
An Experimental Evaluation of Tools for Grading
Concurrent Programming Exercises⋆

Manuel Barros[0009−0006−7855−5235], Maria Ramos[0009−0007−4256−5295],
Alexandre Gomes[0009−0005−6131−7647], Alcino Cunha[0000−0002−2714−8027], José

Pereira[0000−0002−3341−9217], and Paulo Sérgio Almeida[0000−0001−7000−0485]

INESC TEC & U. Minho
{manuel.q.barros,maria.j.ramos}@inesctec.pt, pg46950@alunos.uminho.pt,

{alcino,jop,psa}@di.uminho.pt

Abstract. Automatic grading based on unit tests is a key feature of
massive open online courses (MOOC) on programming, as it allows in-
stant feedback to students and enables courses to scale up. This technique
works well for sequential programs, by checking outputs against a sample
of inputs, but unfortunately it is not adequate for detecting races and
deadlocks, which precludes its use for concurrent programming, a key
subject in parallel and distributed computing courses. In this paper we
provide a hands-on evaluation of verification and testing tools for concur-
rent programs, collecting a precise set of requirements, and describing to
what extent they can or can not be used for this purpose. Our conclusion
is that automatic grading of concurrent programming exercises remains
an open challenge.

Keywords: Concurrent programming · Testing · Verification · e-Learning.

1 Introduction

Learning concurrent programming is hard. For students coming from a sequential
programming background, writing programs with multiple threads that share
data is confusing and difficult to get right. Concurrent programming gives rise
to new classes of bugs, such as deadlocks [24] and race conditions [34].

When learning to program, students are often presented with a system such
as Codeboard [1], with a variety of coding exercises, accompanied by unit tests.
Students can submit solutions and find out how they perform based on the
number of tests passed. Unit testing proves to be a valuable technique for auto-
grading simple sequential programs. It lets students experiment and get instant
feedback, exposing problems and guiding them to correct solutions.

Unlike for sequential code, identifying incorrect concurrent code is not trivial.
Even for sequential programs testing is non-exhaustive, but it is relatively easy to
define a set of unit tests that almost always detects incorrect solutions. However,
⋆ This work is financed by National Funds through the Portuguese funding agency,

FCT - Fundação para a Ciência e a Tecnologia, within project LA/P/0063/2020.



2 M. Barros et al.

unit tests are much less reliable when checking concurrent programs, where errors
are often subtle and may manifest into visible bugs only after many program
executions. This non-determinism may lead students to falsely assume that their
programs are correct when tests show no anomalies.

Given the benefits of autograders for learning sequential programming, we
would like to deploy similar learning strategies for concurrent programming. For
that purpose, we would need tools that automatically detect common concur-
rency anomalies, like race conditions and deadlocks, and provide accurate and
helpful feedback. As unit testing is generally inappropriate for concurrent code,
we turn to more sophisticated techniques, such as automatic race detectors.

The main goal of this work is to evaluate existing tools that perform auto-
matic analysis of multi-threaded Java code. Focusing on Java, instead of a more
verification friendly pseudo-code specification language such as Promela [25] or
PlusCal [29], enables a systems approach that considers the interaction of con-
currency with all the complications of the language and platform. For instance,
reference aliasing and exceptions in the Java language can contribute to races
(by exposing supposedly encapsulated state) and deadlocks (by preventing locks
from being released), respectively.

In particular, we want to evaluate the possibility of using these tools in an ed-
ucational context, to automatically grade and give prompt feedback on student
submissions to concurrent programming exercises regarding races and deadlocks.
Although, being race and deadlock free is not the same as being optimal, as
solutions might, for instance, overly restrict concurrency to meet tests. The pos-
sibility that an inadequate solution is accepted by automatic testing also exists
in sequential programming exercises but can be mitigated by judicious problem
statements. The same care should be taken when devising concurrency problems.

The rest of this paper is structured as follows. Section 2 establishes the
scope of this experiment by describing the requirements for automatic grad-
ing. Section 3 introduces a set of typical concurrent programming problems and
corresponding solutions containing various errors. Then, Section 4 introduces
currently available tools that can be repurposed for automatically grading these
solutions. Section 5 presents the results of the experiments and Section 6 uses
them to compare the tools. Finally, Section 7 concludes the paper by summariz-
ing the main lessons learned and proposing future work.

2 Scope

Since we are interested in tools for an educational setting, our requirements are
different than those regarding tools suitable for production settings. Our main
use case is finding concurrency bugs in submissions to proposed exercises. Nor-
mally, students are given a specification in the form of some interface methods
and are asked to write thread-safe Java classes that implement them. Our anal-
ysis targets will be small, self-contained programs, with just a few Java classes.

We are not interested in tools that require thoughtfully annotating or mod-
ifying parts of the code. The analysis of hundreds of submissions needs to be



An Experimental Evaluation of Tools for Grading Conc. Prog. Exercises 3

automatic and require at most a one-time set-up, such as writing a script or
defining some sort of specification. Tools that require the tester to manually
analyze each submission fall outside of our scope, but tools that require simple
annotations can be considered, as long as annotating code can be automated.

We will take into consideration the rates of false-positives/negatives. A false-
negative is a result where a tool does not report a bug when it exists and a
false-positive is when a tool reports a bug that does not exist. When automatic
analyzers are being used to give students feedback on potential concurrency
problems, it is important to have a small rate of false-negatives, so students are
not mislead into thinking that there is nothing wrong with their code, which
could cause them to develop bad programming habits. But when grading stu-
dents assignments, we are mostly concerned with the false-positive rate, as we
cannot afford to falsely classify a program as incorrect when a student grade
depends on it.

For the purpose of this evaluation, we are interested in two types of bugs:
data races and deadlocks. A data race occurs when two threads access the same
data item without using some synchronization mechanism, one access being a
write. A deadlock corresponds to a situation where every member of a set of
threads is waiting for some action to be taken by another thread of the same set.
In most deadlock scenarios, a thread is waiting for a signal to be sent or a lock to
be released. In this situation, every thread is prevented from making progress. It
is important to note that data races and deadlocks are a subset of the possible
concurrency anomalies. There are even subtler concurrency bugs that silently
(with no crash or stall) violate the intended semantics of a program, but we
choose to focus on these since they often occur when first learning concurrent
programming.

3 Dataset

Our dataset for evaluating analysis tools mainly consists of two collections of con-
current programs. The first one contains different implementations of a thread-
safe Bank class, mostly written by students, with operations such as fetching
the balance of an account or transferring money between accounts. The other
one is made up of different implementations of a BoundedBuffer. Each program
was manually revised and labeled based on which bugs (deadlocks and/or data
races) were present. For each of the two datasets we created tests that exercised
the different methods of the supposedly thread-safe classes under workloads of
multiple threads. This was necessary for the evaluation of the dynamic checking
tools. Both collections of programs are available in an online repository.1

Additionally, we use the JBench [23] benchmark to evaluate data race detec-
tion tools. It consists of a collection of programs containing data races, specifi-
cally curated for evaluating data race detection tools. Although JBench will be
part of our dataset, we will mostly use the Bank and BoundedBuffer for qualita-
tively evaluating the tools we explore, since these examples have been carefully
1 https://github.com/mj-ramos/FORTE2023

https://github.com/mj-ramos/FORTE2023


4 M. Barros et al.

class Bank {
private static class Account {

private int balance;
private ReentrantLock account_lock;

int balance ();
boolean deposit(int value);
boolean withdraw(int value);

}

private Map <Integer , Account > accounts;
private int nextId;
private ReentrantLock bank_lock;

int createAccount(int balance);
int closeAccount(int id);
int balance(int id);
boolean deposit(int id, int value);
boolean withdraw(int id, int value);
boolean transfer(int from , int to , int value);
int totalBalance(int[] ids);

}

Fig. 1. Bank class variables and methods.

revised and better resemble the kind of concurrent programming exercises pre-
sented to students. Also, it is easier to manually evaluate each tool by running
it on a collection of small programs sharing the same interface and whose se-
mantics we understand clearly. JBench will mostly serve as an extra benchmark
to assess how each tool performs when ran with no special configuration against
an existing set of programs known to contain data races.

3.1 The Bank dataset

Part of our dataset is composed of submissions to an exercise that asked students
to implement a Bank class that manages a set of client accounts, as shown in
Figure 1. This problem statement is aimed at applying multiple locks and the
two-phase locking protocol when traversing and modifying collections, a key
learning outcome for concurrent programming. It is useful also to demonstrate
the usefulness and applicability of different locking primitives.

A correct implementation should be thread-safe: it should work correctly
when used by multiple threads concurrently. A correct implementation should
allow concurrency, but the result of running multiple concurrent operations must
correspond to the outcome of some sequential execution. This implies, for ex-
ample, that a thread cannot observe the state of the bank in the middle of a
transfer.



An Experimental Evaluation of Tools for Grading Conc. Prog. Exercises 5

Besides the simplistic solution that uses a single lock and overly restricts con-
currency, the assignment then suggests two different implementations. The first
one uses ReentrantLock instances for protecting accesses to each account and
accesses to the collection of accounts. Alternatively, ReentrantReadWriteLock
can be used to synchronize accesses to the collection of accounts (the main
point of contention), allowing more concurrency. Writing such a thread-safe
class, that maximizes concurrency by applying two-phase locking and using
ReentrantReadWriteLock, is not trivial. There is a lot of room for introduc-
ing concurrency bugs.

In addition to bugs caused by unprotected accesses to the collection of ac-
counts, or to the accounts themselves, there is a particularly subtle class of prob-
lems that can lead to deadlocks. It corresponds to the scenario where two threads
attempt to acquire the same two locks but in reverse orders. This may cause the
two threads to block indefinitely waiting for each other’s lock to be released. This
type of bug can arise in implementations that use ReentrantReadWriteLock to
protect accesses to the collection, particularly in methods involving multiple
accounts (transfer or totalBalance).

In total, the Bank dataset is composed of seventeen different implementations.
Eight of them contain data races and five contain deadlocks. Ten of them are ac-
tual student submissions. The remaining seven variants were inspired by typical
student errors collected over many years of teaching concurrent programming.

3.2 The BoundedBuffer dataset

The bounded buffer is a classical problem in concurrent programming and a
construct that can be used as a building block for inter-thread synchronization
and communication. It is thus widely available in various forms, such as operating
system pipes and in concurrent programming libraries. It is also a good example
of how synchronization primitives such as semaphores or monitors can be used.

The BoundedBuffer dataset was developed specifically for the purpose of
this study based on well-known pitfalls and the experience of authors teaching
concurrent programming. The first step was writing a correct implementation,
as shown in Figure 2, using a single ReentrantLock and two Conditions for
concurrency control.

The two main methods are pop and push. The first one is responsible for
removing an element from the array. The lock is acquired and an element is
removed if the array is not empty, signaling a producer that is waiting for space
to be freed and freeing the lock. If the array is empty, then the consumer will
free the lock and wait for a producer to add an element to the array. As soon
as the consumer is signaled by a producer, it acquires the lock, checking again
if the array is empty and repeating the process. The push method works in the
same way, but for the addition of an item instead.

The second step was identifying possible ways in which bugs could arise. For
example, data races can occur when the array is accessed outside the scope of
a lock. There are also ways in which deadlocks can arise, such as when using
a single Condition and signal, or signaling only if the buffer is empty or full.



6 M. Barros et al.

class BoundedBuffer <T> {
private final int max;
private List <T> queue = new ArrayList <>();
private Lock lock = new ReentrantLock ();
private Condition notFull = lock.newCondition ();
private Condition notEmpty = lock.newCondition ();

public BoundedBuffer(int size) { this.max = size; }

public T pop() throws InterruptedException {
try {

lock.lock();
while (queue.isEmpty ()) notEmpty.await();
notFull.signal ();
return queue.remove (0);

} finally {
lock.unlock ();

}
}

public void push(T value) throws InterruptedException {
try {

lock.lock();
while (queue.size() >=max) notFull.await();
notEmpty.signal ();
queue.add(value);

} finally {
lock.unlock ();

}
}

}

Fig. 2. Correct implementation of the Bounded Buffer class.

Not retesting predicates (i.e., using if instead of while) can lead to excep-
tions, either due to spurious wake-ups (which may or may not happen), or the
usage of signalAll. Table 1 shows different ways in which a bounded buffer
implementation can be wrong.

The third step was to create multiple permutations of the identified possible
mistakes, with eleven classes being created using this method. Two other correct
classes were created by changing the way in which the condition in the push and
pop methods is checked and the way the threads are signaled. Together with the
original class, we ended up with a total of fourteen classes in our dataset.



An Experimental Evaluation of Tools for Grading Conc. Prog. Exercises 7

Table 1. Concurrency bugs in a Bounded Buffer implementation.

Method Buggy code Outcome

pop remove after lock release data race, deadlock
pop remove before lock acquisition data race
push insert after lock release data race, deadlock
push insert before lock acquisition data race

pop, push only one Condition and signal deadlock
pop, push signal only if empty/full deadlock
pop, push test with if (instead of while) exception
pop, push test with if and signalAll exception

3.3 JBench

JBench is a collection of multi-threaded programs specifically targeted at bench-
marking data race detectors. It is composed of several small programs and some
real-world applications, each with a number of known data races. Every program
in this repository has been manually verified by its creators, and every data race
has been properly documented.

The types of programs contained in JBench vary in size and nature. It con-
tains 6 real-world examples, consisting of actual applications, and 42 small,
academic programs. Since our targets are small programs with few classes, we
excluded the real-world programs from our dataset. Among the remaining pro-
grams, there are some whose format better resembles the kind of programs stu-
dents are asked to develop (thread-safe implementations of some interface) and
others that mainly consist of a main method that launches several threads that
exercise some sequence of statements that possibly leads to data races.

4 Tools

Our method for finding tools for automatic analysis of concurrent programs
mainly consisted in scanning through scientific papers related to this topic. As a
starting point, we analyzed a survey of tools [32], to find potential candidates for
testing. Additionally, most papers we analysed were found either by searching
through Google Scholar, using terms like "deadlock detection" and "data race
detection", or by following references in relevant works.

Our experience shows that, despite the large amount of published work on
automatic analysis of concurrent programs, there are not many publicly avail-
able tools with active support that can easily be downloaded and ran on current
Java code. Many articles describe tools or algorithms for detecting concurrency
anomalies but do not present a publicly available artifact [30,15,18,39,20,22,38,42,31,17,37].
In other cases, where a link for the tool was provided, the tool was no longer avail-
able [3,11,35,12,40,27,19]. Some tools were developed for now deprecated Java
versions [28,33,21] and others do not work with the package java.util.concurrent [8,5].



8 M. Barros et al.

src/RacyDict.java :20: warning: Thread Safety Violation
Read/Write race. Non -private method ‘RacyDict.get (...)‘

reads without synchronization from container ‘this.dict
‘ via call to ‘Map.get (...) ‘. Potentially races with
write in method ‘RacyDict.put (...) ‘.

Reporting because another access to the same memory occurs
on a background thread , although this access may not.

18.
19. public String get(String key) {
20. > return dict.get(key);
21. }
22. }

Found 1 issue
Issue Type(ISSUED_TYPE_ID): #

Thread Safety Violation(THREAD_SAFETY_VIOLATION): 1

Fig. 3. RacerD output report example.

Excluding all the tools that we were unable to run for the reasons mentioned
above resulted in a set of four tools: Infer, Java Pathfinder, RV-Predict, and
MultithreadedTC. We believe these four tools are representative of the current
panorama of mature tools for data race and deadlock detection for Java pro-
grams.

4.1 Infer

Facebook’s Infer [16] is a static analysis tool for Java, C, and Objective-C, able
to find several types of bugs in a program. For this evaluation, we explored its
ability to detect data races and deadlocks.

Infer checks Java programs for the existence of data races using a static race
detector called RacerD [14]. RacerD looks for potential data races between non-
private methods of a Java class when run in parallel with one another. RacerD
starts from non-private methods but will recursively analyze each method call
it encounters. Given a program, RacerD will run this analysis for classes anno-
tated with @ThreadSafe and classes that it can infer are intended to run in a
concurrent context (classes that use locks, for example).

The generated reports provide a detailed description of the data races found,
intended to give a clear understanding of their location, as well as the original
method calls that gave rise to each bug. For example, when ran against a sup-
posedly thread-safe class called RacyDict, containing a get method that reads
from a Map without synchronization, RacerD outputs the report on Figure 3.

RacerD was designed to be used at Facebook. It is suited for large code
bases that evolve rapidly over time. Its design favours speed, scalability, low
friction (meaning it demands little effort from the tester) and effective signaling



An Experimental Evaluation of Tools for Grading Conc. Prog. Exercises 9

(meaning it only reports high-confidence bugs, aiming at reducing false-positives
and always providing meaningful reports). The detection of some data races is
purposely compromised in order to achieve these goals. As such, false-negatives
are possible.

Infer is also able to analyze a program in search of starvation issues. One of
the issues it tries to find is the possibility of deadlocks. To trigger this analysis,
Infer must be run with the –starvation flag. It will report a deadlock if there is
the possibility of two threads attempting to acquire two locks in reverse orders.

4.2 Java Pathfinder

Java Pathfinder (JPF) core [6] is a Java Virtual Machine that executes the system
under test (SUT) checking for properties such as unhandled exceptions, dead-
locks and user-defined assertions. JPF is a model checker, therefore it does not
simply test the SUT. Instead, it explores all potential execution paths, identifying
points in programs which represent execution choices, from which the program
could proceed differently. Execution choices can be due to different scheduling
sequences or random values, and JPF allows the user to control which choices
are explored if some of them are known to be uninteresting.

One of the main problems of model checking is the state space explosion.
In order to mitigate this problem, JPF uses Partial Order Reduction (POR)
to minimize context switches between threads that do not result in interesting
new program states. This is done without prior analysis or annotation of the
program, only by examining which instructions can have inter-thread effects.

To extract information from JPF while exploring all execution paths, JPF
uses event-driven programming, through listeners for handling events. In partic-
ular, to allow data race detection, we need to extend JPF with a listener called
PreciseRaceDetector.

One important aspect of this tool is the fact that it is highly extensible.
Besides allowing users to create their own listeners or choice generators, is is
possible to define publishers, to produce different output formats, or bytecode
factories, to provide alternative execution semantics of bytecode instructions. In
our evaluation, we only extended it with simple listeners.

4.3 RV-Predict

RV-Predict [10] is a dynamic data race detector that is both sound and maximal.
Dynamic means that it executes the program in order to extract an execution
trace to analyze. Sound means that it only reports races that are real (no false-
positives). And maximal means that it finds all the races that can be found by
any other sound race detector analyzing the same execution trace.

RV-Predict works by analyzing a sequentially consistent execution trace and
changing the order of events to create a new set of traces, which are then analyzed
in order to find traces that are consistent and manifest a data race [26,41].



10 M. Barros et al.

4.4 MultithreadedTC

MultithreadedTC [36] is a framework that allows exercising specific interleavings
of threads in Java applications. Threads are scheduled unpredictably by operat-
ing systems, making failures in concurrent applications non-deterministic, since
they might not occur every time the application is run. The idea behind this
framework is to make it possible to have deterministic and reproducible tests
for concurrent code, despite some critical interleavings being hard to exercise
because of the presence of blocking and timing.

To coordinate threads, MultithreadedTC uses a clock that runs in a separate
thread. The clock advances when all threads are blocked and at least one is
waiting for a tick. This simple mechanism makes it possible to delay operations
within a thread without using functions like Thread.sleep(), which make the
test timing dependent. These delays are crucial to define specific interleavings
and allow the detection of deadlocks. When threads are blocked and none of
them are waiting for a tick or a timeout, the test is declared to be in deadlock.

One of the main features of MultithreadedTC is its integration with JUnit [9].
JUnit assertions can be used to verify, for example, the current clock tick.

To fully utilize the potential of MultithreadedTC to verify a concurrent pro-
gram, the source code needs to be changed. The task of specifying concrete
thread interleavings requires threads to be programmed as individual methods,
like void thread1() {...} and extra code to be written that defines the de-
sired interleaving. This is not suitable for our case study, since we want the
testing to be automated. Automation may be possible to achieve, but given the
variety of ways in which students can program, adding lines of code to define
interleavings might not be that simple.

It is possible to use MultithreadedTC without defining interleavings, by sim-
ply running multiple tests systematically and, through JUnit, define assertions
for the desired results. However, this type of testing gives no guarantees about
the results – they are non-deterministic. There is also the possibility of those
assertions failing for reasons other than concurrency anomalies. Since every test
will give different results, we decided to exclude MultithreadedTC from the quan-
titative results presented in the next section.

5 Results

Tables 2 and 3 present the quantitative results obtained by running each tool
against our dataset, excluding MultithreadedTC, as mentioned above. It is im-
portant to note that no tool ever reported a false-positive. Since every program
without concurrency bugs was always correctly labeled as bug-free, results only
highlight the ratio of files reported to have bugs over the actual number of
programs with bugs. Table 4 shows the average run time of each tool for each
dataset.

We used Infer v1.1.0, RV-Predict v2.1.3, MultithreadedTC v1.01 with JUnit
v4.13.2, and the latest version of JPF from GitHub [7]. MultithreadedTC was
tested with jdk-11 and the rest of them with jdk-8.



An Experimental Evaluation of Tools for Grading Conc. Prog. Exercises 11

Table 2. Ratio of programs with data races reported over programs with data races.
Elements marked with * mean that some data races might not have been caught because
of other problems in the programs.

Tool

Dataset Infer Pathfinder RV-Predict

Bank 5/8 5∗/8 8/8
Bounded buffer 9/9 0/9 9/9

JBench 15/30 30∗/42 26∗/42

Table 3. Ratio of programs with deadlocks reported over programs with deadlocks.
Elements marked with * mean that some deadlocks might not have been caught because
of other problems in the programs.

Tool

Dataset Infer Pathfinder RV-Predict

Bank 0/5 4∗/5 N/A
Bounded buffer 0/10 9/10 N/A

5.1 Infer

In the Bank dataset, Infer’s RacerD misses three of the faulty programs, reveal-
ing two limitations of RacerD. The first limitation, already known [14], caused
RacerD to miss races in two programs, caused by wrong usage of Reentrant-
ReadWriteLock: closeAccount acquires a read lock instead of a write lock, even
though it updates the map. The other missed race reveals another limitation of
RacerD: it fails to detect races caused by unsynchronized accesses to the balance
field of an Account. Further testing revealed that RacerD is unable to detect data
races on fields of objects stored in a container in the class being tested.

Since Infer depends on a working compilation command to work, for testing
RacerD we reduced the JBench dataset to only those examples with a valid
compilation command. This excludes 12 from the 42 small programs in JBench.
From the remaining 30 examples, RacerD detects data races in 15 of them.

It is worth mentioning that RacerD is fast. It takes around 600ms per Bank
example (each of these examples has around 200 lines of code), and around
160 ms per BoundedBuffer example (each example has around 40 lines of code).

Infer’s documentation mentions that it can detect deadlocks when run with
the starvation flag activated. However, it did not detect any of the deadlocks
present in our dataset. For the Bank in particular, it failed to detect any problems
in examples containing the following issues:



12 M. Barros et al.

Table 4. Average run time in seconds for each tool and each dataset. For JPF we also
show the number of examples for which the analysis was interrupted after the chosen
4m time limit.

Tool

Dataset Infer Pathfinder RV-Predict

Bank 0.6 95.9 (2) 4.6
Bounded buffer 0.2 240.0 (14) 9.8

JBench 1.3 87.2 (14) 9.3

public int totalBalance(int[] ids) {
int total = 0;
Account1 [] acs =new Account1[ids.length ];
rlock.lock();
try {

for (int i : ids) {
Account1 c = map.get(i);
if (c == null)

return 0;
acs[i]=c;

}
...

}

Fig. 4. Common error in the Bank example

1. Methods that can cause two concurrent threads to try to acquire the same
two locks in reverse order.

2. Methods that do not call unlock() on a previously acquired Lock object.

5.2 Java Pathfinder

In many tests, JPF was not able to detect data races or deadlocks because
the programs had other bugs, causing exceptions to be thrown. This happened
frequently in the JBench examples, especially in the more complex ones.

There is a very common error in the bank examples, in the totalBalance
method, where many students confuse array indexes with account identifiers, as
shown in the code fragment in Figure 4. If the array ids is [2,3,4], an index out
of bounds exception is thrown at line 10. JPF reports this exception and stops
the execution, as expected. After correcting this error, JPF successfully found
the deadlock related to the out-of-order acquisition of the locks. This is why
the tables above may mislead the reader into thinking that JPF is not capable
of detecting some concurrency anomalies. For the deadlock cases in the bank



An Experimental Evaluation of Tools for Grading Conc. Prog. Exercises 13

samples, we corrected the code that was interfering with the deadlock detection,
and all deadlocks were found.

Regarding data race detection, even with examples that were correctly im-
plemented, apart from the concurrency problems, JPF could not find all the
anomalies. One interesting outcome is that JPF never explicitly reported a data
race in the bounded buffer examples, although in many examples it is possible
to see the exception of index out of bounds being thrown, that, in the case of
the bounded buffer, is potentially caused by data races.

JPF found all deadlocks but one: the deadlock that was already explained in
Section 3.2 and is related to the use of signal() instead of signalAll().

It is important to mention that, in many cases, JPF takes a long time to
analyze the code, and we decided to impose a time limit of 4 minutes. In nine of
the JBench samples the analysis timed out. The test class used for the Bounded
Buffer with the RV-predict tool could not be used with JPF, because it cannot
handle many threads, even with the partial order reduction enabled. For this
reason, in almost all of the tests in this example, JPF timed out, even in those
using only four threads.

5.3 RV-Predict

RV-Predict is exclusively a data race detector, and therefore not applicable to
deadlock detection. In theory, RV-Predict does not report any false-positives,
thus only the examples where data races could occur were tested.

RV-Predict was able to detect all of the races in Bank and Bounded Buffer
datasets and being rather quick too. In the JBench dataset, RV-Predict did not
detect races in some of the more complex programs: increasing the window of
detection, that determines the largest distance between events where RV-Predict
is going to try and find races, would make it possible to detect more races,
but the prediction phase would take much longer to finish. In some examples
RV-Predict could not find any trace that executed correctly – in these cases RV-
Predict did not detect any races. When RV-Predict finishes the prediction phase,
it will always run one trace of the execution. If a deadlock is encountered, or an
exception is thrown, then the execution of the trace will not finish correctly, but
if a log directory is specified, all of the races encountered will be logged.

6 Discussion

Infer is easy to use and requires a minimal set-up to make it work. Although
its starvation analysis failed to detect any deadlock in our dataset, its race
detection component, RacerD, showed several desirable qualities for our use case,
namely:

– No need to manually inspect and modify the code under test. In some cases,
some classes might need to be marked with the ThreadSafe annotation, but
that can be automated for multiple files.



14 M. Barros et al.

– Can easily be used to automatically check several programs and generate an
aggregated report with the bugs found.

– Its reports provide detailed and understandable explanations regarding the
source of the detected races (this is a really desirable feature for a tool meant
to be used by students).

– Absence of false-positives, meaning that it could be safely used in automatic
evaluation.

– The analysis is fast, which makes the tool viable to use on a large number
of examples at once.

Another important feature is that Infer is already present in some e-Learning
platforms, namely Codeboard, and can be used out of the box to provide auto-
matic feedback on solutions to concurrent programming exercises.

RacerD shines when it comes to ease of use, but there were some data races
it was unable to identify. RacerD highlights how our evaluation criteria might
differ from those one would use to choose a tool to employ in an industrial
setting. This tool sacrifices soundness for scalability. Since our use case involves
small programs, we would rather have a less efficient tool, but that does not have
false-negatives.

MultithreadedTC is an interesting tool for testing concurrent code, but it
has some downsides. For instance, there is no specific mechanism to detect data
races. What can be done to hopefully find data races is to define some assertions
that express what are the expected results and run the code multiple times so
that possibily many interleavings are exercised. One of the problems with this
approach is the false-negatives because it is possible that the scenario which
leads to wrong results does not come up. In fact, even for deadlock testing,
when following this strategy, this can happen. Another downside is the lack of
information given when a deadlock is found.

One important aspect of this framework is the fact that the testing method-
ology follows a white box approach [13]. This means that one needs to know the
internal design of the application to be able to do more sophisticated tests. To
define a specific interleaving, it is sometimes necessary to add lines of code inside
a method. This can be seen as a downside since it is essential to have knowledge
of how classes are coded, which is particularly undesirable in our use case of
testing students’ submissions. It is possible to use this tool without the methods
that allow the definition of specific interleavings, as we did in some tests we per-
formed, but this is not using the tool to its full potential and has the problem
of non-determinism in the results, as described above.

Configuring JPF was not an easy task. Also, in early experiments, it never
detected any deadlocks. Later, with the help of another user [2], we were able to
find out that JPF was not really adapted to work with ReentrantReadWrite-
Locks. Luckily, someone already had encountered this problem and we managed
to fix it by modifying some of the source code of JPF [4].

One downside of JPF is the amount of output generated when the property
that allows finding multiple errors (search.multiple_errors) is enabled, since
all the paths of execution that exhibit a particular data race will be reported as



An Experimental Evaluation of Tools for Grading Conc. Prog. Exercises 15

an error. At the end of the execution, the output can have thousands of lines
pointing the occurrence of the same data race. Another aspect related to the
output is the poor information provided regarding detected deadlocks. In some
cases, where the same example had two different deadlocks, it was difficult to
understand if both deadlocks were being reported. For this reason, we had to
perform tests separately to understand if a specific deadlock was detected.

Although JPF presented good results in detecting deadlocks, testing was
extremely slow, even considering simple programs with a reduced number of
threads. This makes it somewhat unsuitable for the purpose of our study, which
is to find a tool that students can use to test their programs. It is not reasonable
to expect that a student will wait more than 20 minutes for the result of a test
of an implementation of a simple exercise.

RV-Predict shows great promise. It is very easy to install and use, and only
requires writing a main test program. This main program does not even need to
be complicated, in fact, the more simplistic the better since RV-Predict will take
care of finding the traces where a data race could occur and still be fast. The only
downside of RV-Predict is testing complex programs. A program where multiple
methods need to be tested for data races means that the prediction phase will
take much longer to complete since multiple combinations of states need to be
tested. This could be circumvented by dividing the main test into smaller tests,
which will accelerate the prediction process but, in turn, less data races might
be detected.

7 Conclusions

The main goal of this work was to evaluate existing tools for automatic detection
of concurrency bugs in Java programs, to determine their potential for being
used in automatic grading of concurrency programming exercises. We focused
on analysing tools for detecting data races and deadlocks.

One of our main takeaways is that, despite the amount of academic research
on automatic analysis of concurrent code, there are not many mature and readily
available tools for detecting concurrency problems in Java programs. In partic-
ular, we found no tool that excelled in detecting both data races and deadlocks.

Regarding data race detection, we were most impressed by Infer’s RacerD
and RV-Predict. Infer does static analysis, while presenting no false-positives
and reporting errors in a comprehensible and educational fashion. However, it is
unable to catch some problems that might arise in students’ code. RV-Predict
requires constructing a small testing program to exercise the code under evalua-
tion (since it is does dynamic analysis) but performed very well with our dataset.
We believe that RV-Predict is a good fit for a tool to be used in an educational
setting for automatic detection of data races in students’ code.

As for deadlock detection, we struggled to find a tool that completely satis-
fied our criteria. We had the most success with Java Pathfinder. It found most
of the deadlocks in our dataset, however its run time makes it unfit to be used to
evaluate hundreds of students’ submissions. We can thus conclude that the sub-



16 M. Barros et al.

ject of automatic deadlock detection for small Java programs is still a promising
field of investigation.

One interesting future step would be to conduct a more precise analysis of
the results obtained with each tool. For each type of bug (data race or deadlock)
and for each program in our dataset, we only tested if a given tool labelled
that program as erroneous or bug-free. This leaves room for undetected false-
negatives (in case the analysis tool detects only a portion of the existing bugs) as
well as false-positives (in case the tool reports more bugs than there really exist).
Conducting such analysis is not trivial, since the way static tools and dynamic
tools report errors is fundamentally different (for example, a single race reported
by RacerD might be exercised more than once in some test method used by a
dynamic race detector like RV-Predict, which would cause it to report more than
one race).

References

1. Codeboard, https://codeboard.io/, acessed on 2023-04-30
2. Deadlock not being detected, https://groups.google.com/g/java-pathfinder/c/

rzkaeuNDZCY, accessed on 2023-01-04
3. Dl-Check, https://github.com/devexperts/dlcheck, accessed on 2023-01-02
4. Google groups thread: java.lang.error: java.lang.nosuchfieldexception: tid, https:

//groups.google.com/g/java-pathfinder/c/t1n73xdyrFI, accessed on 2023-04-29
5. JaDA, http://jada.cs.unibo.it/demo.html, accessed on 2023-04-30
6. Java Pathfinder, https://github.com/javapathfinder/jpf-core, accessed on 2023-04-

02
7. Java Pathfinder (master branch), https://github.com/javapathfinder/jpf-core/

tree/45a4450cd0bd1193df5419f7c9d9b89807d00db6, accessed on 2023-01-04
8. JCarder, http://www.jcarder.org/download.html, accessed on 2023-04-30
9. JUnit, https://junit.org/junit5/, accessed on 2023-04-30

10. RV-Predict, https://runtimeverification.com/predict/, accessed on 2023-04-30
11. ThreadSafe, http://www.contemplateltd.com/, accessed on 2022-12-27
12. Visual Threads, http://www.unix.digital.com/visualthreads/index.html, accessed

on 2023-04-30
13. White box testing techniques, tools and advantages – a quick guide (2022), https:

//www.xenonstack.com/insights/what-is-white-box-testing, accessed on 2023-01-
03

14. Blackshear, S., Gorogiannis, N., O’Hearn, P., Sergey, I.: RacerD: compositional
static race detection. Proceedings of the ACM Conference on Programming Lan-
guages 2(OOPSLA), 1–28 (2018). https://doi.org/10.1145/3276514

15. Cai, Y., Wu, S., Chan, W.: ConLock: A constraint-based approach to dynamic
checking on deadlocks in multithreaded programs. In: Proceedings of the 36th
International Conference on Software Engineering. pp. 491–502. ACM (2014).
https://doi.org/10.1145/2568225.2568312

16. Calcagno, C., Distefano, D., Dubreil, J., Gabi, D., Hooimeijer, P., Luca, M.,
O’Hearn, P., Papakonstantinou, I., Purbrick, J., Rodriguez, D.: Moving fast
with software verification. In: Proceedings of the 7th International Sympo-
sium on NASA Formal Methods. LNCS, vol. 9058, pp. 3–11. Springer (2015).
https://doi.org/10.1007/978-3-319-17524-9_1

https://codeboard.io/
https://groups.google.com/g/java-pathfinder/c/rzkaeuNDZCY
https://groups.google.com/g/java-pathfinder/c/rzkaeuNDZCY
https://github.com/devexperts/dlcheck
https://groups.google.com/g/java-pathfinder/c/t1n73xdyrFI
https://groups.google.com/g/java-pathfinder/c/t1n73xdyrFI
http://jada.cs.unibo.it/demo.html
https://github.com/javapathfinder/jpf-core
https://github.com/javapathfinder/jpf-core/tree/45a4450cd0bd1193df5419f7c9d9b89807d00db6
https://github.com/javapathfinder/jpf-core/tree/45a4450cd0bd1193df5419f7c9d9b89807d00db6
http://www.jcarder.org/download.html
https://junit.org/junit5/
https://runtimeverification.com/predict/
http://www.contemplateltd.com/
http://www.unix.digital.com/visualthreads/index.html
https://www.xenonstack.com/insights/what-is-white-box-testing
https://www.xenonstack.com/insights/what-is-white-box-testing
https://doi.org/10.1145/3276514
https://doi.org/10.1145/2568225.2568312
https://doi.org/10.1007/978-3-319-17524-9_1


An Experimental Evaluation of Tools for Grading Conc. Prog. Exercises 17

17. Elmas, T., Qadeer, S., Tasiran, S.: Goldilocks: A Race-Aware Java Runtime. Com-
mun. ACM 53, 85–92 (11 2010). https://doi.org/10.1145/1839676.1839698

18. Engler, D., Ashcraft, K.: RacerX: Effective, static detection of race conditions and
deadlocks. In: Proceedings of the 19th ACM Symposium on Operating Systems
Principles. pp. 237–252. ACM (2003). https://doi.org/10.1145/945445.945468

19. Erickson, J., Musuvathi, M., Burckhardt, S., Olynyk, K.: Effective Data-Race De-
tection for the Kernel. pp. 151–162 (01 2010)

20. Eslamimehr, M., Palsberg, J.: Sherlock: Scalable deadlock detection for concurrent
programs. In: Proceedings of the 22nd ACM SIGSOFT International Symposium
on Foundations of Software Engineering. p. 353–365. FSE 2014, Association for
Computing Machinery (2014). https://doi.org/10.1145/2635868.2635918

21. Flanagan, C., Leino, K., Lillibridge, M., Nelson, G., Saxe, J., Stata, R.: Extended
static checking for Java. In: Proceedings of the ACM SIGPLAN 2002 Conference
on Programming Language Design and Implementation. p. 234–245. ACM (2002).
https://doi.org/10.1145/512529.512558

22. Flanagan, C., Freund, S.N.: FastTrack: Efficient and Precise Dy-
namic Race Detection. SIGPLAN Not. 44(6), 121–133 (jun 2009).
https://doi.org/10.1145/1543135.1542490

23. Gao, J., Yang, X., Jiang, Y., Liu, H., Ying, W., Zhang, X.: Jbench: A dataset of
data races for concurrency testing. In: Proceedinsg of the 15th IEEE/ACM 15th
International Conference on Mining Software Repositories. pp. 6–9. ACM (2018).
https://doi.org/10.1145/3196398.3196451

24. Holt, R.: Some deadlock properties of computer systems. ACM Comput. Surv.
4(3), 179–196 (1972). https://doi.org/10.1145/356603.356607

25. Holzmann, G.: The SPIN Model Checker: Primer and Reference Manual. Addison-
Wesley Professional (2011)

26. Huang, J., Meredith, P., Roşu, G.: Maximal sound predictive race detection with
control flow abstraction. In: Proceedings of the 35th ACM SIGPLAN Conference
on Programming Language Design and Implementation. pp. 337–348. ACM (2014).
https://doi.org/10.1145/2666356.2594315

27. Huang, J., Zhang, C.: Persuasive prediction of concurrency access anomalies.
In: Proceedings of the 2011 International Symposium on Software Testing and
Analysis. p. 144–154. ISSTA ’11, Association for Computing Machinery (2011).
https://doi.org/10.1145/2001420.2001438

28. Joshi, P., Naik, M., Park, C., Sen, K.: CalFuzzer: An extensible active testing
framework for concurrent programs. In: Proceedings of the 21st International Con-
ference on Computer Aided Verification. LNCS, vol. 5643, pp. 675–681. Springer
(2009). https://doi.org/10.1007/978-3-642-02658-4_54

29. Lamport, L.: The PlusCal algorithm language. In: Proceedings of the 6th Inter-
national Colloquium on Theoretical Aspects of Computing. LNCS, vol. 5684, pp.
36–60. Springer (2009). https://doi.org/10.1007/978-3-642-03466-4_2

30. Luo, Q., Zhang, S., Zhao, J., Hu, M.: A lightweight and portable approach to
making concurrent failures reproducible. In: Proceedings of the 13th International
Conference on Fundamental Approaches to Software Engineering. LNCS, vol. 6013,
pp. 323–337. Springer (2010). https://doi.org/10.1007/978-3-642-12029-9_23

31. Marino, D., Musuvathi, M., Narayanasamy, S.: LiteRace: Effective sam-
pling for lightweight data-race detection. In: Proceedings of the 30th ACM
SIGPLAN Conference on Programming Language Design and Implementa-
tion. p. 134–143. PLDI ’09, Association for Computing Machinery (2009).
https://doi.org/10.1145/1542476.1542491

https://doi.org/10.1145/1839676.1839698
https://doi.org/10.1145/945445.945468
https://doi.org/10.1145/2635868.2635918
https://doi.org/10.1145/512529.512558
https://doi.org/10.1145/1543135.1542490
https://doi.org/10.1145/3196398.3196451
https://doi.org/10.1145/356603.356607
https://doi.org/10.1145/2666356.2594315
https://doi.org/10.1145/2001420.2001438
https://doi.org/10.1007/978-3-642-02658-4_54
https://doi.org/10.1007/978-3-642-03466-4_2
https://doi.org/10.1007/978-3-642-12029-9_23
https://doi.org/10.1145/1542476.1542491


18 M. Barros et al.

32. Melo, S., Souza, S., Silva, R., Souza, P.: Concurrent software testing in practice:
A catalog of tools. In: Proceedings of the 6th International Workshop on Au-
tomating Test Case Design, Selection and Evaluation. pp. 31–40. ACM (2015).
https://doi.org/10.1145/2804322.2804328

33. Naik, M., Aiken, A., Whaley, J.: Effective static race detection for java.
In: Proceedings of the 27th ACM SIGPLAN Conference on Program-
ming Language Design and Implementation. pp. 308–319. ACM (2006).
https://doi.org/10.1145/1133981.1134018

34. Netzer, R., Miller, B.: What are race conditions? Some issues and formaliza-
tions. ACM Letters on Programming Languages and Systems 1(1), 74–88 (1992).
https://doi.org/10.1145/130616.130623

35. Nir-Buchbinder, Y., Ur, S.: ConTest listeners: a concurrency-oriented infras-
tructure for Java test and heal tools. In: Pezzè, M. (ed.) Proceedings of the
4th International Workshop on Software Quality Assurance, SOQUA 2007, in
conjunction with the 6th ESEC/FSE joint meeting. pp. 9–16. ACM (2007).
https://doi.org/10.1145/1295074.1295077

36. Pugh, W., Ayewah, N.: Unit testing concurrent software. In: Proceedings of
the 22nd IEEE/ACM International Conference on Automated Software Engi-
neering. p. 513–516. ASE ’07, Association for Computing Machinery (2007).
https://doi.org/10.1145/1321631.1321722

37. Said, M., Wang, C., Yang, Z., Sakallah, K.: Generating Data Race Witnesses by
an SMT-based Analysis. vol. 6617 (04 2011). https://doi.org/10.1007/978-3-642-
20398-5_23

38. Samak, M., Ramanathan, M.K.: Trace driven dynamic deadlock de-
tection and reproduction. SIGPLAN Not. 49(8), 29–42 (feb 2014).
https://doi.org/10.1145/2692916.2555262

39. Savage, S., Burrows, M., Nelson, G., Sobalvarro, P., Anderson, T.: Eraser: A dy-
namic data race detector for multithreaded programs. ACM Trans. Comput. Syst.
15(4), 391–411 (1997). https://doi.org/10.1145/265924.265927

40. Sen, K., Agha, G.: A race-detection and flipping algorithm for automated testing of
multi-threaded programs. In: Bin, E., Ziv, A., Ur, S. (eds.) Hardware and Software,
Verification and Testing. pp. 166–182. Springer Berlin Heidelberg (2007)

41. Şerbănuţă, T., Chen, F., Roşu, G.: Maximal causal models for sequen-
tially consistent systems. In: Proceedings of the 3rd International Confer-
ence on Runtime Verification. LNCS, vol. 7687, pp. 136–150. Springer (2013).
https://doi.org/10.1007/978-3-642-35632-2_16

42. Zhai, K., Xu, B., Chan, W., Tse, T.: CARISMA: A context-sensitive approach to
race-condition sample-instance selection for multithreaded applications. In: Pro-
ceedings of the 2012 International Symposium on Software Testing and Analysis.
p. 221–231. ACM (2012). https://doi.org/10.1145/2338965.2336780

https://doi.org/10.1145/2804322.2804328
https://doi.org/10.1145/1133981.1134018
https://doi.org/10.1145/130616.130623
https://doi.org/10.1145/1295074.1295077
https://doi.org/10.1145/1321631.1321722
https://doi.org/10.1007/978-3-642-20398-5_23
https://doi.org/10.1007/978-3-642-20398-5_23
https://doi.org/10.1145/2692916.2555262
https://doi.org/10.1145/265924.265927
https://doi.org/10.1007/978-3-642-35632-2_16
https://doi.org/10.1145/2338965.2336780

	An Experimental Evaluation of Tools for Grading Concurrent Programming Exercises

