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Abstract. Phonocardiogram signals contain very useful information about the condition of
the heart. It is a method of registration of heart sounds, which can be visually represented
on a chart. By analyzing these signals, early detections and diagnosis of heart diseases can be
done. Intelligent and automated analysis of the phonocardiogram is therefore very important,
to determine whether the patient’s heart works properly or should be referred to an expert for
further evaluation. In this work, we use electrocardiograms and phonocardiograms collected
simultaneously, from the Physionet challenge database, and we aim to determine whether a
phonocardiogram corresponds to a "normal" or "abnormal" physiological state. The main
idea is to translate a 1D phonocardiogram signal into a 2D image that represents temporal
and Mel-frequency cepstral coefficients features. To do that, we develop a novel approach
that uses both features. First we segment the phonocardiogram signals with an algorithm
based on a logistic regression hidden semi-Markov model, which uses the electrocardiogram
signals as reference. After that, we extract a group of features from the time and frequency
domain (Mel-frequency cepstral coefficients) of the phonocardiogram. Then, we combine
these features into a two-dimensional time-frequency heat map representation. Lastly, we
run a binary classifier to learn a model that discriminates between normal and abnormal
phonocardiogram signals.
In the experiments, we study the contribution of temporal and Mel-frequency cepstral co-
efficients features and evaluate three classification algorithms: Support Vector Machines,
Convolutional Neural Network, and Random Forest. The best results are achieved when we
map both temporal and Mel-frequency cepstral coefficients features into a 2D image and use
the Support Vector Machines with a radial basis function kernel. Indeed, by including both
temporal and Mel-frequency cepstral coefficients features, we obtain sligthly better results
than the ones reported by the challenge participants, which use large amounts of data and
high computational power.
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1 Introduction

Cardiovascular diseases (CVD) are the single leading cause of death worldwide. According to the
estimates of the World Health Organization (WHO) in 2012, CVD account for approximately 17.5
million deaths worldwide, which corresponds to over 31% of all deaths globally. These facts alone
show that CVD are a major global threat and any development to aid the prevention of such
diseases is of great importance [24]. According to the latest statistics, 20% of people aged over 40
develop heart failure during their life. This condition is the number one reason for hospitalization
among those over 65. Half of all patients die within 5 years of diagnosis, and each year heart
failure costs the global economy $108 billion, with hospitalizations accounting for 60-70% of direct
treatment costs. 14.9 million people in the EU and 5.7 million in the United States have heart
failure; the impact on the rest of the world is not sufficiently documented [24].

A more pro-active approach involving low cost cardiac health screening of the general population
can help the physician detect possible complications at an early stage. Currently, two effective
cardiac screening methodologies are the Electrocardiogram (ECG) and echocardiogram exams
but these can be expensive for mass screening and require technical expertise that is not always
available. Despite remarkable advances in imaging technologies for the heart, the clinical evaluation



of cardiac defects by auscultation has remained a main diagnostic method for congenital heart
diseases. In experienced hands the method is effective, reliable, and cheap.

The auscultation of the heart and lungs with a stethoscope is often conducted on patients
thought to have cardiac or pulmonary disease, before recommending additional diagnostic proce-
dures, treatment, or no further action [15]. Because this process is simple, cheap, and quick to
detect diseases, the stethoscope still maintains a key position in medicine in the modern era. How-
ever, auscultation is a subjective process that depends on the experience and hearing capability
of the individual, a feature that may lead to a large variability in findings. The poor sensitivity of
human hearing in the low frequency range of the heart sounds makes this task even more difficult.
Also, the human hearing system is better at detecting frequency changes than intensity changes.
The physical limitations of the human ear make it unable to analyze all the information contained
in the acoustic signals of the heart [26].

Physically, a stethoscope covers a broad sound spectrum and the average frequency depends on
the point of auscultation. It requires significant practice for a human ear to distinguish between
them. The existence of methods that can automatically and successfully analyze heart signals,
can be used as a diagnostic tool to help determine if an individual should be referred for expert
diagnosis, specially in cases where access to clinicians and medical care is limited.

In this work, we develop a novel approach to classify heart sounds, which uses both temporal
and Mel-frequency cepstral coefficients (MFCC) features. The main idea is to translate a 1D
Phonocardiogram (PCG) signal into a 2D image that represents temporal and MFCC features.
First we segment a PCG signal, using the ECG that was simultaneously recorded, to identify the
S1 heart sound. Second, we extract temporal and MFCC features from PCG signals. Third, we
combine these features into a 2D image. Last, we run a binary classifier to classify each image as
either being normal or abnormal. Our method is evaluated using ECG and PCG signals that were
made available in the 2016 PhysioNet Computing in Cardiology Challenge [12], [21].

The remainder of this paper is organized as follows. In Section 2, we present a brief description
of ECG and PCG heart signals, stressing their main characteristics and how they relate to each
other. In Section 3, we discuss the current challenges in the study of heart signals and the related
work, including different methods and approaches that can be used to extract features and classify
heart sounds. Section 4 introduces our methodology, and details each step of our procedure. In
Section 5 we present and discuss the obtained results. At the end of the paper we present the main
conclusions of this work.

2 Characteristics of ECG and PCG heart signals

The heart is one of the most important organs in our body. The heart beats continuously to pump
oxygen and nutrient-rich blood throughout the human body to sustain life. A human heart is made
of a strong muscle called myocardium, and is divided into chambers. The two upper chambers are
known as atria while the two lower chambers are known as ventricles. The heart beats in regular
intervals, controlled by the electrical pulses generated from the sinus node near the heart. This organ
is susceptible to a variety of pathologies. One of the techniques used to detect these pathologies is
the ECG, which consists in the recording of the variation of bioelectric potentials versus time of
human heartbeats [5]. Another technique that can be used to verify the existence of pathologies is
the PCG. During the squeezing of the blood from chamber to chamber, the valves keep the blood
flowing smoothly in and out of the heart. This is done by automatically opening the valves, to let the
blood flow from chamber to chamber, and closing the valves to prevent the backflow of blood [28].
PCG is a graphical representation of the waveform of heart sounds, which are generated by: (1)
opening or closing of the heart valves, (2) flow of blood through the valve orifice, (3) turbulence
created when the heart valves snap shut, and (4) rubbing of cardiac surfaces. The PCG creates a
visual recording of these events and allows the detection of sub-audible heart-sounds and murmurs.
This technique is very useful because it contains a great amount of physiological and pathological
information regarding the human heart and vascular system.

2.1 ECG Signal

The ECG is a powerful diagnostic tool for heart disease. It can provide accurate information on the
functional aspects of the heart and the cardiovascular system. The ECG signal is formed by a set of
waves, such as the P-wave, representing the atrial depolarization, the QRS wave, which represents



Fig. 1. Example of an ECG-labeled PCG, with the ECG and four states of the heart cycle (S1, Systole,
S2, Diastole) shown. The R-peak and end-T-wave are labeled as reference for the approximate positions
of S1 and S2, respectively [30].

the depolarization of the ventricles [12], and the T-wave, which corresponds to the repolarization of
the ventricles. The QT interval is the most important region for the detection of abnormality, each
change that affects these characteristics represents a cardiac abnormality [12]. The ECG waveform
is illustrated in the bottom of Figure 1.

2.2 PCG Signal

The top of the Figure 1 shows the heart sounds, composed by four different sounds: S1, S2, S3 and
S4. The pumping action of a normal heart is audible by the 1st heart sound (S1) and the 2nd heart
sound (S2). During systole, the atrioventricular valves are closed and the blood tries to flow back to
the atrium, causing back bulging of the AV valves. This leads to vibration of the valves, the blood
and the walls of the ventricles, and corresponds to the 1st heart sound. During diastole, the blood
in the blood vessels tries to flow back to the ventricles, causing the semi lunar valves to bulge, but
the elastic recoil of the arteries makes the blood bounce forward, thus leading to vibration of the
blood, the walls and the ventricular valves, which produces the 2nd heart sound. S1 is a low-pitch
sound with longer duration, whereas S2 is a high-pitch sound with a shorter duration. In normal
situations, the S1–S2 interval (systole) is shorter than the S2–S1 interval (diastole). The 3rd heart
sound (S3) is heard in the mid diastole due to the blood that fills the ventricles. The 4th heart
sound (S4), also known as atrial heart sound, occurs when the atrium contracts and pumps blood
to the ventricles. S4 appears with a low energy and is almost never heard by the stethoscope [11].
In addition to these components of the normal heart sounds, a variety of other sounds, such as
heart murmurs, may be present in the cardiac signal. Murmurs can be benign (physiological) or
abnormal (pathological), and are usually caused by turbulent blood-flow, which can happen inside
or outside the heart. Abnormal murmurs can occur due to stenosis, which restricts the opening of
a heart valve, or to regurgitation related with valves insufficiency, which allows backflow of blood
following the partial closure of an inept valve.

2.3 Relationship between ECG and PCG signals

PCG can provide quantitative and qualitative information of heart sounds and murmurs. Studies
on heart sound detection can be divided into two categories: ECG signal-dependent and ECG
signal-independent. Our study is ECG signal-dependent. The opening and closing of the cardiac
valves, and the sounds they produce, are the mechanical events of the cardiac cycle. They are
preceded by the electrical events of the cardiac cycle. In Figure 1 we plot part of both ECG and
PCG signals to illustrate the relationship between them in the time domain. In this figure we can
see that S1 occurs 0.04s to 0.06s after the onset of the QRS complex, and that S2 occurs towards
the end of the T wave. Heart sound segmentation refers to the detection of the exact positions of
the first (S1) and second (S2) heart sounds in a PCG. This is an essential step in the automatic
analysis of heart sound recordings, as it allows the analysis of the periods between these sounds
for the presence of clicks and murmurs. The segmentation becomes a difficult task if the PCG



recordings are corrupted by in-band noise. In our work, we have a set of PCG signals with the
corresponding ECG signals collected simultaneously. Therefore, we identify the start of the S1
using the ECG signal and then use this knowledge to segment the PCG. In particular, we use the
Springer’s segmentation algorithm [30] to identify the fundamental heart sounds (S1, Systole, S2
and Diastole) in the PCG waveform.

3 Current challenges and related work

3.1 Current challenges

As the quality and availability of PCG signals is no longer an issue, the development of appropriate
algorithms that are able to detect heart diseases from heart sounds is an important challenge that
has become the focus of work for many researchers. The ability to mathematically analyze and
quantify the heart sounds represented on the PCG provides valuable information regarding the
condition of the heart [25]. Thus, automated analysis and characterization of the PCG signal plays a
vital part in the diagnosis and monitoring of valvular heart diseases. The main problems concerning
the development of relevant techniques are the wide variety of distinguishable pathological heart
sounds and the non-stationary characteristics of the PCG signals. Considering these issues, a
question that can be addressed is how to increase the variety of distinguishable heart sounds while
improving the performance of such systems in terms of reducing their computational complexity,
without compromising their precision. PCG signal processing can be crudely divided into two
main research areas. One is focused in the detection of events such as S1 and S2 to perform the
segmentation of the PCG. The other deals with the detection of murmurs and, consequently, of
cardiac pathologies [8].

3.2 Related work

The segmentation process of PCG signals is a very important task to perform murmur detection
and diagnosis of cardiac pathologies with computer analysis. Thus, it is essential that different
components of the heart cycle can be timed and separated [10]. A large variety of algorithms that
perform PCG segmentation have been presented in the literature. A solution for segmentation
based in the time-domain characteristics of the PCG, was presented in [13], and another, based
in the frequency-domain characteristics, in [17]. A threshold based on Shannon energy is set to
detect peaks that correspond to S1 and S2 [16]. Correlation techniques have been used in [32], but
this method may not perform well when the duration and the spectra of sound signal components
show huge variations, making impossible to run this technique without user intervention.

In [23], as the heart sound and ECG signals are time varying, the Instantaneous Energy is
computed to characterize the temporal behaviors of these signals. The purpose of the study is
to perform heart sound segmentation based on the Instantaneous Energy of the ECG. Another
important step in signal processing is feature extraction. If the features are not chosen properly,
the performance of any classifier will be poor. The objective of the feature extraction procedure is
to find the features from the available data and use them later for classification. These features were
extracted from different analysis domains to ensure that the segments were described as thoroughly
as possible. The analysis of heart sound is difficult to perform in the time domain because of noise
interference and the overlapping of heart sound components. Thus, in many cases the processing of
heart sound signals is done in the frequency domain. There are a large number of feature extraction
algorithms available. These include the Fourier transform [19], the short time Fourier transform
(STFT) [6], the time-frequency representation (TFR) [2], the MFCC [9] and the Discrete Wavelet
Transform (DWT) coefficients [3]. However, the most widely used algorithms are the MFCC and
the DWT. In this work we extract MFCC and time-frequency features from the signal.

After extracting the features from each signal, in a classification problem we need to learn
a model that discriminates between normal and abnormal heart sounds. Most of the previous
studies that learn models to classify heart sounds use artificial neural networks (ANN) or Support
Vector Machines (SVM) [4]. In [14], Gupta et al. addressed the problem of distinguishing between
two abnormal and one normal heart states. The methodology used by these authors uses Wavelet
analysis of the PCG signal in combination with homomorphic filtering and K-means clustering
method. The generalization accuracy of the proposed methodology was 97%. One of the first
reported studies using neural networks for classification was presented by Barschdorff et al. [4].



These authors discussed the advantages of using neural networks over traditional classifiers, such as
nearest neighbors. Spectral features obtained from short-term Fourier transform (STFT) analysis
of the signal and mean values of corresponding sections of the signal envelope were used to train the
neural network. Another algorithm that was widely used, and is known to generate highly accurate
models, is the SVM classifier. An approach for heart sounds identification presented by Wu et al.
reached a generalization accuracy of 95%. This approach uses wavelet transform to extract the
envelope of the PCG signals [33]. Almost the same results were obtained by Jiang and Choi [34],
who developed a system based in clustering algorithms for in-home use. However, this system was
proven only by a case study. Another approach is the use of the tools and techniques of deep
learning for the automated analysis of heart sounds [27]. In this paper, an algorithm was presented
that accepts PCG waveforms as input and uses a deep convolutional neural network architecture
to discriminate between normal and abnormal heart sounds.

4 Methodology

The methodology that we developed in this work is a novel approach to classify heart sounds. We
use ECG and PCG collected simultaneously, to identify the fundamental heart sounds and thus
segment the PCG signals more accurately. The main idea is to translate a 1D PCG signal into a
2D image that represents temporal and MFCC features. The methodology has four main steps:

– Segmentation of the PCG signal, identifying their four heart sounds states;
– Feature extraction of a group of 8 features in time domain, and MFCC in frequency domain;
– Transformation of the extracted features into two dimensional heat maps, which capture the

time-frequency distribution of signal energy;
– Classification of the images generated, using different classifiers, distinguishing between normal

and abnormal heat maps.

Each component is described below in detail. To better present each step of the methodology,
we explore the dataset that was made available at the 2016 Physionet/ Computing in Cardiology
Challenge [21]. In this challenge the goal was to discriminate between normal and abnormal hearts
using PCG and ECG signals.

4.1 Heart sound database

The challenge database provides a large collection of heart sound recordings, obtained from different
real-world clinical and nonclinical environments. They include clean heart sounds but also very
noisy recordings. The data were recorded from both normal and pathological subjects, and from
both children and adults. We only use the training set A, which contains a total of 400 heart sound
recordings (PCG signals lasting from 5 seconds to just over 120 seconds) and 400 ECG signals
collected at the same time. The heart sound recordings were divided into two types: normal and
abnormal heart sound recordings. The former were recorded from healthy subjects and the latter
from patients with a confirmed cardiac diagnosis. These patients suffered from a variety of illnesses,
but a more specific classification of the abnormal recordings was not provided. It is noteworthy
that the number of normal recordings does not equal that of abnormal recordings, i.e., the dataset
used is unbalanced. The distribution of the two classes in the dataset is approximately 70% of
normal recordings and 30 % of abnormal recordings. More detailed information about the dataset
can be found in [21].

4.2 Segmentation

The first step of our method is to segment the PCG. In this work, the segmentation of the PCG was
performed with the Springer’s segmentation algorithm [30]. This algorithm is based on a logistic
regression hidden semi-Markov model to predict the most likely sequence of states by incorporating
information about the expected duration of each heart sound state. By applying this segmentation
algorithm (which uses the ECG signals as reference, as explained above) to the PCG signals, we were
able to identify the beginning and end of the four fundamental heart sound states (S1, Systole, S2
and Diastole). In our approach, we divide the original PCG signals into shorter segments. Using the
information obtained with the segmentation algorithm, we selected the beginning of each heartbeat



(S1) as a starting point for each segment that would be created. This was performed to ensure that
sequences were aligned during classification. After the S1 heart sound was identified, we decided
to create segments with a period of three seconds. We then extracted overlapping segments, and
produced a total of 13404 segments of three seconds from the original 400 PCG signals. In Figure
3 we can see the result of applying the segmentation algorithm.

4.3 Feature Extraction

After the segmentation step, we have a signal that is partitioned into several segments, with the
heart sound states identified. Now we need to extract a set of features that describe each portion
of the PCG signal.

In this step, two types of features are extracted from the heart sound signal. We extract a set of
time domain features and MFCC features from the frequency domain. In the next lines we present
the extracted features.

Time Features
After the segmentation of the PCG, and the identification of the four fundamental states of the

heart cycle, some features were extracted. Currently, we are using eight time-domain features:

– Average duration of states S1;
– Average duration of states Systole;
– Average duration of states S2;
– Average duration of states Diastole;
– Average duration of the intervals RR;
– Ratio between the duration of the Systole and the RR period, of each heart beat;
– Ratio between the duration of the Diastole and the RR period, of each heart beat;
– Ratio between the duration of the Systole and the Diastole, of each heart beat.

MFCC features

Fig. 2. MFCC feature extraction process.

We use the MFCC to extract features from the audio signal. The MFCC is a linear representa-
tion of the cosine transforms of a short duration of logarithmic power spectrum of the sound signal
on a non-linear scale Mel frequency [20]. It perceives frequency in a logarithmic way, inspired in
the behavior of the human ear. It is a powerful signal processing algorithm, widely used in the
field of sound recognition. The advantage of extracting MFCC parameters is that all features of
the sound signal are concentrated in the first coefficients, thus facilitating the extraction task for
operations in clustering algorithms or sound recognition [18]. Obtaining the MFCCs involves an-
alyzing and processing the sound, according to the following steps: pre-emphasis, windowing, fast
Fourier transform (FFT), Mel-filtering, nonlinear transformation, and discrete cosine transform
(DCT). The stages of MFCC coefficient extraction are shown in Figure 2. The pre-emphasis oper-
ation enhances the received signals to compensate for signal distortions. The windowing operation
divides a given signal into a sequence of frames. The FFT operation is applied to the windowed
signals for spectral analysis. The Mel-filtering operation is designed based on human perception,
and it integrates the frequency compositions from one Mel-filter band into one energy intensity.



The non-linear transformation operation takes the logarithm of all Mel-filter band intensities. The
transformed intensities are then converted into MFCC using DCT. The computation of the MFCC
includes Mel-Scale filter-banks, an they are computed as follows [22]:

m = 1127loge

(
f

700
+ 1

)
(1)

where f is the frequency in the linear scale and m is the resulting frequency in Mel-Scale. The
power spectral density (PSD) of the spectrum is mapped onto the Mel-Scale by multiplying it with
the filter-banks constructed earlier, and the log of the energy output of each filter is calculated as
follows [22]:

s[m] = loge

(
N−1∑
k=10

|X[k]|2Hm[k]

)
(2)

where Hm[k] is the filter-banks and m is the number of the filter-bank. To obtain the MFCC,
the discrete cosine transform (DCT) of the spectrum is computed [22]:

c[n] =

N−1∑
m=0

S[m]cos

(
πn

M

(
m− 1

2

))
, n = 0, 1, 2....M (3)

where M is the total number of filter banks.
In our case, in the windowing stage, we run overlapping sliding windows over the segments of

three seconds that were created in the segmentation process. We chose a window length of 25 ms
and a step size of 10 ms. By applying the described procedure, we calculated a total of 12 MFCC
filterbanks per sliding window, which makes a total of 300 time frames for each signal of three
seconds.

4.4 Transformation of features in images

At this stage, for each segment of three seconds of signal, we have a total of eight features extracted
in the time domain and a collection of 3600 cepstral coefficients resulting from the 12 MFCC
filterbanks and 300 time frames. We joined the two sets of features. To adjust the dimensions,
zero padding was performed. The merge of the features produced an array with 12 rows and 301
columns.

Figure 3 illustrates one segment of three seconds from the original one-dimensional PCG wave-
forms, with the identification of the heart sound states calculated during signal segmentation. In
addition, the heat map resulting from the conversion of the extracted features is also shown. The
heat map has a total of 12 rows by 301 columns. The features from the time domain are in column
number 301; the first 300 columns correspond to MFCC features. In these, the horizontal axis
represents the sliding window and the vertical axis presents the 12 filterbank frequencies that were
used in the calculation of the MFCC. We have also done some experiments, using the two feature
sets separately, to evaluate the impact that their joint use has on the results.

4.5 Classification of heart sound images

The aim of the classification procedure is to develop a rule whereby any new observation, repre-
sented by a feature vector, can be classified into one of the existing classes.

In this step, we run an algorithm to learn a classification model that is able to discriminate
between normal and abnormal heart sounds. We learn the classification model by using the heart
sound images obtained in the previous step.

There is a wide variety of classification methods applied in several areas, including the study of
cardiac signals (ECG and PCG). Some of the classifiers used in this area are SVM [31], K-nearest
neighbor(kNN) classifiers [22], Gaussian Mixture Model (GMM) [22], and several types of Neuronal
Networks (NN) [7]. In our methodology, we study and evaluate several algorithms: the SVM, the
Random Forest, the K-means Clustering and the Convolutional Neural Network (CNN), using as
input parameters, the images created from the extracted features. While the CNN allows the use
of images directly as an input parameter, for the other classifiers it is necessary to convert the
image in a vector line, so that it can be used as an input parameter.



Fig. 3. Example of a PCG with the four states of the heart cycle (S1, systole, S2, diastole) identified (red
line). MFCC heat map visualization of 3-second segment of heart sound data.

SVM
In our model, we used an SVM with a radial basis function (RBF) kernel. The RBF kernel has

the formula:

K
(
x(i), x(j)

)
= φ(x(i))Tφ(x(j)) (4)

K
(
x(i), x(j)

)
= exp

(
−γ ‖ x(i) − x(j) ‖2

)
, γ > 0 (5)

where the x(i) and x(j) represents two features vectors in some input space. The γ factor is a
free parameter. In our method we adjust the γ parameter and the cost value, in order to optimize
the results, avoiding falling in overfitting.

Convolutional Neural Networks
With the transformation of the extracted features into images, the CNN was chosen to perform

the training image classifier, given their ability to automatically learn appropriate convolutional
filters. We decided to train a CNN, using the features images as inputs. The architecture, and the
parameters selected, were based on the work of Rubin et al. [27], who built a PCG signal classifier
using deep convolutional neural networks.

Random Forest
The Random Forest is a classification method that works by creating an ensemble of decision

trees at training time.
In our case, we compose a random forest with a number of trees and a number of variables

randomly sampled as candidates at each split, in order to optimize the results, avoiding falling in
overfitting.

K-means Clustering
Cluster Analysis is a process of aggregating the objects into various groups on the basis of their

similarities. K-Means algorithm is one of many methods used to perform clustering that is included
in a group of unsupervised methods.

In this study, we tried to form two clusters, in order to divide the signals into the two existing
classes, normal and abnormal. We used the Euclidean Distance method to measure the shortest
distance between several signals. We also defined how many random sets were chosen, in order to
optimize the results.

4.6 Evaluation metrics

In the classification process, the 13404 images generated from the extracted features were classified.
Once the dataset used was unbalanced, consisting of approximately 70 % normal segments and
30 % abnormal segments, we performed a 10-fold stratified cross validation. In a typical (k-fold)



cross-validation method, a dataset S is first randomly partitioned into k equally-sized, disjoint
subsets (folds) S1, S2, ..., Sn. Each k fold is then in turn used as the test set, while the remaining
(k − 1) folds are used as the training set. A classifier is then constructed from the training set,
and its accuracy is evaluated on the test set. This process repeats k times, with a different fold
used as the test set each time. The estimated true accuracy by this method is the average over
the k folds. One distinct feature of cross-validation is that all the k test sets are disjoint, and
thus each case in the original training set is tested once and only once. An extension of regular
cross-validation is stratified cross-validation. In k-fold stratified cross-validation, a dataset S is
partitioned into k folds such that each class is uniformly distributed among the k folds. The result
is that the class distribution in each fold is similar to that in the original data set S. In this sense,
the partition is "balanced" in terms of class distributions. In contrast, regular cross-validation
randomly partitions S into k folds without considering class distributions. A possible scenario with
regular cross-validation is that a certain class could be distributed unevenly (some folds contain
more cases of the class than other folds). This distortion in class distributions can cause a less
reliable accuracy estimation [35].

Given that the classification models are trained using the images generated from the segments
of three seconds signal, it was necessary to group the predictions of the various segments to classify
the original PCG signals. In the evaluation of the classification of the segments belonging to the
same signal, a metric was used, in which only the signals with more than 60% of the segments
classified as normal, would be classified as normal.

Once the normal PCG signals came from healthy subjects and the abnormal ones from patients
with a confirmed cardiac diagnosis, the labels of the signals were assigned taking into account the
patients’ medical history, and not through the analysis of signals by a physician. This fact may
lead to the existence of signals with the abnormal label that do not present the characteristics
to be integrated in this class, in the whole signal studied, or in some of the segments of three
seconds studied. By using this metric, we are considering that it is possible for an abnormal signal
to contain segments of three seconds that are classified as normal. Different values were applied
for this metric, and the best results were obtained for the 60%.

Equations (6), (7) and (8) show the sensitivity, specificity and overall metrics, respectively,
which were used to evaluate the results. The measures were defined using True Positive (TP), True
Negative (TN), False Positive (FP) and False Negative (FN):

Sensitivity =
TP

TP + FN
(6)

Specificity =
TN

TN + FP
(7)

Overall =
Sensitivity + Specificity

2
(8)

5 Experimental results

In this work we explore the dataset that was made available at Physionet databases. The goal is to
discriminate between normal and abnormal hearts using PCG and ECG signals. We present a new
approach, whose main idea is to translate a 1D PCG signal into a 2D image that represents temporal
and MFCC features. After that, we use a binary classifier to learn a model that discriminates
between normal and abnormal PCG signals. This algorithm was developed using the R statistical
package. Next, we present and discuss the obtained results.

5.1 Results

During classification, the number of MFCC features to be used was treated as a hyper-parameter.
Several tests were performed, with a different number of MFCC features, in order to optimize the
classification results. Table 1 shows the results obtained with the different approaches, using 5 and
6 MFCC features, performed with the SVM, Random Forest (RF), K-means and CNN. The set
of features composed by 5 MFCC and the TF, showed better results than the set composed by 6
MFCC and the TF (with the exception of CNN). Among the classification algorithms, the best
results were obtained with SVM, followed by RF, K-means and CNN, in this order, as can be seen
in Table 1.



Type of features Classifier Sensitivity Specificity Overall
5 MFCC + TF SVM 0.9187 0.8205 0.8696
6 MFCC + TF SVM 0.9081 0.8034 0.8558
5 MFCC + TF RF 0.9789 0.4017 0.6903
6 MFCC + TF RF 0.9823 0.3418 0.6621
5 MFCC + TF K-means 0.7456 0.5556 0.6506
6 MFCC + TF K-means 0.7420 0.5556 0.6488
5 MFCC + TF CNN 0.8622 0.1538 0.5080
6 MFCC + TF CNN 0.1343 0.9487 0.5415

Table 1. Results obtained in the various tests performed.

Table 2 shows some results of the experiments where we studied the contribution of mapping
temporal features to improve the results obtained with the MFCC features alone. In this table
we present the results obtained with the classifiers SVM, RF, K-means and CNN, for two sets of
features, one composed by 4 MFCC only and another composed by 4 MFCC and TF.

Type of features Classifier Sensitivity Specificity Overall
4 MFCC + TF SVM 0.9647 0.7265 0.8456
4 MFCC SVM 0.9435 0.7094 0.8264
4 MFCC + TF RF 0.9788 0.4188 0.6988
4 MFCC RF 0.9647 0.4017 0.6832
4 MFCC + TF K-means 0.7951 0.4615 0.6283
4 MFCC K-means 0.8021 0.4274 0.6147
4 MFCC + TF CNN 0.5724 0.5812 0.5768
4 MFCC CNN 0.5018 0.5641 0.5329

Table 2. Results obtained, with or without inclusion of time features.

5.2 Analysis of the results

As already mentioned, the number of MFCC features used during classification was treated as a
hyper-parameter, and several experiments with a different number of MFCC have been performed.
The best results obtained are presented on tables 1 and 2. As can be seen in the tables, the best
results were obtained with the SVM radial basis. The best result was obtained with a set of five
MFCC features, together with the temporal features, with which a sensitivity of 0.9187, a specificity
of 0.8205 and an overall of 0.8696 were obtained. With the RF and K-means classifiers, the results
are not so good, because these classifiers have very low Specificity values, which consequently
reduces the Overall. This was due to the high number of false positives returned by the classifier,
as a consequence of this being the minority class of the dataset (approximately 30%), and the
classifier having a lower recognition rate of the signals belonging to this class. Regarding the
results obtained with the CNN, they fall below those obtained by Rubin et al. [27]. This can be
related with the amount of data explored: in this work we were able to use only 10% of the dataset
used by Rubin et al. As is well known, CNN performance is heavily related with the amount of
data used to learn the network. Typically, if more data is used to train, the better the results will
be [29]. In our work, we only used a small portion of the dataset due to the computational power
that was available.

In Table 2 we present a set of results performed with the various classifiers, in which two types
of features were used. In one case 4 MFCC were used together with the temporal features and in
the other case only 4 MFCC were used without the temporal features. Analyzing the results, it is
possible to conclude that the use of time features together with the MFCC, presents better results
than using the 4 MFCC alone, with cases where the overall gain is approximately 0.04.
The overall scores for the top entries of the PhysioNet Computing in Cardiology challenge were
very close [1]. The difference between the top place finisher overall (0.8602) and the 10th place
(0.8263) was just approximately 0.04. Although the dataset we use is only part of the one used
in the challenge, the class distribution is similar. Our best result is about 0.01 higher than the
winner of the challenge. The use of time features, along with the MFCC, had a fundamental role



in the obtained results, as it was demonstrated in the analysis of Table 2. Their presence led to an
improvement of the results in all the classifiers used and, in the case of SVM, led to an improvement
of approximately 0.02. Furthermore, our best performance was achieved using a single SVM radial
basis, whereas other top place finishers of the challenge achieved strong classification accuracies
with an ensemble of classifiers. In practical terms, a system that relies on only a single classifier, as
opposed to a large ensemble, has the advantage of limiting the amount of computational resources
required for classification.

6 Conclusions

We have used a SVM radial basis algorithm in the classification of heart sounds as normal or
abnormal, obtaining an accuracy of approximately 86.97%. The approach included the segmenta-
tion of the heart signal, identifying the four states of the heart cycle, and creating three second
signal segments. From these segments we extracted a group of MFCC features, which capture the
time-frequency distribution of signal energy, and a group of eight temporal features. The group
of features of each segment of three seconds were converted into an image, in the form of heat-
map, which was the input to our classifier - a SVM radial basis. The performance of the model
was evaluated and compared to other classifiers. The proposed approach outperforms all the other
classifiers, achieving 86.97% accuracy in the binary classification task of identifying normal and
abnormal heart sounds. Another classifier used was the CNN, which had worse results than the
other classifiers. One possible cause for this is the small size of the dataset used, since this algo-
rithm requires a large volume of data to converge. In the future we will investigate the usage of
our methodology in larger datasets, and explore other types of features (wavelets). The analysis of
the results showed that the unbalanced dataset might be problematic for identifying the minority
class, and the results could be improved by collecting more training data, and by balancing the
dataset. Furthermore, we intend to use CNN in larger datasets, in order to take full advantage of
its ability.
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