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Abstract: This study presents the functional model that provides net-load forecasts for each low-voltage (LV) node
(including PV generation and self-consumption), developed for the UPGRID (real proven solutions to enable active
demand and distributed generation flexible integration, through a fully controllable low-voltage and medium-voltage
distribution grid) framework project. Several tests scenarios were simulated and the results regarding forecast accuracy
and computational performance are given. Results demonstrate the applicability of the distribution in memory solution in
a practical operational scenario, offering a highly scalable forecasting system for LV networks. Based on forecasts and
available real-time information, an architecture for preventive control of LV grids is built upon chronological analysis
capabilities of DPlan. An illustration on how such capabilities are used in the context of the foreseen UPGRID
preventive control framework is provided.
1 Introduction

The installation of smart grid equipment, such as smart meters (SM)
and data concentrators, contributes to increase the monitoring and
control capabilities of low-voltage (LV) grids. However, advanced
software functions are needed to fully explore the information
collected by the different devices.

A new paradigm is the preventive control of distribution grids,
where a key input is information about net-load forecasts in each
node of the distribution grid, which is used to run power flows to
detect potential technical problems in the pre-defined time horizon
(e.g. 24 h ahead). When technical problems are detected, a set of
control rules and/or automatic optimisation algorithms can be
applied to derive preventive control actions that mitigate the
foreseen technical problems. This approach can be complementary
to the real-time control and avoid expensive control actions such
as load or renewable energy curtailment.

The UPGRID project developed this framework to be tested in the
Portuguese demo [1].
2 Net-load forecasting tool

The net-load and generation forecasting tool, architecture depicted in
Fig. 1, generates forecasts for each LV node [including photovoltaic
(PV) generation and self-consumption] and secondary MV/LV
substation for the next hours and days.

The main features of this component are as follows: (i) scalability
– parallel computing techniques combined with appropriate data
structures and statistical algorithms; (ii) information about forecast
uncertainty – probabilistic forecasts for the load that particularly
relevant for the LV level.

The core modules of this component are as follows:

† KDE forecast model – statistical method that combines
conditional kernel density estimation with locally learning methods
to produces point and probabilistic forecasts (represented by
probability density functions and/or a set of quantiles) for a time
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horizon constrained by the time horizon of the weather prediction
data. More details can be found in [2].
† In-memory and distributed computing tasks – combination of
Gearman (gearman.org) to distribute tasks to multiple processes/
computers and Memcached (memcached.org) to store time series
data in cache for quick access by KDE, without going through
layers of parsing or disk I/O.
The statistical forecast method is non-parametric and essentially
operates considering the historical data for analogue past
situations, combining and weighting them based on the new
measurements [2, 3]. When establishing a similarity criterion (a
distance function), only a percentage (pr) of the total historical
data are used for the density estimation.

A weighting function with parameter α is applied, regulating how
local the model is. These parameters – pr and α – are included and
benefit the forecasting accuracy. A dynamic simplex algorithm [4] was
modified to fit these parameters, taking into consideration the online
architecture of the load forecasting tool – it ensures the continuous
tracking of the optimum (which might be changing with time).

The parameters are estimated separately for each of the LV clients,
making it suitable for distributed calling of the algorithm. Once new
measurements arrive, the coefficients are updated, with several
parsimonious function evaluations. This is because the dynamic
simplex algorithm takes a greedy path to the optimal solution. At
the end, the coefficients are stored, ready to be called once the
forecasting schedule is triggered.

Once it is triggered, the application sends the workload to a
Gearman-Job-Server node, responsible for distributing the tasks to
available registered workers that will perform the task
independently of each other. In this way, it is possible to scale the
problem as it grows to multiple machines, adding more workers to
the process making it a good solution for big volumes of LV
clients and data. Besides being able to allow work to be done in
parallel, Gearman is also a framework designed for load balancing
and peer-to-peer communication, essential for stability and
availability of the system.
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Fig. 1 Detailed architecture of the net-load and generation forecasting
module

Fig. 2 CRPS distribution results for all LV clients for each time horizon
A simple example of the communication between client, Gearman
worker and Gearman server can be summed to the following:

† client to server: ask server to perform a task. The server
acknowledges the request and assigns an identification to the request;
† server to all workers: tell workers registered for the task that there
is work to be performed;
† worker to server: I will perform the task you just told us about;
† server to worker: ok, go ahead, here is the information about the
task;
† worker to server: here is the result of the task performed;
† server to client: here’s the result of the task you asked me to get
someone to do for you.

3 Case study description

This section describes the SM dataset used in this validation phase,
as well as the validation environment of the component. The main
goal of this validation phase was to assess the computational
performance of the component and the forecasting accuracy,
considering the key performance indicators (KPI).

The dataset used to evaluate the component’s performance has a
historical data load consumption of 255 LV clients, collected by the
smart metering infrastructure from the Portuguese demonstrator. The
load measurements are from 2016 with 15 min resolution, covering
the months May, June, August and September. After aggregation of
the data into hourly measurements, the training set is used to feed
the statistical model, while the test set is used to evaluate the
model’s performance. We have divided May, June and August for
training and September for testing.

The validation occurs offline and includes forecast accuracy and
data management reliability indicators. The metrics – mean
absolute scaled error (MASE) [5] and continuous ranked
probability score (CRPS) [6] – are used as reference to define
performance indicators related to forecasting in a smart grid context.

To illustrate the complexity of processing multiple LV forecasts
and the advantage of using a distributed system to sustain the
computational effort, we also simulate an environment with 1020
unique clients, each one containing the power consumption
information from 1 May to 31 August 2016 in an hourly interval.
This information is persistently stored in Cassandra database and
cached in memory through Memcached for quicker access by the
client application.

The validation process respects the following pattern:

(i) i A query to Cassandra database selects all the available LV clients.
(ii) ii For each LV client, a request is issued to Gearman-Job-Server to
execute ‘KDE coefficients update’ function for that specific client.
Gearman queues each task until receives an instruction to run all the tasks.
CI
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(iii) iii Once instructed to run the tasks, Gearman issues a command
to all the workers registered over the cluster to perform the work. The
application enters in an asynchronous execution where processes
operates independently from other processes:
RED
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Att
(a) the workers assigned to this task will update the KDE
coefficients and generate a new forecast for each requested
client. The results are stored in Cassandra database and in the
file system;
(b) program finishes execution. The execution time is saved for
benchmark and systems evaluation.
4 Simulation results

In this section, the results obtained in the simulations will be
resumed and commented, highlighting the overall performance and
the obtained KPI results.

4.1 Forecasting skill evaluation

The MASE results in Fig. 2 (top plot) provide a direct comparison
between the deterministic solution versus the naive approach, where
the overall errors (MAE) are compared. Values below one (red line)
indicate better performance of the forecast model. In general, the
adopted solution outperforms the naive approach, more clear for the
time of the day where exists more consumption variability.

In Fig. 2 (bottom plot), the probabilistic version of the algorithm is
evaluated based on the CRPS. To compare the CRPS values across all
LV series, the consumption values were standardised to lie between 0
and 1. The probabilistic evaluation shows that the quantile prediction
has an error of ∼4%. As expected, the CRPS is higher during the
periods of the day where large consumption values occur.

4.2 Computational performance evaluation

To illustrate the relation between time complexity and the number of LV
forecasts processed, we simulate different scenarios aimed to reproduce
a production/operational environment, where the algorithm updates its
coefficients and a forecast is generated for the next 24 h. This
procedure also evaluates the scalability of the proposed solution.

The scenarios are defined as synchronous or asynchronous
executions, varying in the number of workers (parallel
processes) from 2, 4, 8, 16 or 32 workers. The simulation
results given in Fig. 3 show a clear difference between
synchronous (1 worker) and asynchronous execution times,
where the multiple workers executions significantly exceed in
performance the single process.

By examining the results (best to worse), we realise that for each
255 batch of clients the application takes near 0.7 min to compute the
results in the best scenario using 32 workers from 2 computers. In the
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Fig. 3 Computational performance results
worst scenario using only one worker, the synchronous execution
takes up to 14 min to process the same task, revealing a linear
progression between the time to finish the execution and the
number of LV clients to forecast. The simulation also demonstrates
that better results can be achieved by increasing the number of
available workers to execute the same task, which offers
scalability for the future in case of higher number of LV clients to
forecast. This result shows that the usage of the multiple thread
and distributed architecture, improves the time required to
complete the same tasks by 55–95%, compared to the traditional
single thread method.

It also reveals a linear progression between the time to finish the
execution and the number of LV clients to forecast. The
simulation even demonstrates that better results can be achieved by
increasing the number of available workers to execute the same
task, which offers scalability for the future in case of higher
number of LV clients to forecast.

From the simulation results in Fig. 3, it is also possible to model
the relationship between the number of LV clients and the number of
workers required to execute a higher number of tasks. For that
purpose, the execution time was modelled as a 1/(α·x) function,
where α is the parameter to be estimated and x the number of
workers.

Fig. 4 depicts the scalability projection results with each line
representing the estimation for a set of LV clients, making it
possible to relate the estimated complexity between time and
computational effort at larger scales. Considering 250 000 clients
(green line) from our function, we can speculate that it would be
necessary at least 150 workers to keep the execution time bellow
100 min, meaning that for a normal workstation it would represent
somewhere between 9 and 10 computers (considering 16 workers
for each machine) required to reach the number of 150 workers.
The number could easily drop to a lower cluster depending on the
machine characteristics.
Fig. 4 Horizontal scalability projections
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5 Predictive power flow

Preventive control of LV distribution grids requires net-load forecast
information on each node a few hours ahead. With such information,
chronological power-flow analysis can be used to provide a new
level of awareness to the LV dispatch operators, while allowing a
proactive management of potential grid problems. See Fig. 4
where load-forecast results are used to anticipate under-voltage and
cable congestion problems.

To build such awareness, net-load forecast results are sent on a
periodical basis to a DPlan server, in which a virtual client
automatically analyses future impacts of such loads for an updated
grid topology. When such impacts are expected to be severe,
DPlan notifies the dispatch operators by triggering pre-defined
alarms. After being notified, operators use DPlan to support grid
mitigation actions such as reconfiguration, transformer tap
changes, demand response or load/generation curtailment actions
[7]. The (optimum) reconfiguration action found by DPlan to solve
the problems identified in Fig. 5 eliminates the congestion and
leads to the changes in the voltage profile illustrated in Fig. 6. The
switching operations are illustrated in Fig. 7.
Fig. 5 Predictive power flow results: red coloured lines identify overloaded
feeder sections (over 110% of their rated capacity) and red coloured circles
identify bus voltages below acceptable levels (below 92% of the nominal
value)

Fig. 6 Voltage profile at the grid worst-voltage customer

(a) Before optimal predictive control reconfiguration, (b) After optimal predictive
control reconfiguration
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Fig. 7 Predictive power flow results after optimum reconfiguration. The
dashed-line circles on the RHS of the picture identify the switching sites:
blue circle for the switching OFF and the green circle for the switching
ON operation

Fig. 8 Comparison between planned loading and near real time loading of
the load receiving transformer after reconfiguration action
Control actions such as reconfiguration should be planned ahead
but need to be confirmed for necessity and sufficiency before
being undertaken in the field. Such confirmation requires near
real-time information on grid topology and loading state.
6 Near real-time support

Near real-time analysis requires access to SMs up-to-date
information. Considering possible constraints in obtaining updated
SMs data, DPlan estimates SM net-loads based on near real-time
transformer measurements gathered at data concentrators. Load
estimation tools take data initially assigned to SMs (forecast,
historical or typical profiles) and adjust such load data iteratively
so that the results of the power-flow match the near real-time
measurements at the sites of data concentrators (typically,
transformer sites).

Once adjusted, SM loads can be used to run power flow and
validate the planned ahead control actions against the newly
updated loading situation. If such actions become unnecessary
under the new conditions, the operator discards the actions. If
they keep being necessary but become insufficient, then the
operator uses DPlan to simulate the network under the new
conditions to find new optimal actions to mitigate the new
problems identified [8].

For illustration of one insufficient control action, take the
reconfiguration example used before. The planned ahead switching
action, temporarily transfers some load from one secondary
substation to another (the receiving-load substation is identified by
the green circle in Fig. 6). Such load transfer is seen as adequate
beforehand as the load-receiving transformer is expected to operate
at 90% of its rated capacity after the switching action (Fig. 8a).
However, when DPlan estimates the SM loads based on the
secondary substations near real-time metering data and simulate
the planned switching action, then the load of the receiving-load
substation rises (2%) above the transformer rated capacity
CI
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(Fig. 8b). That requires (i) further analysis to decide if the
overload is acceptable or not and, if not, (ii) further utilisation of
DPlan to support alternative grid mitigation actions to solve the
problem in real-time.
7 Conclusions

This paper described a net-load forecasting algorithm for LV grids,
whose main goal was to ensure high scalability. The proposed
solution is simple and combines a NoSQL database with a
job-server node responsible for distributing the tasks. The
developed statistical model, based on analogues search and kernel
density estimation, outperforms the naive approach (i.e. net-load
profile equal to the previous day). The usage of the multiple thread
and distributed architecture improves the time required to complete
the same tasks by at least 80% compared to the traditional single
thread method.

With forecasted information, chronological power-flow analysis
can be used to provide a new level of awareness to the LV
dispatch operators (generate alarms), while allowing a proactive
management of potential grid problems, such as reconfiguration,
transformer tap changes, demand response or load/generation
curtailment actions. In real-time, SM measurements can be used to
run power flow and validate the planned control actions against
the newly updated loading situation.
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