.Rand 2,36 2,85 2,67 5,21 4,30 5,24 4,12 4,52 4,03
F-Score 4,39 5,42 3,91 3,97 3,73 3,45 3,79 3,48 3,12
Average 3,23 3,07 3,38 1,63 3,99 1,48 3,93 4,00 3,67
non-relational divisive non-relational partitional relational non-parametrical
BKM BKM BRM KM KM KM MST EMST
(sil) (CH) | (Dunn) (sil) | (CH) (Dunn) (AC) (AC)
Rand 1,01 1,88 1,94 Rand 1,97 2,03 1,85 Rand 1,61 1,39
Adj.Rand 2,03 1,85 1,88 Adj.Rand | 2,03 2,03 1,79 Adj.Rand 1,85 1,15
F-Score 1,85 1,91 2,00 F-Score 1,82 2,12 1,91 F-Score 1,91 1,09
Average 1,93 1,88 1,94 Average 1,94 2,06 1,85 Average 1,79 1,21
relational parametrical
KDR KDR KDR KDR HSN HSN HSN HSN PKNN | PKNN | PKNN PKNN
3(AC) | 5(AC) | 7(AC) | 11(AC) | 3(AC) | 5(AC) | 7(AC) | 11(AC) | 3(AC) 5(AC) 7(AC) 11(AC)
Rand 6,97 6,30 6,03 6,03 8,12 7,61 6,94 7,18 6,76 6,39 1,76 1385
Adj.Rand 8,58 5,94 4,88 4,88 9,64 8,45 6,33 6,91 8,18 6,39 4,33 3,45
F-Score 9,45 5,91 4,70 4,45 10,15 8,48 6,76 5,36 8,79 6,39 4,76 2,76
Average 8,33 6,05 5,20 5,12 9,30 8,18 6,68 6,48 7,00 6,39 1,62 3,69

Table 3: Comparison of the average rank for the
best cluster detection method from each category.

HC-AL | BKM KM PKNN | EMST
(sil) (CH) | (Dunn) 11(AC) (AC)
Rand 3,24 3,85 3,36 2,03 2,48
Adj.Rand 3,30 3,88 3,64 1,73 2,45
F-Score 3,18 3,12 3,55 2,24 2,91
Average 3,24 3,62 3,52 2,00 2,62

Table 4: Results from the statistical comparisons
(method in the line vs. method in the column).
Green symbols indicate positive values of statisti-
cal comparison, red colors indicate negative val-
ues. Filled symbols indicate significant difference
(p-value lower than 0.01).

[«

PKNN EMST HC-AL
11(AC) (AC) (sil)

KM BKM
Dunn) | (CH)

Rand Index
PKNN11(AC)
EMST(AC)
HC-AL(Sil)
KM(Dunn)
BKM(CH)

Adjusted Ran
PKNN11(AC)
EMST(AC)
HC-AL(Sil)
KM(Dunn)
BKM(CH)

F-Score

PKNN11(AC)
EMST(AC)
HC-AL(Sil)
KM(Dunn)
BKM (CH)

444
444

d Index

4444
444

<4<«
<4<
Q!

pare: (i) HC-AL (Sil), indicating the Hierarchical Clustering
using Average Link and validation through Sillhouette Co-
efficient; (ii) KM (Dunn) as the K-Means with maximum
Dunn’s Index; (iii) BKM (CH) as the Bisecting K-Means
with maximum Calinski-Harabasz Index; (iv) PKNN11 (AC)
as the network PKNN with k£ = 11 and the network detec-
tion method Adaptive Clustering; and (v) EMST (AC) as
the non-parametric network model.

We then compared the methods selected in each category
and the results are shown in Table 3. Relational meth-
ods produced the best results, with PKNN11 presenting a
slight advantage when compared to EMST. We applied the
Wilcoxon’s paired test with a = 0.01 to check whether there
is significant difference in the performance of the algorithms.
The results are given in Table 4.

One observes that regarding the measures Rand Index and
Adjusted Rand Index, network-based methods presented bet-
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ter results with statistical significance as compared to non-
relational methods. Both approaches presented improved
performance on the F-Score measure, with PKNN (AC) pre-
senting high significant difference. Among the network--
based methods, PKNN (AC) was superior to the EMST
(AC) method in all evaluation measures. When compar-
ing the non-relational clustering methods, no predominance
was oberved of a particular method over the others.

S. CONCLUSIONS

Relational and non-relational clustering algorithms have
been successfully applied to a broad set of data mining prob-
lems. Non-relational methods deal with propositional rep-
resentations of the data, while relational methods require a
graph model that represents examples as vertices and edges
connect similar examples. Similarity-based network models
allow the creation of a relational representation for a non-
relational dataset which allows relational algorithms to be
applied over originally non-relational data.

This paper presented a comparison of relational and non-
relational clustering algorithms in a non-relational context.
We considered three categories of non-relational clustering
methods: hierarchical agglomerative (Single Link, Complete
Link and Average Link); hierarchical divisive (Bisecting K-
Means); and partitional (K-Means). These methods were
compared with two categories of relational clustering meth-
ods: parametric models (¢kNN, kDR, PKNN and HSN);
and non-parametric models (M ST and EMST). We com-
pared the performance of these methods over 33 datasets
(23 numeric and 10 textual datasets) and evaluated the par-
titions using three different external evaluation measures
(Rand Index, Adjusted Rand Index and F-Score).

In our first evaluation, we compared the performance of
methods within the same category and methods from dif-
ferent categories. On the non-relational category, hierarchi-
cal agglomerative clustering presented better performance
as compared to the other algorithms. When analysing the
group of relational algorithms, both PKNN and EMST
presented good evaluation values, with a slight advantage
to the PKNN method. Finally, we selected the relational
and non-relational methods with best evaluations and com-
pared them. The relational methods presented better results
with high statistical significance (superior to 0.99). This in-
dicates that it may be worth using relational methods in
non-relational clustering problems. A possible reason for
this result is the ability of relational-clustering algorithms



to deal with datasets with different topological features. As
real-world datasets contain clusters with different shapes,
sizes and densities, relational clustering algorithms can ob-
tain better results than non-relational algorithms in detect-
ing cluster in this context.

A major drawback in applying relational algorithms in a
propositional context is the additional cost of obtaining a re-
lational data representation for the propositional data. On
the other hand, relational methods automatically detect the
number of clusters in the dataset, while non-relational meth-
ods require the number of clusters as an input parameter.

As future work we intend to perform a controlled analysis
of the performance of the methods when handling topologi-
cal features of data such as cluster shape and density, using
artificially generated datasets.
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