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GENERATING THE ALGEBRAIC THEORY OF C(X):

THE CASE OF PARTIALLY ORDERED COMPACT SPACES

DIRK HOFMANN, RENATO NEVES, AND PEDRO NORA

Abstract. It is known since the late 1960’s that the dual of the category of compact Hausdorff spaces

and continuous maps is a variety – not finitary, but bounded by ℵ1. In this note we show that the dual of

the category of partially ordered compact spaces and monotone continuous maps is a ℵ1-ary quasivariety,

and describe partially its algebraic theory. Based on this description, we extend these results to categories

of Vietoris coalgebras and homomorphisms. We also characterise the ℵ1-copresentable partially ordered

compact spaces.

1. Introduction

The motivation for this paper stems from two very different sources. Firstly, it is known since the end

of the 1960’s that the dual of the category CompHaus of compact Hausdorff spaces and continuous maps

is a variety – not finitary, but bounded by ℵ1. More in detail,

• in [Dus69] it is proved that the representable functor hom(−, [0, 1]) : CompHausop → Set is

monadic,

• the unit interval [0, 1] is shown to be a ℵ0-copresentable compact Hausdorff space in [GU71],

• a presentation of the algebra operations of CompHausop is given in [Isb82], and

• a complete description of the algebraic theory of CompHaus
op is obtained in [MR17].

It is also worth mentioning that, by the famous Gelfand duality theorem [Gel41], CompHaus is dually

equivalent to the category of commutative C∗-algebras and homomorphisms; the algebraic theory of

(commutative) C∗-algebras is extensively studied in [Neg71, PR89, PR93]. Our second source of inspi-

ration is the theory of coalgebras. In [KKV04] the authors argue that the category BooSp of Boolean

spaces and continuous maps “is an interesting base category for coalgebras”; among other reasons, due to

the connection with modal logic. A similar study based on the Vietoris functor on the category Priest of

Priestley spaces and monotone continuous maps can be found in [CLP91, Pet96, BKR07]. Arguably, the

categories BooSp and Priest are very suitable in this context because they are duals of finitary varieties

(due to the famous Stone dualities [Sto36, Sto38a, Sto38b]), a property which extends to categories of

coalgebras and therefore guarantees for instance good completeness properties.

In this note we go a step further and study the category PosComp of partially ordered compact spaces

and monotone continuous maps, which was introduced in [Nac50] and constitutes a natural extension of

both the category CompHaus and the category Priest. It remains open to us whether PosCompop is also a

variety; however, based on the duality results of [HN16] and inspired by [Isb82], we are able to prove that

PosCompop is a ℵ1-ary quasivariety and give a partial description of its algebraic theory. This description

turns out to be sufficient to identify also the dual of the category of coalgebras for the Vietoris functor

V : PosComp → PosComp as a ℵ1-ary quasivariety. Finally, we characterise the ℵ1-copresentable objects

of PosComp as precisely the metrisable ones.
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2. Preliminaries

In this section we recall the notion of partially ordered compact space introduced in [Nac50] together

with some fundamental properties of these spaces.

Definition 2.1. A partially ordered compact space (X,≤, τ) consists of a set X , a partial order ≤

on X and a compact topology τ on X so that

{(x, y) ∈ X ×X | x ≤ y}

is closed in X ×X with respect to the product topology.

We will often simply write X instead of (X,≤, τ). For every partially ordered compact space X , also

the subset

{(x, y) ∈ X ×X | x ≥ y}

is closed in X ×X since the mapping X ×X → X ×X, (x, y) 7→ (y, x) is a homeomorphism. Therefore

the diagonal

∆X = {(x, y) ∈ X ×X | x ≤ y} ∩ {(x, y) ∈ X ×X | x ≥ y}

is closed in X×X , which tells us that the topology of a partially ordered compact space is Hausdorff. We

denote the category of partially ordered compact spaces and monotone continuous maps by PosComp.

Example 2.2. The unit interval [0, 1] with the usual Euclidean topology and the “greater or equal”

relation > is a partially ordered compact space; via the mapping x 7→ 1 − x, this space is isomorphic in

PosComp to the space with the same topology and the “less or equal” relation 6.

Clearly, there is a canonical forgetful functor PosComp → Pos from PosComp to the category Pos

of partially ordered sets and monotone maps. By the observation above, forgetting the order relation

defines a functor PosComp → CompHaus from PosComp to the category CompHaus of compact Hausdorff

spaces and continuous maps. For more information regarding properties of PosComp we refer to [Nac65,

GHK+80, Jun04, Tho09]; however, we recall here:

Theorem 2.3. The category PosComp is complete and cocomplete, and both canonical forgetful functors

PosComp → CompHaus and PosComp → Pos preserve limits.

Proof. This follows from the construction of limits and colimits in PosComp described in [Tho09]. �

We call an injective monotone continuous map m : X → Y between partially ordered compact spaces

an embedding in PosComp whenever m is an order embedding, that is,

x ≤ y ⇐⇒ m(x) ≤ m(y)

for all x, y ∈ X . Note that the embeddings in PosComp are, up to isomorphism, the closed subspace

inclusions with the induced order. More generally, a cone (fi : X → Yi)i∈I in PosComp is called initial

whenever, for all x0, x1 ∈ X ,

x0 ≤ x1 ⇐⇒ ∀i ∈ I . fi(x0) ≤ fi(x1).

In fact, this condition is equivalent to affirm that the cone (fi : X → Yi)i∈I is initial with respect to the

forgetful functor PosComp → CompHaus (see [Tho09]). The following result of Nachbin is crucial for our

work.

Theorem 2.4. The unit interval [0, 1] is injective in PosComp with respect to embeddings.

Proof. See [Nac65, Theorem 6]. �

As we have shown in [HN16], the theorem above has the following important consequences.

Theorem 2.5. The regular monomorphisms in PosComp are, up to isomorphism, the closed subspaces

with the induced order. Consequently, PosComp has (Epi,Regular mono)-factorisations and the unit

interval [0, 1] is a regular injective regular cogenerator of PosComp.
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Proof. Based on Theorem 2.4, the characterisation of regular monomorphisms as precisely the embeddings

can be found in [HN16], as well as a proof for the fact that [0, 1] is a regular cogenerator of PosComp. �

We close this section with the following characterisation of cofiltered limits in CompHaus which goes

back to [Bou66, Proposition 8, page 89] (see also [Hof02, Proposition 4.6] and [HNN16]).

Theorem 2.6. Let D : I → CompHaus be a cofiltered diagram and (pi : L → D(i))i∈I a cone for D. The

following conditions are equivalent:

(i) The cone (pi : L → D(i))i∈I is a limit of D.

(ii) The cone (pi : L → D(i))i∈I is mono and, for every i ∈ I, the image of pi is equal to the

intersection of the images of all D(k : j → i) with codomain i:

im pi =
⋂

j→i

imD(j
k

−→ i).

We emphasise that this intrinsic characterisation of cofiltered limits in CompHaus is formally dual to

the following well-known description of filtered colimits in Set (see [AR94]).

Theorem 2.7. Let D : I → Set be a filtered diagram and (ci : D(i) → C)i∈I a compatible cocone

(ci : D(i) → C)i∈I for D. The following conditions are equivalent:

(i) The cocone (ci : D(i) → C)i∈I is a colimit of D.

(ii) The cocone (ci : D(i) → C)i∈I is epi and, for all i ∈ I, the coimage of ci is equal to the cointer-

section of the coimages of all D(k : i → j) with domain i:

ci(x) = ci(y) ⇐⇒ ∃(i
k

−→ j) ∈ I .D(k)(x) = D(k)(y),

and x, y ∈ D(i).

3. The quasivariety PosCompop

The principal aim of this section is to identify PosCompop as a ℵ1-ary quasivariety; moreover, we give

a more concrete presentation of the algebra structure of PosCompop. To achieve this goal, we built on

[HN16] where PosCompop is shown to be equivalent to the category of certain [0, 1]-enriched categories,

for various quantale structures on the complete lattice [0, 1]. Arguably, the most convenient quantale

structure is the Łukasiewicz tensor given by u ⊙ v = max(0, u + v − 1), for u, v ∈ [0, 1]. For this

quantale, a [0, 1]-category is a set X equipped with a mapping a : X ×X → [0, 1] so that

1 6 a(x, x) and a(x, y) ⊙ a(y, z) 6 a(x, z),

for all x, y ∈ X . Each [0, 1]-category (X, a) induces the order relation (that is, reflexive and transitive

relation)

x 6 y whenever 1 6 a(x, y) (x, y ∈ X)

on X . A [0, 1]-category is called separated whenever this order relation is anti-symmetric. As we explain

in Section 5, categories enriched in this quantale can be also thought of as metric spaces.

To state the duality result of [HN16], we need to impose certain (co)completeness conditions on [0, 1]-

categories. Since these conditions will not be used explicitly in this paper, we simply refer to [HN16] for

their definitions. Eventually, we consider the category A with objects all separated finitely cocomplete

[0, 1]-categories with a monoid structure that, moreover, admit [0, 1]-powers; the morphisms of A are the

finitely cocontinuous [0, 1]-functors preserving the monoid structure and the [0, 1]-powers. Alternatively,

these structures can be described algebraically as sup-semilattices with actions of [0, 1]; therefore we

simply refer to [Kel82, Stu14] for information about enriched categories and proceed by describing A as

a category of algebras.

Remark 3.1. The category A together with its canonical forgetful functor A → Set is a ℵ1-ary quasivariety;

we recall now the presentation given in [HN16]. For more information on varieties and quasivarieties we

refer to [AR94]. Firstly, the set of operation symbols consists of
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• the nullary operation symbols ⊥ and ⊤;

• the unary operation symbols − ⊙ u and − ⋔ u, for each u ∈ [0, 1];

• the binary operation symbols ∨ and ⊚.

Secondly, the algebras for this theory should be sup-semilattices with a supremum-preserving action of

[0, 1]; writing x ≤ y as an abbreviation for the equation y = x ∨ y, this translates to the equations and

implications

x ∨ x = x, x ∨ (y ∨ z) = (x ∨ y) ∨ z, x ∨ ⊥ = x, x ∨ y = y ∨ x,

x⊙ 1 = x, (x⊙ u) ⊙ v = x⊙ (u ⊙ v), ⊥ ⊙ u = ⊥, (x ∨ y) ⊙ u = (x⊙ u) ∨ (y ⊙ u),

x⊙ u ≤ x⊙ v and
∧

u∈S

(x⊙ u ≤ y) =⇒ (x⊙ v ≤ y) (S ⊆ [0, 1] countable and v = supS).

The algebras defined by the operations ⊥, ∨ and −⊙u (u ∈ [0, 1]) and the equations above are precisely

the separated [0, 1]-categories with finite weighted colimits. Such a [0, 1]-category (X, a) has all powers

x ⋔ u (x ∈ X,u ∈ [0, 1]) if and only if, for all u ∈ [0, 1], − ⊙ u has a right adjoint − ⋔ u with respect to

the underlying order. Therefore we add to our theory the implications

x⊙ u ≤ y ⇐⇒ x ≤ y ⋔ u,

for all u ∈ [0, 1]. Finally, regarding ⊚, we impose the commutative monoid axioms with neutral element

the top-element:

x⊚ y = y ⊚ x, x⊚ (y ⊚ z) = (x⊚ y) ⊚ z, x⊚ ⊤ = x, ⊤ ≤ x.

Moreover, we require this multiplication to preserve suprema and the action − ⊙u (for u ∈ [0, 1]) in each

variable:

x⊚ (y ∨ z) = (x⊚ y) ∨ (x⊚ z), x⊚ ⊥ = ⊥, x⊚ (y ⊙ u) = (x⊚ y) ⊙ u.

Remark 3.2. The unit interval [0, 1] becomes an algebra for the theory above with ⊚ = ⊙ and v ⋔ u =

min(1, 1 − u+ v) = 1 − max(0, u− v), and the usual interpretation of all other symbols.

The following result is in [HN16].

Theorem 3.3. The functor

C : PosCompop −→ A

sending f : X → Y to Cf : CY → CX, ψ 7→ ψ · f is fully faithful, here the structure on

CX = {f : X → [0, 1] | f is monotone and continuous}

is defined pointwise.

Remark 3.4. The theorem above remains valid if we augment the algebraic theory of A by further operation

symbols corresponding to monotone continuous functions [0, 1]I → [0, 1]. More precisely, let ℵ be a

cardinal and h : [0, 1]ℵ → [0, 1] be a monotone continuous map. If we add to the algebraic theory of A a

operation symbol of arity ℵ, then C : PosCompop → A lifts to a fully faithful functor from PosCompop to

the category of algebras for this theory by interpreting the new operation symbol in CX point-wise by

h. Note that all A-morphisms of type CY → CX preserves this new operation automatically.

Remark 3.5. Note that 1 − u = 0 ⋔ u, for every u ∈ [0, 1]. Therefore we can express truncated minus

v ⊖ u = max(0, v − u) in [0, 1] with the operations of A:

v ⊖ u = 0 ⋔ (u ⋔ v).

In particular, every subalgebra M ⊆ CX of CX is also closed under truncated minus.
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Since we have chosen the Łukasiewicz tensor, the categorical closure on CX (see [HT10]) coincides

with the usual topology induced by the “sup-metric” on CX ; in the sequel we consider this topology

on C(X). One important step towards the identification of the image of C : PosCompop −→ A is the

following adaption of the classical “Stone–Weierstraß theorem” (see [HN16]).

Theorem 3.6. Let X be a partially ordered compact space and m : A →֒ CX be a subobject of CX in A so

that the cone (m(a) : X → [0, 1]) is point-separating and initial. Then m is dense in CX. In particular,

if A is Cauchy complete, then m is an isomorphism.

One important consequence of Theorem 3.6 is the following proposition.

Proposition 3.7. The unit interval [0, 1] is ℵ1-copresentable in PosComp.

Proof. This can be shown with the same argument as in [GU71, 6.5.(c)]. Firstly, by Theorem 3.6,

hom(−, [0, 1]) sends every ℵ1-codirected limit to a jointly surjective cocone. Secondly, using Theorem 2.7,

this cocone is a colimit since [0, 1] is ℵ1-copresentable in CompHaus. �

Theorem 3.8. The functor C : PosCompop → A corestricts to an equivalence between PosCompop and

the full subcategory of A defined by those objects A which are Cauchy complete and where the cone of all

A-morphisms from A to [0, 1] is point-separating.

Proof. See [HN16]. �

Instead of working with Cauchy completeness, we wish to add an operation to the algebraic theory of

A so that, if M is closed in CX under this operation, then M is closed with respect to the topology of

the [0, 1]-category CX . In the case of CompHaus, this is achieved in [Isb82] using the operation

[0, 1]N −→ [0, 1], (un)n∈N 7−→
∞

∑

n=0

1

2n+1
un

on [0, 1]; since the limit of a convergent sequence (ϕn)n∈N can be calculated as

lim
n→∞

ϕn = ϕ0 + (ϕ1 − ϕ0) + . . . .

However, this argument cannot be transported directly into the ordered setting since the difference ϕ1−ϕ0

of two monotone maps ϕ0, ϕ1 : X → [0, 1] is not necessarily monotone. To circumvent this problem, we

look for a monotone and continuous function [0, 1]N → [0, 1] which calculates the limit of “sufficiently

many sequences”. We make now the meaning of “sufficiently many” more precise.

Lemma 3.9. Let M ⊆ CX be a subalgebra in A and ψ ∈ CX with ψ ∈ M . Then there exists a sequence

(ψn)n∈N in M converging to ψ so that

(1) (ψn)n∈N is increasing, and

(2) for all n ∈ N and all x ∈ X: ψn+1(x) − ψn(x) ≤ 1
2n .

Proof. We can find (ψn)n∈N so that, for all n ∈ N, |ψn(x) − ψ(x)| ≤ 1
n+1 . Then the sequence (ψn ⊖

1
n+1 )n∈N converges to ψ too; moreover, since M ⊆ CX is a subalgebra, also ψn ⊖ 1

n+1 ∈ M , for all n ∈ N.

Therefore we can assume that we have a sequence (ψn)n∈N in M with (ψn)n∈N → ψ and ψn ≤ ψ, for all

n ∈ N. Then the sequence (ψ0 ∨ · · · ∨ ψn)n∈N has all its members in M , is increasing and converges to

ψ. Finally, there is a subsequence of this sequence which satisfies the second condition above. �

Lemma 3.10. Every increasing sequence (un)n∈N in [0, 1] satisfying un+1 − un ≤ 1
2n , for all n ∈ N, is

Cauchy. Let

C = {(un)n∈N ∈ [0, 1]N | (un)n∈N is monotone and un+1 − un ≤
1

2n
, for all n ∈ N}.

Then every sequence in C is Cauchy and lim : C → [0, 1] is monotone and continuous.



6 DIRK HOFMANN, RENATO NEVES, AND PEDRO NORA

Motivated by the two lemmas above, we are looking for a monotone continuous map [0, 1]N → [0, 1]

which sends every sequence in C to its limit. Such a map can be obtained by combining lim: C → [0, 1]

with a monotone continuous retraction of the inclusion map C →֒ [0, 1]N.

Lemma 3.11. The map µ : [0, 1]N → [0, 1]N, (un)n∈N 7→ (u0 ∨· · · ∨un)n∈N is monotone and continuous.

Clearly, µ sends a sequence to an increasing sequence, and µ((un)n∈N) = (un)n∈N for every increasing

sequence (un)n∈N.

Lemma 3.12. The map γ : [0, 1]N → [0, 1]N sending a sequence (un)n∈N to the sequence (vn)n∈N defined

recursively by

v0 = u0 and vn+1 = min

(

un+1, vn +
1

2n

)

is monotone and continuous. Furthermore, γ sends an increasing sequence to an increasing sequence.

Proof. It is easy to see that γ is monotone. In order to verify continuity, we consider N as a discrete

topological space, this way [0, 1]N is an exponential in Top. We show that γ corresponds via the expo-

nential law to a (necessarily continuous) map f : N → [0, 1]([0,1]N). The recursion data above translates

to the conditions

f(0) = π0 and f(n+ 1)((um)m∈N) = min

(

un+1, f(n)((um)m∈N) +
1

2n

)

,

that is, f is defined by the recursion data π0 ∈ [0, 1]([0,1]N) and

[0, 1]([0,1]N) −→ [0, 1]([0,1]N), ϕ 7−→ min

(

πn+1, ϕ+
1

2n

)

.

Note that with ϕ : [0, 1]N → [0, 1] also min
(

πn+1, ϕ+ 1
2n

)

: [0, 1]N → [0, 1] is continuous. Finally, if

(un)n∈N is increasing, then so is (vn)n∈N. �

We conclude that the map γ · µ : [0, 1]N → C is a retraction for the inclusion map C → [0, 1]N in

PosComp. Therefore we define now:

Definition 3.13. Let A be the ℵ1-ary quasivariety obtained by adding one ℵ1-ary operation symbol

to the theory of A (see Remark 3.1). Then [0, 1] becomes an object of A by interpreting this operation

symbol by

δ = lim ·γ · µ : [0, 1]N → [0, 1].

The (accordingly modified) functor C : PosComp → A is fully faithful (see Remark 3.4); moreover, by

Proposition 3.7, C sends ℵ1-codirected limits to ℵ1-directed colimits in A.

Definition 3.14. Let A0 be the subcategory of A defined by those objects A where the cone of all

morphisms from A to [0, 1] is point-separating.

Hence, A0 is a regular epireflective full subcategory of A and therefore also a quasivariety. Moreover:

Theorem 3.15. The embedding C : PosCompop → A corestricts to an equivalence C : PosCompop → A0.

Hence, A0 is closed in A under ℵ1-directed colimits and therefore also a ℵ1-ary quasivariety (see [AR94,

Remark 3.32]).

4. Vietoris coalgebras

In this section we consider the Vietoris functor V : PosComp → PosComp and the associated category

CoAlg(V ) of coalgebras and homomorphisms. We show that CoAlg(V ) as well as certain full subcategories

are also ℵ1-ary quasivarieties.

Recall from [Sch93] (see also [HN16, Proposition 3.28]) that, for a partially ordered compact space X ,

the elements of VX are the closed upper subsets of X , the order on V X is containment ⊇, and the sets

{A ∈ V X | A ∩ U 6= ∅} (U ⊆ X open lower) and {A ∈ VX | A ∩K = ∅} (K ⊆ X closed lower)
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generate the compact Hausdorff topology on V X . Furthermore, for f : X → Y in PosComp, the map

V f : V X → V Y sends A to the up-closure ↑f [A] of f [A]. A coalgebra (X,α) for V consists of a partially

ordered compact space X and a monotone continuous map α : X → V X . For coalgebras (X,α) and

(Y, β), a homomorphism of coalgebras f : (X,α) → (Y, β) is a monotone continuous map f : X → Y so

that the diagram

X
f //

α

��

Y

β

��
V X

V f

// V Y

commutes. The coalgebras for the Vietoris functor and their homomorphisms form the category CoAlg(V ),

and forgetting the coalgebra structure gives rise to the canonical forgetful functor CoAlg(V ) → PosComp

that sends (X,α) to X and leaves the maps unchanged. For the general theory of coalgebras we refer to

[Adá05].

As it is well-known, V is part of a monad V = (V,m, e) on PosComp; here eX : X → V X sends x to ↑x

and mX : V V X → V X is given by A 7→
⋃

A. Clearly, a coalgebra structure X → V X for V can be also

interpreted as an endomorphism X −→◦ X in the Kleisli category PosComp
V

. In the sequel we will use

this perspective together with the duality result for PosComp
V

of [HN16] to show that also CoAlg(V )op

is a ℵ0-ary quasivariety.

Let B denote the category with the same objects as A and morphisms those maps ϕ : A → A′ that

preserve finite suprema and the action − ⊙ u, for all u ∈ [0, 1], and satisfy

ϕ(x⊚ y) ≤ ϕ(x) ⊚ ϕ(y),

for all x, y ∈ A. The functor C : PosCompop → A extends to a fully faithful functor C : PosComp
V

→ B

making the diagram

PosComp
op
V

C // B

PosCompop

C

//

OO

A0

OO

commutative, where the vertical arrows denote the canonical inclusion functors. Therefore the category

CoAlg(V ) is dually equivalent to the category with objects all pairs (A, a) consisting of an A0 object A

and a B-morphism a : A → A, and a morphism between such pairs (A, a) and (A′, a′) is an A0-morphism

A → A′ commuting in the obvious sense with a and a′.

Theorem 4.1. The category CoAlg(V ) of coalgebras and homomorphisms for the Vietoris functor

V : PosComp → PosComp is dually equivalent to a ℵ1-ary quasivariety.

Proof. Just consider the algebraic theory of A0 augmented by one unary operation symbol and by those

equations which express that the corresponding operation is a B-morphism. �

In particular, CoAlg(V ) is complete and the forgetful functor CoAlg(V ) → PosComp preserves ℵ1-

codirected limits. In fact, slightly more is shown in [HNN16]:

Proposition 4.2. The forgetful functor CoAlg(V ) → PosComp preserves codirected limits.

We finish this section by pointing out some further consequences of our approach and consider certain

full subcategories of CoAlg(V ). For instance, still thinking of a coalgebra structure α : X → V X as an

endomorphism α : X −→◦ X in PosComp
V

, we say that α is reflexive whenever 1X ≤ α in PosComp
V

, and

α is called transitive whenever α ◦α ≤ α in PosComp
V

. Passing now to the corresponding B-morphism

a : A → A, these inequalities can be expressed as equations in A, and we conclude:
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Proposition 4.3. The full subcategory of CoAlg(V ) defined by all reflexive (transitive, reflexive and tran-

sitive) coalgebras is dually equivalent to an ℵ1-ary quasivariety. Moreover, this subcategory is coreflective

in CoAlg(V ) and closed under ℵ1-ary limits.

Proof. This follows from the discussion above and from [AR94, Theorem 1.66]. �

Another way of specifying full subcategories of CoAlg(V ) uses coequations (see [Adá05, Definition 4.18]).

More generally, for a class M of monomorphisms in CoAlg(V ), a coalgebra X for V is called coorthog-

onal whenever, for all m : A → B in M and all homomorphisms f : X → B there exists a (necessarily

unique) homomorphism g : X → A with m · g = f (see [AR94, Definition 1.32] for the dual notion). We

write M⊤ for the full subcategory of CoAlg(V ) defined by those coalgebras which are coorthogonal to

M. From the dual of [AR94, Theorem 1.39] we obtain:

Proposition 4.4. For every set M of monomorphisms in CoAlg(V ), the inclusion functor M⊤ →֒

CoAlg(V ) has a right adjoint. Moreover, if λ denotes a regular cardinal larger or equal to ℵ1 so that, for

every arrow m ∈ M, the domain and codomain of m is λ-copresentable, then M⊤ →֒ CoAlg(V ) is closed

under λ-codirected limits.

Corollary 4.5. For every set of coequations in CoAlg(V ), the full subcategory of CoAlg(V ) defined by

these coequations is coreflective.

5. ℵ1-copresentable spaces

It is shown in [GU71] that the the ℵ1-copresentable objects in CompHaus are precisely the metrisable

compact Hausdorff spaces. We end this paper with a characterisation of the ℵ1-copresentable objects in

PosComp which resembles the one for compact Hausdorff spaces; to do so, we consider generalised metric

spaces in the sense of Lawvere [Law73].

More precisely, we think of metric spaces as categories enriched in the quantale [0, 1], ordered by the

“greater or equal” relation >, with tensor product ⊕ given by truncated addition:

u⊕ v = min(1, u+ v),

for all u, v ∈ [0, 1]. We note that the right adjoint hom(u,−) of u⊕ − : [0, 1] → [0, 1] is defined by

hom(u, v) = v ⊖ u = max(0, v − u),

for all u, v ∈ [0, 1].

Remark 5.1. Via the isomorhism [0, 1] → [0, 1], u 7→ 1 − u, the quantale described above is isomorphic

to the quantale [0, 1] equipped with the Łukasiewicz tensor used in Section 3. However, we decided to

switch so that categories enriched in [0, 1] look more like metric spaces.

Definition 5.2. A metric space is a pair (X, a) consisting of a set X and a map a : X × X → [0, 1]

satisfying

0 > a(x, x) and a(x, y) ⊕ a(y, z) > a(x, z),

for all x, y, z ∈ X . A map f : X → Y between metric spaces (X, a), (Y, b) is called non-expansive

whenever

a(x, x′) > b(f(x), f(x′)),

for all x, x′ ∈ X . Metric spaces and non-expansive maps form the category Met.

Example 5.3. The unit interval [0, 1] is a metric space with metric hom(u, v) = v ⊖ u.

Our definition of metric space is not the classical one. Firstly, we consider only metrics bounded by

1; however, since we are interested in the induced topology and the induced order, “large” distances are
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irrelevant. Secondly, we allow distance zero for different points, which, besides topology, also allows us

to treat order theory. Every metric a on a set X defines the order relation

x ≤ y whenever 0 > a(x, y),

for all x, y ∈ X ; this construction defines a functor

O : Met −→ Ord

commuting with the canonical forgetful functors to Set.

Lemma 5.4. The functor O : Met → Ord preserves limits and initial cones.

A metric space is called separated whenever the underlying order is anti-symmetric. Element-wise, a

metric space (X, a) is separated whenever

(0 > a(x, y) & 0 > a(y, z)) =⇒ x = y,

for all x, y ∈ X .

Thirdly, we are not insisting on symmetry. However, every metric space (X, a) can be symmetrised by

as(x, y) = max(a(x, y), a(y, x)).

For every metric space (X, a), we consider the topology induced by the symmetrisation as of a. This

construction defines the faithful functor

T : Met −→ Top.

We note that (X, a) is separated if and only if the underlying topology is Hausdorff. Furthermore, we

recall:

Lemma 5.5. The functor T : Met → Top preserves finite limits. In particular, T sends subspace embed-

dings to subspace embeddings.

Lemma 5.6. Let (X, a) be a separated compact metric space. Then X equipped with the order and the

topology induced by the metric a becomes a partially ordered compact space.

Proof. See [Nac65, Chapter II]. �

Example 5.7. The metric space [0, 1] of Example 5.3 induces the partially ordered compact Hausdorff

space [0, 1] with the usual Euclidean topology and the “greater or equal” relation >.

Definition 5.8. A partially ordered compact space X is called metrisable whenever there is a metric

on X which induces the order and the topology of X . We denote the full subcategory of PosComp defined

by all metrisable spaces by PosCompmet.

Proposition 5.9. PosCompmet is closed under countable limits in PosComp.

Proof. By Lemma 5.5, PosCompmetis closed under finite limits in PosComp. The argument for countable

products is the same as in the classical case: for a family (Xn)n∈N of metrisable partially ordered compact

Hausdorff spaces, with the metric an on Xn (n ∈ N), the structure of the product space X =
∏

n∈NXn

is induced by the metric a defined by

a((xn)n∈N, (yn)n∈N) =
∞

∑

n=0

1

2n+1
an(xn, yn),

for (xn)n∈N, (yn)n∈N ∈ X . �

For classical metric spaces it is known that the compact spaces are subspaces of countable powers of

the unit interval; this fact carries over without any trouble to our case. Before we present the argument,

let us recall that, for every metric space (X, a), the cone (a(x,−) : X → [0, 1])x∈X is initial with respect

to the forgetful functor Met → Set; this is a consequence of the Yoneda Lemma for [0, 1]⊕-categories (see

[Law73]). Moreover, (X, a) is separated if and only if this cone is point-separating.
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Lemma 5.10. Let (X, a) be a compact metric space. Then there exists a countable subset S ⊆ X so that

the cone

(a(z,−) : X → [0, 1])z∈S

is initial with respect to the forgetful functor Met → Set.

Proof. Since X is compact, for every natural number n ≥ 1, there is a finite set Sn so that the open balls

{y ∈ X | a(x, y) <
1

n
and a(y, x) <

1

n
}

with x ∈ Sn cover X . Let S =
⋃

n≥1 Sn. We have to show that, for all x, y ∈ X ,
∨

z∈S

a(z, y) ⊖ a(z, x) > a(x, y).

To see that, let ε = 1
n

, for some n ≥ 1. By construction, there is some z ∈ S so that a(x, z) < ε and

a(z, x) < ε. Hence,

(a(z, y) ⊖ a(z, x)) + 2ε > a(z, y) + a(x, z) > a(x, y);

and the assertion follows. �

Proposition 5.11. Every partially ordered compact space is a ℵ1-cofiltered limit in PosComp of metrisable

spaces.

Proof. For a separated metric space X = (X, a), the initial cone (a(x,−) : X → [0, 1])x∈S of Lemma 5.10

is automatically point-separating, therefore there is an embedding X →֒ [0, 1]N in Met. This proofs that

the full subcategory PosCompmet of PosComp is small. Let X be a partially ordered compact space. By

Proposition 5.9, the canonical diagram

D : X ↓ PosCompmet −→ PosComp

is ℵ1-cofiltered. Moreover, the canonical cone

(5.i) (f : X → Y )f∈(X↓PosComp
met

)

is initial since (5.i) includes the cone (f : X → [0, 1])f . Finally, to see that (5.i) is a limit cone, we use

Theorem 2.6: for every f : X → Y with Y metrisable, im f →֒ Y actually belongs to PosCompmet, which

proves

im f =
⋂

k : g→f∈(X↓PosComp
met

)

imD(k). �

Corollary 5.12. Every ℵ1-copresentable object in PosComp is metrisable.

Proof. Also here the argument is the same as for CompHaus. Let X be a ℵ1-copresentable object in

PosComp. By Proposition 5.11, we can present X as a limit (pi : X → Xi)i∈I of a ℵ1-codirected diagram

D : I → PosComp where all D(i) are metrisable. Since X is ℵ1-copresentable, the identity 1X : X → X

factorises as

X
pi

−−→ Xi
h

−−→ X,

for some i ∈ I. Hence, being a subspace of a metrisable space, X is metrisable. �

To prove that every metrisable partially ordered compact space X is ℵ1-copresentable, we will show

that every closed subspace A →֒ [0, 1]I with I countable is an equaliser of a pair of arrows

[0, 1]I //// [0, 1]J

with also J being countable. For a symmetric metric on X , one can simply consider

[0, 1]I
0

//
a(A,−)

// [0, 1],

but in our non-symmetric setting this argument does not work. We start with an auxiliary result which

follows from Theorem 2.4. Our argument here is a slight modification of the one used in the characteri-

sation of regular monomorphisms in PosComp obtained in [HN16].
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Lemma 5.13. Let X be a partially ordered compact space, A,B ⊆ X closed subsets so that A ∩ B = ∅

and B = ↓B ∩ ↑B. Then there is a family (fu : X → [0, 1])u∈[0,1] of monotone continuous maps which all

coincide on A and, moreover, satisfy fu(y) = u, for all u ∈ [0, 1] and y ∈ B.

Proof. Put A0 = A ∩ ↑B and A1 = A ∩ ↓B. Then A0 and A1 are closed subsets of X and

A0 ∩A1 = A ∩ ↑B ∩ ↓B = A ∩B = ∅.

Moreover, for every x0 ∈ A0 and x1 ∈ A1, x0 � x1. In fact, if x0 ≥ y0 ∈ B and x1 ≤ y1 ∈ B, then

x0 ≤ x1 implies

y0 ≤ x0 ≤ x1 ≤ y1,

hence x0 ∈ B which contradicts A ∩B = ∅. We define now the monotone continuous map

g : A0 ∪A1 −→ [0, 1]

x 7−→







0 if x ∈ A0,

1 if x ∈ A1.

By [Nac65, Theorem 6], g extends to a monotone continuous map g : A → [0, 1]. Let now u ∈ [0, 1]. We

define

fu : A ∪B −→ [0, 1]

x 7−→







g(x) if x ∈ A,

u if x ∈ B.

Using again [Nac65, Theorem 6], fu extends to a monotone continuous map fu : X → [0, 1]. �

Corollary 5.14. Let n ∈ N and A ⊆ [0, 1]n be a closed subset. Then there exist countable set J and

monotone continuous maps

[0, 1]n
k

//
h // [0, 1]J

so that A →֒ [0, 1]n is the equaliser of h and k. In particular, A is ℵ1-copresentable.

Proof. We denote by d the usual Euclidean metric on [0, 1]n. For every x ∈ [0, 1]n with x /∈ A, there is

some ε > 0 so that the closed ball

B(x, ε) = {y ∈ [0, 1]n | d(x, y) 6 ε}

does not intersect A. Furthermore, B = ↑B ∩ ↓B. Put

J = {(k, x1, . . . xn) | k ∈ N, k ≥ 1 and x = (x1, . . . xn) ∈ ([0, 1] ∩ Q)n and B(x,
1

k
) ∩A = ∅};

clearly, J is countable. For every j = (k, x1, . . . xn) ∈ J , we consider the monotone continuous maps

f0, f1 : [0, 1]n → [0, 1] obtained in Lemma 5.13 and put hj = f0 and kj = f1. Then A →֒ [0, 1]n is the

equaliser of

[0, 1]n
k=〈kj 〉

//
h=〈hj〉

// [0, 1]J �

Theorem 5.15. Every metrisable partially ordered compact space is ℵ1-copresentable in PosComp.

Proof. Let X be a metrisable partially ordered compact space. By Lemma 5.10, there is an embedding

m : X →֒ [0, 1]N in PosComp. Moreover, with

J = {F ⊆ N | F is finite},

(πF : [0, 1]N → [0, 1]F )F ∈J is a limit cone of the codirected diagram

Jop −→ PosComp
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sending F to [0, 1]F and G ⊇ F to the canonical projection π : [0, 1]G → [0, 1]F . For every F ∈ J , we

consider the (Epi,Regular mono)-factorisation

X
pF

−−→ XF
mF−−−→ [0, 1]F

of πF ·m : X → [0, 1]F . Then, using again Bourbaki’s criterion (see Theorem 2.6),

(pF : X → AF )F ∈J

is a limit cone of the codirect diagram

Jop −→ PosComp

sending F to XF and G ⊇ F to the diagonal of the factorisation. By Corollary 5.14, each XF is

ℵ1-copresentable, hence also X is ℵ1-copresentable since X is a countable limit of ℵ1-copresentable

objects. �
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