
“nesus-book”
2018/7/13
page 25

Chapter 2

PROGRAMMING MODELS AND RUNTIMES
Georges Da Costa1 and Alexey L. Lastovetsky2 and Jorge G.

Barbosa3 and Juan C. Díaz-Martín4 and Juan L.
García-Zapata5 and Matthias Janetschek6 and Emmanuel
Jeannot7 and João Leitão8 and Ravi Reddy Manumachu9

and Radu Prodan10 and Juan A. Rico-Gallego11 and Peter
Van Roy12 and Ali Shoker13 and Albert van der Linde14

Keywords: Performance Modelling, Energy Modelling, Heterogeneous Platforms,
Optimization Techniques, Cloud Computing; Edge Computing; Process Placement;
Graph Partition; Sustainability; Energy awareness; Availability; Scalability.

Several millions of execution flows will be executed in Ultrascale Computing
Systems (UCS), and the task for the programmer to understand their coherency and
for the runtime to coordinate them is unfathomable. Moreover, in link with USC
large scale and their impact on reliability the current static point of view is not more
sufficient. A runtime cannot consider to restart an application because of the failure
of a single node as statically several nodes will fail every days. Classical management
of these failures by the programmers using checkpoint-restart are also too limited due
to the overhead at such scale.

1University of Toulouse, France
2University College Dublin, Ireland
3Faculdade de Engenharia da Universidade do Porto, Portugal
4University of Extremadura, School of Technology, Spain
5University of Extremadura, School of Technology, Spain
6Institute of Computer Science, University of Innsbruck, Austria
7INRIA Bourdeaux Sud-Ouest, LaBRI, Université de Bourdeaux, France
8Universidade Nova de Lisboa, Portugal
9University College Dublin, Ireland
10Institute of Information Technology, University of Klagenfurt, Austria
11University of Extremadura, School of Technology, Spain
12Université Catholique de Louvain, Belgium
13HASLab, INESC TEC & University of Minho, Portugal
14Universidade Nova de Lisboa, Portugal

“nesus-book”
2018/7/13
page 26

26 Ultrascale Computing Systems

Emerging programming models that facilitate the task of scaling and extract-
ing performance on continuous evolving platforms, while providing resilience and
fault tolerant mechanisms to tackle the increasing probability of failures throughout
the whole software stack, are needed to achieve scale handling (optimal usage of
resources, faults), improve programmability, adaptation to rapidly changing under-
lying computing architecture, data-centric programming models, resilience, energy
efficiency.

One key element on the ultrascale front is the necessity of new sustainable
programming and execution models in the context of rapid underlying computing
architecture changing. There is a need to explore synergies among emerging program-
ming models and runtimes from HPC, distributed systems and big data management
communities. To improve the programmability of future systems, the main changing
factor will be the substantially higher levels of concurrency, asynchrony, failures and
heterogeneous architectures.

UCS need new sustainable programming and execution models, suitable in the
context of rapidly changing underlying computing architecture, as described in [7].
Advances are to be expected at three levels: Innovative programming models with
higher level abstraction of the hardware; breakthrough for more efficient runtimes at
large scale; cooperation between the programming models and runtime levels.

Furthermore all the programming ecosystem must evolve. A large number
of scientific applications are built on the message passing paradigm which needs
a global point of view during the programming phase and usually require global
synchronization during execution. But even at lower granularity, classical libraries
must evolve. As an example, a large number of scientists use the linear algebra
BLAS libraries for their optimized behavior on current supercomputers. Improving
the performance of this library on UCS would prove largely beneficial.

This chapter explores programming models and runtimes required to facilitate the
task of scaling and extracting performance on continuously evolving platforms, while
providing resilience and fault-tolerant mechanisms to tackle the increasing probability
of failures throughout the whole software stack. However, currently no programming
solution exists that satisfies all these requirements. Therefore, new programming
models and languages are required towards this direction. The whole point of view on
application will have to change. As we will show, the current wall between runtime
and application models leads to most of these problem. Programmers will need new
tools but also new way to assess their programs. Also, data will be a key concept
around which failure-tolerant high number of micro-threads will be generated using
high-level information by adaptive runtime. One complex element comes from the
difficulty to test these approaches as UCS systems are not yet available. Most of the
following explorations are extrapolated to UCS scale but only actually proven an
currently existing infrastructure.

The complexity of UCS computing architecture integrating in a hierarchical
heterogeneous way multicore CPUs and various accelerators makes many tradi-
tional approaches to the development of performance and energy efficient applica-
tions ineffective. New sustainable approaches based on accurate and sustainable
application-level performance and energy models have a great potential to improve

“nesus-book”
2018/7/13
page 27

Programming Models and Runtimes 27

the performance and energy efficiency of applications and create a solid basis for the
emerging USC programming tools and runtimes. Section 2.1 of this chapter covers
this topic by describing accurate models of the hardware and software usable during
the design phase, but also means or reasoning on these models. With these tools, it
becomes possible to adapt and tune finely applications during the design phase to run
efficiently on large scale heterogeneous platforms.

Optimizing UCS usage is difficult due to the large number of possible use-cases.
In particular ones such as Scientific workflow, it becomes possible to use a dedicated
abstraction. As scientific workflow scheduling for UCS is a major challenge, the
impact of proposing a particular abstraction along-with dedicated runtime harnessing
the particularities of this abstraction leads to a high improvement of the efficiency of
using a UCS. The approaches to solve this challenge are covered in section 2.2. In
this section, both the Abstract part (linked with the design and programming of the
workflow) and the Concrete part (linked with its actual scheduling and execution) are
described. This specific high-level abstraction shows that link between programming
models and runtime helps to simplify the task of programmers to harness the power
of the underlying large scale heterogeneous systems.

With the emergence of UCS, a new computing revolution is coming: Edge com-
puting. Instead of harnessing computing power directly from large scale datacenters,
new proposal comes from the possibility to interconnect and coordinate large num-
ber of distributed computing nodes. Due to the explosion of IoT applications the
aggregated Edge computing power is increasing extremely fast. These two systems
(Edge and UCS) share the difficulty to manage large number of distributed execution
flows in a dynamic and heterogeneous environment. These similarities is explored in
Section 2.3 where key elements of programming models and runtime for large scale
Edge computing are explored.

Due to the scale of UCS, even classical management operation of the platform
becomes complex. As an example, section 2.5 shows how a simple operation such as
graph partitioning becomes complex at large scale. This operation is central in the
management of a platform as it is needed to minimize communication between nodes
when used for placing the tasks. In this section several challenges are addressed such
as the scale but also the heterogeneity of tasks, computing nodes and networking
infrastructure.

This chapter concludes with a description of the main global challenges linked
to programming models, runtimes and the link between these two as described in
NESUS roadmap[6].

2.1 Using Performance and Energy Models for Ultrascale
Computing Applications

Ultrascale systems, including high performance computing, distributed computing
and big data management platforms, will demand a huge investment of heterogeneous

“nesus-book”
2018/7/13
page 28

28 Ultrascale Computing Systems

computing and communication equipment. Ensuring the availability of current and
future social, enterprise and scientific applications with efficient and reliable execution
on these platforms remains nowadays an outstanding challenge. Indeed, reducing
their power footprint while still achieving high performance has been identified as
a leading constraint in this goal. Model-driven design and development of optimal
software solutions should play a critical role in that respect.

Energy consumption is one of the main limiting factors for designing and deploy-
ing ultrascale systems.

Using monitoring and measurement data, Performance and Energy models con-
tribute to quantify and gain insights into the performance and power consumption
effects of system components and their interactions, including both hardware and the
full software stack. Analysis of the information provided by the models is then used
for tunning applications and predicting its behavior under different conditions, mainly
at scale.

This chapter describes methods, facilities and tools for building performance
and energy models, with the goal of aiding in the design, development and tunning
of data-parallel and task-parallel applications running on complex heterogeneous
parallel platforms.

2.1.1 Terminology
In this section, we describe the various terms related to power and energy predictive
models used in this work.

There are two types of power consumptions in a component: dynamic power and
static power . Dynamic power consumption is caused by the switching activity in the
component’s circuits. Static power is the power consumed when the component is
not active or doing work. Static power is also known as idle power or base power.
From an application point of view, we define dynamic and static power consumption
as the power consumption of the whole system with and without the given application
execution respectively. From the component point of view, we define dynamic
and static power consumption of the component as the power consumption of the
component with and without the given application utilizing the component during its
execution respectively.

There are two types of energy consumptions, static energy and dynamic energy.
We define the static energy consumption as the energy consumption of the platform
without the given application execution. Dynamic energy consumption is calculated
by subtracting this static energy consumption from the total energy consumption of
the platform during the given application execution. That is, if PS is the static power
consumption of the platform, ET is the total energy consumption of the platform
during the execution of an application, which takes TE seconds, then the dynamic
energy ED can be calculated as,

ED = ET � (PS⇥TE) (2.1)

“nesus-book”
2018/7/13
page 29

Programming Models and Runtimes 29

2.1.2 Performance Models of Computation
In this section, we survey prominent models used for prediction of the cost of compu-
tations in the execution of ultrascale computing applications.

The seminal models are the parallel random access machine (PRAM) [8], the
bulk-synchronous parallel model (BSP) [9], and the LogP model [10]. All these
models assume a parallel computer to be a homogeneous multiprocessor.

The PRAM is the most simplistic parallel computational model . It consists of p
sequential processors sharing a global memory. It assumes that synchronization and
communication is essentially cost free. However, these overheads can significantly
affect algorithm performance. Many modifications to the PRAM have been proposed
that attempt to bring it closer to practical parallel computers.

The BSP model is a bridging model that consists of p parallel/memory modules,
a communication network, and a mechanism for efficient barrier synchronization
of all the processors. A computation consists of a sequence of supersteps. During
a superstep, each processor performs synchronously some combination of local
computation, message transmissions, and message arrivals.

Finally, LogP (covered later in much detail) abstracts the performance of a system
with four parameters, L, o, g, and P, which stand for network delay, overhead or cycles
that a CPU devotes to sending the message, gap per message or minimum time
interval between two consecutive injections to the network, and, finally, number of
processes. It has been successfully used for developing fast and portable parallel
algorithms for (homogeneous) supercomputers and has become a foundation for
numerous subsequent models.

A dominant class models parallel computation by Directed Acyclic Graph (DAG)
where the nodes represent local computation and the edges signify the data depen-
dencies. This model forms the fundamental building block of runtime schedulers in
KAAPI [11], StarPU [12], and DAGuE [13].

Graphical models are commonly used to structure mesh-based scientific compu-
tations. The objective of a graph partitioning problem is then to divide the vertices
of the graph into approximately equal-weight partitions (balance computations) and
minimize the number of cut edges between partitions (minimize total runtime com-
munication) [14], [15], [16], [17].

We will now review performance models of computation for heterogeneous
platforms where they are even more paramount.

Performance Models of Computation for Heterogeneous HPC Platforms
Realistic and accurate performance models of computation are the fundamental

building blocks of data partitioning algorithms. Over the years, load balancing algo-
rithms developed for performance optimization on parallel platforms have attempted
to take into consideration the real-life behavior of applications executing on these
platforms. This can be discerned from the evolution of performance models for
computation used in these algorithms.

The simplest models used positive constant numbers and different notions such
as normalized processor speed, normalized cycle time, task computation time, average
execution time, etc to characterize the speed of an application [18], [19], [20]. A

“nesus-book”
2018/7/13
page 30

30 Ultrascale Computing Systems

common crucial feature of these efforts is that the performance of a processor is
assumed to have no dependence on the size of the workload.

The most advanced load balancing algorithms use functional performance models
(FPMs) , which are application-specific and represent the speed of a processor by
continuous function of problem size but satisfying some assumptions on its shape
[21],[22],[23],[24]. These FPMs capture accurately the real-life behaviour of applica-
tions executing on nodes consisting of uniprocessors (single-core CPUs).

Modern multicore platforms have complex nodal architectures with highly hier-
archical arrangement and tight integration of processors where resource contention
and Non-uniform Memory Access (NUMA) are inherent complexities. On these
platforms, load balancing algorithms based on the traditional and state-of-the-art
performance models (FPMs) will return sub-optimal solutions due to the complex
nature of the performance models. Therefore, there is a need for novel performance
models of computation that take into account these inherent complexities.

Lastovetsky et al. [25], [26] present an advanced performance model of compu-
tation (FPMs) that contains severe variations reflecting the resource contention and
NUMA inherent in the modern multicore platforms. These models (or performance
profiles) have complex shapes (non-linear, non-convex), which do not satisfy the
assumptions on shape that allow load balancing algorithms based on smooth FPMs to
return optimal workload distribution. The authors then propose data partitioning algo-
rithms that use these advanced FPMs as building blocks to minimize the computation
time of the parallel application.

2.1.3 Performance Models of Communications
This section fairly describes the issue of optimizing communication using analytical
representations of the transmissions departing from a given workload balance of the
computation between the processes of an application. We also introduce foundational
analytical communication performance models and we apply one of the models to an
example of a real-world kernel.

Ultra-scale Computer Systems are composed of heterogeneous multi-core pro-
cessors and accelerators, connected by a hierarchy of communication channels. Such
heterogeneity is partially due to the necessity of increasing the system performance
keeping the energy cost at a reasonable level. Scientific applications executing on
UCS platforms are composed of kernels, computationally intensive tasks conceived
for being executed by a set of heterogeneous processors. Usually, every processor
runs the same code on a different data region of a global data space. UCS applications
face the challenge of obtaining as much performance as possible from the specific
platform.

During execution of a kernel, each of the processes needs data from other pro-
cesses to compute its own values. Therefore, the necessity of communication appears
periodically during its execution. The challenge is not only to balance the overall
computational load of the kernel among the available computing resources, but also
to optimize the completion time of its communications.

Current approach is based on design and implement evaluation tests, execute
them in the target platform, hence consuming computational resources along a signifi-

“nesus-book”
2018/7/13
page 31

Programming Models and Runtimes 31

cant amount of time, and extrapolate estimations obtained to the whole application.
A model-based methodology replaces the previous test-based approach by a fully
analytical modeling of the behavior of the application. Optimization of computation
and communication in data parallel applications are usually addressed separately.
First, computational load is distributed between processors according to their capa-
bilities, following different approaches (see section 2.1.2). Then, communication
optimization is addressed by building communication performance models and apply-
ing them for searching a distribution of the data space to the processes that reduces
the communication cost.

A communication performance model provides with an analytic framework that
represents communications as a parameterized formal expression. The evaluation of
this expression determines the cost of the communication in terms of time, as function
of system parameters. Many models have been proposed, covering different aspects of
the communication. They can be generally classified in two types: hardware models
and software models. Following, we introduce some of the representative models of
each type.

Hardware models use hardware related parameters to build the analytical expres-
sion representing the cost of communications. LogP [10] is a foundational model
representing the cost of a communication by four parameters: L is the network
delay, and represent the latency of the network, o is the overhead or cycles that
a CPU devotes to send the message, g is the gap per message and represents the
minimum time interval between two consecutive injections to the network, and, fi-
nally, P is the number of processes. LogP model was improved by LogGP [27],
which includes a new parameter G (gap per message) allowing to represent the in-
fluence of the network bandwidth in the transmission of large messages. In LogGP,
the cost of a point-to-point transmission of a message of size m is represented as:
Tp2p(m) = 2o+L+(m�1)G. More advanced models have been proposed, as PLogP
[28], that considers parameters gap per message and overhead linear functions of
the message size, achieving higher accuracy. Derived models have been proposed to
represent communication costs in heterogeneous platforms, by extending previous
purely homogeneous models with additional parameters representing specific features
of the platform, as HLogGP [29] and LMO [30].

Software models address the modeling of the middleware costs of a communica-
tion. They abstract from hardware and use middleware-related parameters to build
analytical expressions representing the costs associated to data movement. lognP [31]
considers a point-to-point transmission as a sequence of transfers (copies) through
intermediate buffers between the endpoints of a homogeneous platform. The aggre-
gation of the costs of the individual transfers yields the cost of the transmission in
an expression as: T (m) = Ân�1

i=0 (oi + li), where o (overhead) is the per transfer time
dedicated by the CPU to a contiguous message, and the latency l is the additional
cost if the message is non-contiguous in memory. t-Lop model [32, 33] addresses
the challenge of accurately modeling MPI communications on heterogeneous ultra
scale platforms. It relies on the concept of Concurrent Transfers of data, and uses this
concept as a building block to represent the communications on hierarchical communi-
cation channels, capturing the impact of contention and process mapping. The cost of

“nesus-book”
2018/7/13
page 32

32 Ultrascale Computing Systems

a point-to-point message transmission is modeled using two parameters: the overhead
oc(m) represents the time needed to start the injection of data in the communication
channel c from the invocation of the operation, and the transfer time Lc(m,t) is the
time invested in each one of the data movements composing the transmission, and
depends on the message size and the number of concurrent transfers progressing
through the channel c. The parameter t allows to the model to represent the cost de-
rived from contention, and hence the channel bandwidth sharing, appearing naturally
in collective and kernel communications. The t-Lop expression describing the cost
of a message transmission in n equal transfers is T c(m) = oc(m)+n⇥Lc(m,1). To
represent the cost in complex heterogeneous platforms, t-Lop adopts a compositional
approach for representing the concurrency of full point-to-point transmissions, by
using the concurrency operator ||. As an example, the cost of the pair of concurrent
transmissions is represented as T c(m) || T c(m) = 2 || T c(m) = oc(m)+n⇥Lc(m,2).
Note how the amount of concurrent transmissions represented using the concurrency
operator is propagated to the t parameter of the transfers.

Using analytical models to optimize performance of complex heterogeneous
kernels requires a high level of accuracy in the predictions and enough representation
capabilities for the high amount of convoluted communications of the processes.
Accuracy has to do with the representation of the cost, but also with the parameter
measurement in the specific platform. A methodology for measuring the parame-
ter values that captures the parameter meaning is essential for achieving accurate
predictions of the communication cost.

Following, we develop an example of a simple communication optimization for
a real data parallel kernel. The kernel (named Wave2D) uses the technique of finite
differences to numerically solve the following wave equation in a N⇥N data space:

∂ 2u
∂ t2 = c2

✓
∂ 2u
∂x2 +

∂ 2u
∂y2

◆
(2.2)

Along time t, u(x,y, t + 1) is generated from its previous instances u(x,y, t) and
u(x,y, t�1). The left side of Fig. 5 shows this matrix at a given step of the algorithm.

The communication optimization procedure departs from a previously established
process distribution to the resources of the platform, involving multicore CPUs and
accelerators. The first step is to balance the computational load between the processors.
In a heterogeneous platform the processors have different computing capabilities,
therefore, this step involves the characterization of the speeds of the processes by a
vector s = {s0, . . . ,sP�1}, and the assignation to pi of an amount of data proportional
to its speed si. Usually, such speed characterization is done through benchmarking,
that outputs a speed number per process, or a function describing the speed as a
function of the task size (see section 2.1.2).

Regions of data distributed to the processes must tile the entire data space.
Partitioning and distributing the data space in P regions of sizes proportional to s is
subject to multiple variations, called data mappings . Alternatives data mappings
can be evaluated to choose that which minimizes the communication cost. Note
that, for the set of possible data mappings, every process performs the same amount
of computational work on a different set of data points, and hence, the workload

“nesus-book”
2018/7/13
page 33

Programming Models and Runtimes 33

balance does not change, but does the communication cost. An example of a data
mapping is shown at the right part of Figure 2.1. It represents the kernel running in
an experimental platform composed of two nodes identified by a background color.
The P = 8 processes communicate through shared memory or network depending on
their location. Inside each node, each process may run on a set of assigned resources
of different type. FuPerMod tool [34] was used to provide a load-balanced partition
following a column-based approach [35]. Partitioning algorithms do not take into
account the communication cost of the kernel, but only the relative speed of the
processes. In this example, we use t-Lop analytical framework to find a more efficient
data mapping in terms of its communication costs.

In homogeneous systems, models of point-to-point and collective operations
basically contains expressions in the forms n || T c(m) representing the cost of n con-
current transmissions of a message of size m through a communication channel c, and
T c(m1) || T c(m2), representing the cost of a sequence of two transmissions of differ-
ent message sizes through the same communication channel. Communication models
in heterogeneous systems become more complex. t-Lop provides with extensions
to evaluate these types of complex expressions [33] which shuffle concurrent and
sequential transmissions of different message lengths progressing through the same
or different communication channel, e.g. T c1(m1) || T c2(m2). Anyway, expressions
of actual kernels rapidly become complex enough to require an automatic evaluation.
The t-Lop toolbox15 is a package that provides with a C++ function interface to
describe and automatically evaluate the communication cost expressions of a data
parallel kernel. Their inputs are the t-Lop parameters built for the platform and a
description of the data mapping and the kernel communications, both point-to-point
and collectives. The toolbox provides with facilities to provide such description and
to efficiently evaluate its communication cost. It allows to evaluate efficiently a set of
partitions, leading to an optimal election.

15http://hpc.unex.es/taulop

Figure 2.1: Left: visualization of discrete solution u(x,y, t) of a wave equation in a
N⇥N data mesh with N = 128, at time t = 102, for particular initial and boundary
conditions. Right: an example data space partition and distribution to P = 8 processes
with different computational capabilities running in two nodes (background color).

“nesus-book”
2018/7/13
page 34

34 Ultrascale Computing Systems

Algorithm 1 Code for evaluating the communication cost of the Wave2D kernel in a
heterogeneous platform.
int P = 8;
int nodes = {0, 1, 0, 1, 0, 1, 1, 1}; // Node mapping
Process *p[P];
int *h[P];
for rank in {0, P-1}:
p[rank] = new Process (rank, nodes[rank]);
for rank in {0, P-1}:
h[rank] = new Neighbors (p);
TauLopConcurrent *conc = new TauLopConcurrent ();
for rank in {0, P-1}:
TauLopSequence *seq = new TauLopSequence ();
for dst in {h[rank]}:
m = getMsgSize (p, dst) * sizeof(double);
seq!add (new Transmission (p[rank], p[dst], m));
conc!add(seq);
TauLopCost *tc = new TauLopCost ();
conc!evaluate (tc);
double t = tc!getTime ();

As shown in the right part of Figure 2.1, at each time t + 1, every data point
in matrix New is calculated as a combination of the neighbor points in matrix Cur,
which requires a previous communication stage of the needed data from neighbor
processes at step t. Such communications are represented in the figure for process
p1. As the computation is (unevenly) load balanced, all processes come into the
communication phase at the same time. Hence, all processes interchange their
boundaries simultaneously. From this assumption, we can derive a communication
cost expression of the kernel:

Q = t⇥
"

P�1
||

p=0
Qp

#
, with Qp = Â

i2hp

T c(i)(m(i)). (2.3)

All of the processes communicate concurrently, so the total cost Q is calculated using
the concurrency operator || for every process communication over t steps. A process
p transmits its boundary data to its neighbor processes (the set hp) using the channel
c(i) for transmitting the message of size m(i) to the neighbor i. The transmissions of
a process to its neighbors are accomplished sequentially, hence the sum.

Extending previous cost expression to every individual cost transmission is in-
deed complex enough to require evaluation using an automatic tool. Code 1 uses
t-Lop toolbox to describe and evaluate the previous cost model representing the
communications and data mapping of the kernel. Array node represents the mapping
of processes to nodes, numbered 0 and 1. Following, an array of processes is created,
with the rank number and mapping node of each Process. Then, Neighbors()
function is used to create the neighbor set of each process (hp). Neighbor sets are

“nesus-book”
2018/7/13
page 35

Programming Models and Runtimes 35

specific for a given arrangement of the rectangles in the data space (data mapping)
and determine the destination and amount of data transmitted through different com-
munication channels, and, as a consequence, the final cost. As an example, Figure 2.2
shows two partitions with different communication costs. At the left figure the number
of data points in process p5 boundaries for transmitting through the network to pro-
cesses in h5 = {0,1,2} is 76, while at the right figure, with h 05 = {0,3,7}, the number
is 40, reducing the transmissions through the slower network communication channel,
and hence, the cost. The rest of the code composes and evaluates the cost for the
specific partition. The cost expression is composed using the TauLopConcurrent
and TauLopSequence objects. All Transmissions added to a TauLopSequence
object will be evaluated under the assumption that they progress sequentially. Then,
TauLopSequence objects added to a TauLopConcurrent object will be eval-
uated under the assumption that they progress concurrently, applying the transfer
time parameter values for specific m and t . The communication channel used for
each transmission is internally figured out from the node location obtained from the
processes. Finally, TauLopCost object evaluates the cost expression and returns a
time in seconds.

By executing the algorithm using all possible data mappings, the optimum
arrangement is obtained. Actually, this procedure is unfeasible when the number
of processes grows, because the number of combinations grows exponentially. In
practice, only a reduced set of possible data mappings is evaluated. A straightforward
heuristic-based optimization decision for Wave2D, proposed by Malik et al [36], is
based on the rearrangement of the regions assigned to processes running on the same
node to be as close as possible, which decreases the network communication, more
expensive in terms of time.

2.1.4 Power and Energy Models of Computation
In this section, we will survey research works that have proposed power and energy
predictive models for optimization of applications for energy on ultrascale systems.

There are several ways to classify power and energy predictive models for
ultrascale computing systems and applications.

0

40

102

128

50
p1

p5

p6

Cur

0

128

40 74

p2 p4

p3

p0

p5

p7

36

86

0

62

102

128

p5

0

128

p1

p6

40 94

p2p4

p3

p0

p5

p7

36

86

50

Figure 2.2: Rearranging the data regions assigned to processes in the 2D mesh data
space in such a way that network transmissions have been minimized.

“nesus-book”
2018/7/13
page 36

36 Ultrascale Computing Systems

First classification is based on three dominant approaches used for modeling
power and energy consumption.

• System-level: The approach is to use system-level physical measurements using
power meters.

• On-chip sensors: On-chip sensors supplied by the vendors and their APIs are
used for obtaining the power and energy consumptions.

• Performance Monitoring Events (PMCs): This dominant approach uses the
PMCs provided by a vendor as parameters for the models.

Second classification is based on the characteristic Level of abstraction, which
specifies how the model captures the inherent hierarchical and heterogeneous nature
of modern processor architectures.

• Linear Independence - All the components of a node are modeled indepen-
dently. The model for a node is a linear combination of the models of its
components.

• Linear Dependence - The components of a node are modeled taking into
account the dependencies (shared structures) between them and expressing these
dependencies linearly. For example:
– The models for CPUs are constructed taking into account the shared re-

sources (Last level cache) between them.
– For an application employing both CPUs and accelerators, the models for

CPUs and the accelerators are constructed taking into account the shared
resources (last level cache) between the CPUs and the communication link
(PCIe) connecting the CPUs and the accelerators.

• Non-linear Independence - All the components of a node are modeled inde-
pendently. However, the model for a node is a non-linear combination of the
models of its components.

• Non-linear Dependence - This is the most complex model. The components
and dependencies between them (shared resources, communication links) are
modeled non-linearly by taking into account their inherent hierarchical and
heterogeneous nature.

From our survey, almost all the models fall into the category of linear indepen-
dence.

However, we divide our survey into categories using the following more readable
classification: a). Models for CPUs, b). Models for GPUs, c). Models for Xeon Phis
and FPGAs, d). Application-specific models, and e). Critiques of PMC-based models.

Owing to length constraints, we will look at only the most prominent works in
each category.

Power and Energy Models for CPUs. The first notable model in this category
is [37], which is based on events such as integer operations, floating-point operations,
memory requests due to cache misses, etc. that the authors believed to strongly
correlate with power consumption. Icsi et al. [38] propose a methodology to determine
unit-level power estimates based on hardware performance counters. They select
22 strictly collocated physical units based on an annotated P4 die photo. The total
power consumption is then estimated as the sum of the power consumptions of the

“nesus-book”
2018/7/13
page 37

Programming Models and Runtimes 37

22 physical units plus the base power. The power estimate for each unit is a linear
function of the access rate of it, with the exception of few issue logic units where an
extra parameter is introduced to model the non-linear behavior.

Several models employed as predictor variables utilization metrics of the key
components such as CPU, memory, disk, and network. The most comprehensive
model in this group is proposed in [39] that used as parameters, the utilization metrics
of CPU, disk, and network components and hardware performance counters for
memory. Here, the general model can be described as follows:

P =Cbase +C1⇥UCPU +C2⇥UMem +C3⇥UDisk +C4⇥UNet (2.4)

where Cbase is the base power consumption of a node and UCPU , UMem, UDisk, and
UNet are the CPU, memory, disk, and network utilizations respectively.

Basmadjian et al. [40] construct a power model of a server as a summation of
power models of its components, the processor (CPU), memory (RAM), fans, and
disk (HDD). Bircher et al. [41] propose a non-linear model to predict power using
PMCs. They use PMCs that trickle down from the processor to other subsystems such
as CPU, disk, GPU, etc and PMCs that flow inward into the processor such as Direct
Memory Access (DMA) and I/O interrupts.

Power and Energy Models for GPUs. GPUs are now an integral part of high
performance computing systems due to their enormous computational powers and
energy efficiency (performance/watt). In a node, the GPU is used as a coprocessor
and is connected to a CPU through a PCI-Express (PCIe) bus. Work is offloaded from
a CPU to the GPU.

The first comprehensive model developed for GPUs was by [42]. The GPU
power consumption in their prediction model is modelled similar to the PMC-based
unit power prediction approach of [38]. In their model, the power consumption
is calculated as sum of power consumptions of all the components composing the
Streaming Multiprocessor (SM) and GDDR memory.

Majority of other models employ machine learning methods. [43] propose power
and energy prediction models that employ a configurable, back-propagation, artificial
neural network (BP-ANN). The parameters of the BP-ANN model are ten carefully
selected PMCs of a GPU. The values of these PMCs are obtained using the CUDA
Profiling Tools Interface (CUPTI) [44] during the application execution. [45] use
the technique of program slicing to model GPU power consumption. The source code
of an application is decomposed into slices and these slices are used as basic units to
train a power model based on fuzzy wavelet artificial neural networks (FWNN). So,
unlike earlier research efforts which use PMCs, slicing features are extracted from
the programs and used in their model.

Power and Energy Models for Xeon Phis and FPGAs. In this category, we
cover the other accelerators that are used in high performance computing systems.

There is an abysmal shortage of power and energy prediction models for Xeon
Phis. We found just one for Xeon Phis even though this accelerator enjoys a noticeable
space in the Top500 [46] supercomputers. [47] construct an instruction-level energy
model of a Xeon Phi processor and report an accuracy between 1% and 5% for real
world applications.

“nesus-book”
2018/7/13
page 38

38 Ultrascale Computing Systems

To the best of our knowledge, there are no linear regression models using PMCs
because PMCs are not yet offered by FPGAs. [48] construct a linear energy prediction
model based on instruction level energy profiling. [49] propose a linear component-
based model to predict energy consumption of a reconfigurable Multiprocessors-on-a-
Programmable-Chip (MPoPCs) implemented on Xilinx FPGAs. [50] propose a linear
instruction-level model to predict dynamic energy consumption for soft processors in
FPGA. The model considers both inter-instruction effects and the operand values of
the instructions.

Application-specific Models. Here, we present studies for saving power and
energy in HPC applications. Previous sections dwelt on power and energy models for
dominant components in a node that predicted power and energy consumptions for
all kinds of applications executing on these components. Our focus in this category is
application-specific.

Lively et al. [51] propose application-centric predictive models for power con-
sumption. For each kernel in an application, multivariate linear regression models for
system power, CPU power, and memory power are constructed using PAPI perfor-
mance events [52] as predictors.

[53] compare the power consumptions of two high performance dense linear
algebra libraries i.e., LAPACK and PLASMA. Their results show that PLASMA
outperforms LAPACK both in performance as well as energy efficiency.

[54], [55] propose system-wide power prediction models for HPC servers based
on performance counters. They cluster real-life HPC applications into groups and
create specialized power models for them. They then use decision trees to select an
appropriate model for the current system load.

Lastovetsky et al. [56] present an application-level energy model where the
dynamic energy consumption of a processor is represented by a function of problem
size. Unlike PMC-based models that contain hardware-related PMCs and do not
consider problem size as a parameter, this model takes into account highly non-linear
and non-convex nature of the relationship between energy consumption and problem
size for solving optimization problems of data-parallel applications on homogeneous
multicore clusters for energy.

Critiques of PMC-based models. In this category, we review attempts that have
critically examined and highlighted the poor prediction accuracy of PMCs for energy
predictive modeling.

Economou et al. [39] highlight the fundamental limitation, which is the inability
to obtain all the PMCs simultaneously or in one application run. They also mention the
lack of PMCs to model energy consumption of disk I/O and network I/O. McCullough
et al. [57] evaluate the competence of predictive power models for modern node
architectures and show that linear regression models show prediction errors as high as
150%. They suggest that direct physical measurement of power consumption should
be the preferred approach to tackle the inherent complexities posed by modern node
architectures. Hackenberg et al. [58] present a study of various power measurement
strategies, which includes Intel RAPL [59]. They report that the accuracy of RAPL
depends on the type of workload and is quite poor for workloads that use the hyper-
threading feature. They also report that the accuracy is poor for applications with

“nesus-book”
2018/7/13
page 39

Programming Models and Runtimes 39

small execution times and becomes better only for applications with longer execution
times since the predictions are energy averages.

O’Brien et al. [60] survey predictive power and energy models focusing on the
highly heterogeneous and hierarchical node architecture in modern HPC computing
platforms. Using a case study of PMCs, they highlight the poor prediction accuracy
and ineffectiveness of models to accurately predict the dynamic power consumption
of modern nodes due to the inherent complexities (contention for shared resources
such as Last Level Cache (LLC), NUMA, and dynamic power management). Arsalan
et al. [61] propose a novel selection criterion for PMCs called additivity, which
can be used to determine the subset of PMCs that can potentially be considered for
reliable energy predictive modelling. They study the additivity of PMCs offered by
two popular tools, Likwid [62] and PAPI [52], using a detailed statistical experimental
methodology on a modern Intel Haswell multicore server CPU. They show that many
PMCs in Likwid and PAPI are non-additive and that some of these PMCs are key
predictor variables in energy predictive models thereby bringing into question the
reliability and reported prediction accuracy of these models.

Prominent Surveys on Power and Energy Predictive Models.
In this category, we present recent surveys summarizing the power and energy

efficiency techniques employed in high performance computing systems and applica-
tions.

Mobius et al. [63] present a survey of power consumption models for single-
core and multicore processors, virtual machines, and servers. They conclude that
regression-based approaches dominate and that one prominent shortcoming of the
these models is that they use static instead of variable workloads for training the
models.

Inacio et al. [64] present a literature survey of works using workload characteriza-
tion for performance and energy efficiency improvement in HPC, cloud, and big data
environments. They report a remarkable increase in research papers proposing energy
modelling and energy efficiency techniques from 2009 to 2013 thereby suggesting an
increasing importance of energy saving techniques in the HPC, cloud, and big data
environments.

Tan et al. [65] survey the research on saving power and energy for HPC linear
algebra applications. They separate the surveyed efforts into two categories: 1) Power
management in HPC systems and 2) Power and energy efficient HPC applications
(Cholesky, LU, QR). They construct a linear model of a HPC system as a summation
of power consumptions of all the nodes in the system. The power consumption of a
node is modelled as the sum of all the major components (CPU, GPU, RAM) of a
node.

Dayarathna et al. [66] present an in-depth and voluminous survey on data center
power modelling.

O’Brien et al. [60] survey the state-of-the-art energy predictive models in HPC
and present a case study demonstrating the ineffectiveness of the dominant PMC-
based modeling approach for accurate energy predictions.

“nesus-book”
2018/7/13
page 40

40 Ultrascale Computing Systems

2.1.5 Holistic Approaches to Optimization for Performance and
Energy

In this section, we will review research that has proposed solutions for optimization
of scientific applications on ultrascale platforms for both performance and energy. We
believe that realistic and accurate performance and energy models of computations and
communications are fundamental to the effectiveness of these solution approaches.

The methods solving the bi-objective optimization problem for performance and
energy (BOPPE) can be broadly classified as follows:

• System-level: Methods that aim to optimize several objectives of the system
or the environment (for example: clouds, data centers, etc) where the applica-
tions are executed. The leading objectives are performance, energy consump-
tion, cost, and reliability. A core characteristic of the methods is the use of
application-agnostic models for predicting the performance of applications and
energy consumption of resources in the system.

• Application-level: Methods focusing mainly on optimization of applications for
performance and energy. These methods use application-level models for pre-
dicting the performance and energy consumption of applications. This category
can be further sub-classified into methods that target intra-node optimization and
methods that target both intra-node and inter-node optimization.

System-level: Mezmaz et al. [67] propose a parallel bi-objective genetic algo-
rithm to maximize the performance and minimize the energy consumption in cloud
computing infrastructures. Fard et al. [68] present a four-objective case study compris-
ing performance, economic cost, energy consumption, and reliability for optimization
of scientific workflows in heterogeneous computing environments. Beloglazov et al.
[69] propose heuristics that consider twin objectives of energy efficiency and Quality
of Service (QoS) for provisioning data center resources. Kessaci et al. [70] present
a multi-objective genetic algorithm that minimizes the energy consumption, CO2
emissions, and maximizes the generated profit of a cloud computing infrastructure.
Durillo et al. [71] propose a multi-objective workflow scheduling algorithm that
maximizes performance and minimizes energy consumption of applications executing
in heterogeneous high-performance parallel and distributed computing systems.

Application-level: Freeh et al. [72] propose an intra-node optimization approach
that analyzes the performance-energy trade-offs of serial and parallel applications
on a cluster of DVFS-capable AMD nodes. In their study, they consider three intra-
node parameters to characterize the performance and energy of serial and parallel
applications. Ishfaq et al. [73] formulate a bi-objective optimization problem for
power-aware scheduling of tasks onto heterogeneous and homogeneous multicore
processor architectures. Their solution method targets intra-node optimization. They
consider intra-node parameters such as DVFS, computational cycles, and core ar-
chitecture type. Balaprakash et al. [74] is an intra-node optimization approach that
explores trade-offs among power, energy, and performance using various application-
level tuning parameters such as number of threads and hardware parameters such as
DVFS.

“nesus-book”
2018/7/13
page 41

Programming Models and Runtimes 41

Drozdowski et al. [75] propose a concept called an iso-energy map, which
represents points of equal energy consumption in a multi-dimensional space of system
and application parameters. They study three analytical models, two intra-node and
one inter-node. For the inter-node model, they consider eight parameters. From all the
possible combinations of these parameters, they study twenty-eight combinations and
their corresponding iso-energy maps. However, one of the key assumptions in their
model is that the energy consumption is constant and independent of problem size.
Marszakowski et al. [76] analyze the impact of memory hierarchies on performance-
energy trade-off in parallel computations. They study the effects of twelve intra-node
and inter-node parameters on performance and energy. In their problem formulations,
they represent performance and energy by two linear functions of problem size, one
for in-core computations and the other for out-of-core computations.

Reddy et. al. [77] study the bi-objective optimization problem for performance
and energy (BOPPE) for data-parallel applications on homogeneous clusters of
modern multicore CPUs, which is based on only one but heretofore unstudied decision
variable, the problem size. They present an efficient and exact global optimization
algorithm that solved the BOPPE. It takes as inputs, functions of performance and
dynamic energy consumption against problem size, and outputs the globally Pareto-
optimal set of solutions. These solutions are the workload distributions, which achieve
inter-node optimization of data-parallel applications for performance and energy.

2.2 Impact of Workflow Enactment Modes on Scheduling and
Workflow Performance

In the past decade, computer architectures have experienced an important paradigm
shift. From a single processor containing a few homogeneous cores, computers have
evolved to complex dynamic systems containing tens or hundreds of heterogeneous
computing resources, the so-called manycore computers. Despite these trends, the
majority of popular parallel programming languages, development tools and compilers
remain to be based on the old symmetric multi-processing paradigm. Past efforts to
make parallel computers more accessible for programmers resulted in a multitude
of different and often incompatible programming libraries and language extensions,
including successful standards like OpenMP, OpenCL and MPI.

On distributed computing infrastructures (DCIs), scientific workflows emerged in
industry, business and science as an easy way to develop large-scale applications as a
composition of smaller loosely-coupled components [78]. Existing DCI workflow
engines are currently mature and come with rich ecosystems which support the user
in all aspects of a workflow lifecycle from creating to execution, monitoring and
results retrieval, interfaced towards the domain scientists and ease of use rather than
the computer science underneath [79, 80, 81, 82, 83, 84]. Because of the similarity
in terms of scale and heterogeneity, workflow systems represent today a promising
alternative for development and execution of scientific applications on shared memory
heterogeneous manycore architectures. However, existing workflow engines targeted
at DCIs are prone to high overheads and latencies [1]. While such overheads are

“nesus-book”
2018/7/13
page 42

42 Ultrascale Computing Systems

acceptable on DCIs, tightly-coupled manycore computers are much more sensitive to
latencies and other form of overheads.

To overcome these problems, Janetschek et al. [1] presented a Manycore Workflow
Runtime Engine (MWRE) that efficiently exploits the low latency characteristics of
heterogeneous manycore computers and which performs significantly better than
traditional workflow engines on manycore computers.

There are two different strategies for enacting a workflow determining how and
when the workflow engine evaluates a workflow execution plan: early and late evalu-
ation mode. In theory, early enactment mode produces a better workflow schedule,
while also having more enactment overhead. Late enactment mode theoretically
produces a worse workflow schedule, while having less enactment overhead. The
practical implications of early and late enactment modes on scheduling performance
are still unclear, therefore, in this work we simulated the execution of a large number
and variety of random MWRE workflows with both early and late evaluation mode
to gain more insights on how much early evaluation mode improves scheduling per-
formance and to be able to deduct some guidelines on when to use early evaluation
mode and when to use late evaluation mode.

Next, the following topics are addressed. Section 2.2.1 introduces the scientific
workflow model, followed by an introduction to workflow enactment in Section 2.2.2
and to workflow scheduling in Section 2.2.3. Section 2.2.4 explains the MWRE
workflow engine for manycores. Section 2.2.5 discusses the theoretical implications
of an incomplete workflow execution plan on scheduling, followed by an explanation
of the methodology used to conduct the experiments presented in Section 2.2.6.
Section 2.2.7 discusses experimental results, and Section 5.3.5 presents conclusions.

2.2.1 Scientific Workflow Model
A workflow consists of two parts: an abstract part and a concrete part. A short
overview of these two parts is presented next.

Workflow Abstract Part

Figure 2.3: Abstract part of a
scientific workflow.

The abstract part (see Figure 2.3) of a scientific work-
flow comprises a hardware and middleware agnostic
(and therefore portable) description of its structure,
the activities involved (identified by a unique name
and a type), and the data and control-flow dependen-
cies between the activities. The individual activities
are treated as black-boxes where only the input and
output signatures are known.

There are usually two different types of work-
flow activities:

1. Atomic activities are basic indivisible units of
computation;

“nesus-book”
2018/7/13
page 43

Programming Models and Runtimes 43

2. Composite activities combine several fine gran-
ular activities, including atomic and other com-
posite activities, to form coarse grained activities
and impose a control flow on the contained inner
activities.

Typical composite activities are sequential and parallel loops, conditional activi-
ties and sub-workflows.

Workflow Concrete Part
The concrete part of a workflow contains the hardware and middleware-dependent im-
plementations of the atomic activities and their accompanying meta-information. This
part is often highly specific to each individual workflow system and the underlying
computing infrastructure. It usually contains information about the available activity
implementations, locations where they are installed, how they can be executed, and
any other further information intended to help the workflow engine in selecting the
most appropriate activity implementation.

2.2.2 Workflow Enactment
A workflow engine executes a workflow instance (operation usually called workflow
enactment) by traversing the DAG representing the workflow structure, determining
the state of the individual activities, transferring data from finished activities to their
successors in the dependency graph, unrolling composite activities and replacing
them with the resulting subgraph, and delegating the actual execution of atomic
activities to the scheduling and execution subsystems. We call the resulting DAG,
where composite activities have been replaced with their contained subgraphs and
enriched with additional state information, a workflow execution plan (WEP) .

We distinguish between two types of workflow enactment modes [1]:

1. Early enactment mode, where the engine reevaluates the WEP as soon as there
are activity state changes, and completes it as early as possible. This mode
usually comes with a much higher overhead, but results in a more complete
WEP comprising more information, which allows the scheduler to better plan the
workflow execution on the underlying resources;

2. Late enactment mode (also called lazy evaluation mode), where the engine only
partially reevaluates and completes the WEP when it is absolutely necessary for
further workflow enactment. This mode has less overhead, but also results in a
less complete WEP with less information available for the scheduler to plan the
workflow execution.

2.2.3 Workflow Scheduling
Workflow scheduling describes the process of mapping atomic activities to available
computing resources where they are executed. The resulting mapping of activities
to computing resources is called workflow schedule. The scheduler optimizes the

“nesus-book”
2018/7/13
page 44

44 Ultrascale Computing Systems

workflow schedule by maximizing or minimizing a given utility function, typically
the overall execution time. Some scheduler implementations take more than one
objective into account, some of which being in conflict with each other and requiring
multi-objective optimization [85], or by considering one variable as a constraint [86]
while optimizing the other.

Generating a full-ahead schedule is an NP-hard problem [87] and therefore, most
existing full-ahead scheduling methods are approximate heuristic algorithms [88].
Existing scheduling heuristics can be broadly divided into the two following cate-
gories [89]:

1. Just-in-time scheduling algorithms: only consider the next activities to be
scheduled when deciding on a mapping and ignore the rest of the WEP. They are
usually linear in complexity with the number of activities (i.e. O(N)) and have a
low overhead, but as a consequence produce poorer schedules;

2. Full-ahead scheduling algorithms: use the entire WEP when deciding on a
mapping. They usually present a higher overhead, but consider more workflow
information and therefore, produce in general better results.

2.2.4 Manycore Workflow Runtime Engine
We designed and developed a workflow engine called Manycore Workflow Runtime
Engine (MWRE) [1], specifically tuned for shared-memory heterogeneous manycore
parallel computers. Our motivation is to exploit the workflow paradigm, highly
successful for programming DCIs (like Clouds), for programming heterogeneous
manycore architectures, while supporting and integrating existing established parallel
programming paradigms, such as OpenMP. Traditional workflow applications in
DCIs usually have a rather simple structure, feature a coarse-grained parallelism with
relatively few long-running parallel tasks, and exhibit large task submission and data
transfer overheads. In contrast, shared memory manycore applications usually have a
much more complex structure, feature a more fine-grained parallelism with a lot of
short running parallel tasks, and hardly have any task submission and data transfer
overheads.

The defining feature of our engine is compiling workflows into semantically-
equivalent C++ programs using a source-to-source compiler (and not interpreting
workflows like most traditional engines for DCIs). The workflow engine is linked
to the C++ program in the form of a shared library that uses a novel callback-driven
enactment mechanism, where the engine is only responsible for maintaining and
traversing the WEP. Dependency resolution and data transfers are implemented in
callback functions, specifically tailored to the concrete workflow and are part of the
workflow specification. This keeps the engine clean and minimizes the enactment
overhead.

2.2.5 Impact of Incomplete WEP on Full-Ahead Scheduling
When using a full-ahead scheduling algorithm, the workflow enactment mode can
theoretically have a huge influence on the scheduling performance. Full-ahead

“nesus-book”
2018/7/13
page 45

Programming Models and Runtimes 45

(a) Example workflow. (b) Early enactment
mode.

(c) Late enactment
mode.

+

Figure 2.4: WEPs in early and late enactment mode at workflow execution start for
an example workflow, where the numbers in brackets represent the execution times
on resources R1 and R2.

scheduling considers the entire WEP when calculating a schedule, therefore an
incomplete WEP may lead to a comparatively worse workflow schedule.

For example, let us assume the workflow in Figure 2.4a executed on a hetero-
geneous system consisting of two different computing resources: resource R1 and
resource R2. Resource R1 has a fast CPU, and resource R2 has a twice as slow
CPU. The example workflow consists of two parallel atomic activities A and B, and a
sequential for loop with a data dependency on activity B containing a single atomic
activity C. The number of iterations of the for loop is known from the beginning
and assumed here as two. The number in brackets represents the activity execution
times on resources R1 and R2, respectively.

Most full-ahead scheduling algorithms try to prioritize the atomic activities lying
on the workflow’s critical path, defined as the longest path from the start to the
end of the workflow, and the length of the critical path is defined as the sum of the
activity execution times on the critical path. The activities on the critical path have
the most influence on performance, and any delay on the critical path delays the entire
workflow.

The critical path of our example workflow consists of activities B, C1 and C2
(where C1 refers to the instance of C in the first loop iteration, and C2 to the instance
of C in the second loop iteration), and the minimum length of the critical path is
68. Therefore, an optimal workflow schedule maps activity A to resource R2, and
activities B, C1 and C2 to resource R1 to achieve a workflow makespan of 68.

When using early enactment mode the for loop is immediately evaluated and
the resulting WEP (see Figure 2.4b) contains all the necessary information to find the
correct critical path. Therefore a full-ahead scheduling algorithm can calculate an
optimal workflow schedule as depicted above.

In late enactment mode, the evaluation of the for loop is deferred until activity
B has finished its execution. Therefore, the resulting WEP (see Figure 2.4c) initially

“nesus-book”
2018/7/13
page 46

46 Ultrascale Computing Systems

En
ac

tm
en

tT
im

e
[s

ec
]

10

100

1.000

Number of Activities
0 500 1.000 1.500 2.000 2.500 3.000

openMP
MWRE - Early
MWRE - Late
Swift
ASKALON

Figure 2.5: Enactment times of the Montage workflow [1].

misses the activities C1 and C2, and a full-ahead scheduler would base it’s calculation
of a workflow schedule on incomplete information. It may be deducted from the WEP
that the critical path only consists of activity A and map it onto the fastest resource
R1, while activity B is mapped onto the slower resource R2. The for loop will be
evaluated only after activity B has finished and the WEP will look like Figure 2.4b. At
this time, the critical path activity B has already been executed by the slower resource,
and resource R1 is still occupied executing activity A. Therefore, the scheduler can
only map activity C1 onto the slower resource, C2 is the only critical path activity
mapped to the fastest resource. The workflow makespan in this scenario is 106, which
is about 56% larger than the optimal makespan.

Based on this observations, one may conclude that early enactment mode should
always be preferred to late enactment mode. However, our experience with MWRE
has shown that depending on the particular workflow to be executed, early enactment
mode can exhibit drastic performance losses and a limited scalability compared to
late enactment mode. For example, Figure 2.5 (taken from [1]) shows the enactment
overhead of the Montage workflow executed with MWRE, referring to the time
spend in the engine not including the execution times of the atomic activities. In
this experiment we executed the Montage workflow several times with a different
number of atomic activities. The enactment time in late enactment mode stays close
to the enactment time of an equivalent OpenMP program for the whole experiment.
In contrast, the enactment time of early enactment mode is also close to the enactment
time of the OpenMP version in the beginning, but significantly increases beyond 600
activities.

2.2.6 Methodology
To evaluate the impact of early and late evaluation mode on scheduling performance,
we simulated the execution of a large number and variety of workflows on manycore
architectures. Due to the lack of a sufficient number of complex real-world workflows,
we used an algorithm to generate a large number of random workflows with varying
parameters.

“nesus-book”
2018/7/13
page 47

Programming Models and Runtimes 47

Algorithm 2 Random hierarchical workflow generation.
1: procedure GENRANDOMWORKFLOW(v,a,o,w,b , l)
2: W ORIGGENRANDOMWORKFLOW(v,a,o,w,b)
3: if l > 1 then
4: s SELECTRANDOMACTIVITY(W)
5: t SELECTRANDOMCOMPOSITETYPE(if,parallel for)
6: SW [0] GENRANDOMWORKFLOW(v,a,o,w,b , l�1)
7: if t = if then
8: SW [1] GENRANDOMWORKFLOW(v,a,o,w,b , l�1)
9: end if

10: CONVERTATOMICTOCOMPOSITE(s, t, SW)
11: p SELECTRANDOMPREDECESSOR(s)
12: h CREATEHELPERNODE(t)
13: INSERTNODE(h, p,s)
14: end if
15: return W
16: end procedure

Random Workflow Generation
For generating random workflows, we used an existing algorithm [88] that creates
workflows consisting of solely atomic activities, extended to cover composite ones,
as shown in Algorithm 2. The algorithm considers the following parameters as input
to influence the shape and structure of the generated workflows:

• Average number of activities v in the workflow;
• Workflow shape a by randomly generating the workflow height from a uniform

distribution with a mean value of
p

v
a and the width of each level from a uniform

distribution with a mean value of
p

v ·a;
• Output degree o of an activity, which is the maximum number of successors a

workflow activity is allowed to have;
• Average execution time w of an atomic activity;
• Computational heterogeneity b by randomly selecting the execution time of an

activity on a specific resource from the interval
⇣

w ·
⇣

1� b
2

⌘
,w ·

⇣
1+ b

2

⌘⌘
;

• Maximum nesting level l of the composite activity.

At first, a workflow is generated using the original algorithm (line 2). As long
as the maximum nesting level has not been reached, a random activity is selected
(line 4), a random composite activity type is chosen (line 5), one or two sub-workflows
representing the body of the composite activity are created by recursively calling
the algorithm (lines 6 –9), and finally the selected activity is converted into the
corresponding composite activity (line 10). Next we select a random predecessor
(line 11) of the composite activity, which supplies it with specific input data, such
as conditional argument for if activities and loop counter boundaries for parallel
for activities. To ease implementation of the algorithm composite activity specific

“nesus-book”
2018/7/13
page 48

48 Ultrascale Computing Systems

Parameter Symbol Value set
Average number of activities v 10
Workflow shape a {0.1,0.5,1.0,1.5,2.0}
Activity output degree o {1,3,20}
Activity average execution time w 3 seconds
Computational heterogeneity b 3.0
Maximum nesting level l {1,2}

Table 2.1 Random workflow generation parameters.

Configuration Description
Configuration 1 4 different single-core CPUs
Configuration 2 8 different 10-core CPUs
Configuration 3 1 4-core CPU and 2 different GPUs

Table 2.2 Simulated hardware configurations.

data is supplied by a helper activity inserted between the selected predecessor and the
composite activity (lines 12 and 13). The helper activity randomly chooses for if
activities whether the supplied condition is true or false, and the loop iteration
count between 2 and 10 for parallel for activities.

Experimental Setup
We conducted our experiments by generating five different workflows for each param-
eter combination (see Table 2.1), and then simulated the execution of each workflow
five times for both evaluation modes on three heterogeneous hardware configurations
(see Table 2.2) using seven different schedulers.

The workflow generation parameters were chosen to best represent the char-
acteristics of manycore workflow applications, characterized by a relatively high
number of short running activities. The generated workflows consist of 20� 110
unique activities, each having a different randomly chosen execution time of 0.1 to 6
seconds for each resource type. The workflows have highly different shapes, ranging
from nearly sequential to workflows with a high degree of parallelism, and from
workflows with very few dependencies between activities to nearly fully connected
ones. Larger workflows were not created, as MWRE early evaluation mode leads from
our experience to a significant increase in enactment overhead (e.g. see Figure 2.5)
beyond a few hundred workflow activities. For the experiments, we aimed to have
early and late evaluation modes with roughly the same enactment overhead to not
bias the results.

To get meaningful results independent from a specific scheduler, the following
schedulers implemented in MWRE were used:

“nesus-book”
2018/7/13
page 49

Programming Models and Runtimes 49

• Minimum Completion Time (MCT) [90] is a just-in-time algorithm that assigns
ready-to-execute tasks in no particular order to the resource with the minimum
completion time.

• Heterogeneous Earliest Finish Time (HEFT) [88] is a list based heuristic consist-
ing of two phases. In the ranking phase all tasks are assigned a rank representing
the longest path from the task to the exit node. In the processor selection phase
the tasks are assigned to a free processor with the earliest finish time in the order
of their ranks.

• Predict Earliest Finish Time (PEFT) [91] is also a list based heuristic similar to
HEFT, which uses the average path from the task to the exit node for assigning a
rank.

• The Lookahead [92] algorithm is another variant of HEFT also taking the
children of a task into account in the processor selection phase.

• The Min-Min [90] is a batch mode heuristic consisting of two phases. In the
first phase the minimum expected completion time is calculated for each task,
and in the second phase the tasks are assigned to processors according to their
minimum expected completion time in the order of the overall minimum expected
completion time.

• The Max-Min [90] scheduling algorithm is very similar to Min-Min except that
the second phase takes the maximum expected completion time into account.

• The Sufferage [90] scheduling algorithm assigns tasks to processors according
to how much the task would “suffer” in terms of expected completion time if it is
not assigned to that processor.

For each workflow the average makespan, hardware configuration, scheduler and
evaluation mode combination are registered. The results are grouped according to
the scheduler, hardware configuration, workflow shape, activity output degree and
composite activity nesting level, and the relative time difference DTrel =

Tlate�Tearly
Tlate

of the makespan of early evaluation mode Tearly compared to the makespan of late
evaluation mode Tlate is calculated. If the relative time difference is less than ±2.5%,
it is assumed there is no significant difference. It is determined the relative number of
experiments showing no significant performance improvement, the relative number
of experiments showing a significant performance improvement with early evaluation
mode, and the relative number of experiments showing a significant performance
degradation.

Simulations are run on an Intel Core i7-2600K running at 3.40GHz with 16GB
RAM.

2.2.7 Experimental Results
The results of all experiments are shown in Figure 2.6. For 85.7% of the experiments,
the workflow makespan in early evaluation mode is nearly the same as the makespan
in late evaluation mode. For 11.6% of all experiments the early evaluation mode is
faster, while for 2.7% it is slower than late evaluation mode. In the best case early
evaluation mode is 43% faster, and in the worst case early evaluation mode is 39.6%
slower. The experiments for which early evaluation mode is faster show an average

“nesus-book”
2018/7/13
page 50

50 Ultrascale Computing Systems

0 2000 4000 6000

−
0
.4

−
0
.2

0
.0

0
.2

0
.4

Experiment Id

R
e

la
ti

v
e

 D
if

fe
re

n
c

e

Relative Difference

P
e

rc
e

n
ta

g
e

−0.4 −0.2 0.0 0.2 0.4

0
.0

0
.2

0
.4

0
.6

0
.8

Figure 2.6: Result overview of all experiments.

Scheduler No
change

Early
better

Late
better

Average
improvement

Average
degradation

MCT 74.5% 15.9% 9.5% 8.2% -6.7%
HEFT 89.3% 10.1% 0.5% 10.9% -5.6%
PEFT 84.5% 12.2% 3.3% 10.2% -5.8%
Lookahead 84.9% 12.6% 2.5% 8.8% -5.1%
Min-Min 89.6% 9.3% 1.1% 10.7% -5.6%
Max-Min 87.9% 10.7% 1.4% 8.6% -18.2%
Sufferage 89.3% 10.2% 5.5% 9.2% -11.4%

Table 2.3 Results by scheduler type.

performance improvement of 9.4%, and the experiments for which is slower show an
average performance degradation of -7.3%.

These results indicate that for the majority of workflows, using early or late
evaluation mode has practically no significant impact on scheduling performance.
Only for a minority of 10%, the executed workflows in early enactment mode caused
a performance improvement of 10%. It is also observed that 3% of the workflows
executed in early enactment mode led to worse performance. The reason for this result
is that the schedulers are suboptimal heuristics and that more but still incomplete in-
formation can still cause the scheduler to misjudge the critical path (see Section 2.2.5),
while with less information the scheduler may correctly guess the critical path.

Table 2.3 and Figure 2.7 show the experimental results by scheduler type. MCT
schedules activities to the fastest available machine as they are passed to the scheduler
and it does not take the rest of the WEP into account. Therefore, it is the least stable,
and its results roughly form a Gaussian distribution. However, MCT still shows
a slight bias towards early evaluation mode, 6% more workflows showing better
performance. The full-ahead scheduler shows rather stable performance with 80%-
90% of the workflows having no significant performance difference between early

“nesus-book”
2018/7/13
page 51

Programming Models and Runtimes 51

MCT

Relative Di�erence

Pe
rc

en
ta

ge

-0.2 -0.1 0.0 0.1 0.2

0.
0

0.
2

0.
4

0.
6

HEFT

Relative Di�erence

Pe
rc

en
ta

ge

0.0 0.1 0.2 0.3 0.4

0.
0

0.
2

0.
4

0.
6

0.
8

PEFT

Relative Di�erence

Pe
rc

en
ta

ge

-0.1 0.0 0.1 0.2 0.3 0.4

0.
0

0.
2

0.
4

0.
6

0.
8

Lookahead

Relative Di�erence

Pe
rc

en
ta

ge

-0.1 0.0 0.1 0.2 0.3

0.
0

0.
2

0.
4

0.
6

0.
8

Min-Min

Relative Di�erence

Pe
rc

en
ta

ge

-0.1 0.0 0.1 0.2 0.3

0.
0

0.
2

0.
4

0.
6

0.
8

Max-Min

Relative Di�erence

Pe
rc

en
ta

ge

-0.4 -0.2 0.0 0.2

0.
0

0.
2

0.
4

0.
6

0.
8

Su�erage

Relative Di�erence

Pe
rc

en
ta

ge

-0.2 -0.1 0.0 0.1 0.2

0.
0

0.
2

0.
4

0.
6

0.
8

Figure 2.7: Histograms of relative performance by scheduler type.

Hardware config No
change

Early
better

Late
better

Average
improvement

Average
degradation

Config 1 84.2% 12.1% 3.7% 9.3% -7.8%
Config 2 84.3% 12.1% 3.6% 9.5% -7.5%
Config 3 84.2% 12.6% 3.2% 9.2% -7%

Table 2.4 Results by hardware configuration.

and late evaluation mode. For the workflows where there is a significant performance
difference, it is early evaluation mode showing a better performance in the majority
of cases. The only exception is Sufferage, where only twice as many workflows show
better performance with early evaluation mode.

Table 2.4 and Figure 2.8 show the experimental results by the hardware config-
uration. There is no significant difference in the results for the different hardware
configurations. For all hardware configurations, 84% of all experiments show no
significant difference between early and late evaluation mode, 12% show 9% better
performance with early evaluation mode, and 4% show 7% of worse performance.

Table 2.5 and Figure 2.9 show the experimental results by workflow shape a .
Also here, there is hardly any difference between different workflow shapes. For all
workflow shapes, 84% of the experiments show no significant difference between early

“nesus-book”
2018/7/13
page 52

52 Ultrascale Computing Systems

Resource Con�g 1

Relative Di�erence

Pe
rc

en
ta

ge

-0.4 -0.2 0.0 0.2 0.4

0.
0

0.
2

0.
4

0.
6

0.
8

Resource Con�g 2

Relative Di�erence

Pe
rc

en
ta

ge

-0.4 -0.2 0.0 0.2 0.4

0.
0

0.
2

0.
4

0.
6

0.
8

Resource Con�g 3

Relative Di�erence

Pe
rc

en
ta

ge

-0.4 -0.2 0.0 0.2 0.4

0.
0

0.
2

0.
4

0.
6

0.
8

Figure 2.8: Histograms of relative performance by hardware configuration.

Workflow shape No
change

Early
better

Late
better

Average
improvement

Average
degradation

0.1 85.8% 11.4% 2.8% 9.3% -7.1%
0.5 86.2% 10.8% 3% 9.3% -7.4%
1.0 83.7% 13.2% 3.1% 13.2% -3.1%
1.5 83.9% 12.5% 3.6% 9.2% -7.4%
2.0 84.4% 12.1% 3.5% 9.2% -7.9%

Table 2.5 Results by workflow shape a .

Shape = 0.1

Relative Di�erence

Pe
rc

en
ta

ge

-0.4 -0.2 0.0 0.2 0.4

0.
0

0.
2

0.
4

0.
6

0.
8

Shape = 0.5

Relative Di�erence

Pe
rc

en
ta

ge

-0.4 -0.2 0.0 0.2 0.4

0.
0

0.
2

0.
4

0.
6

0.
8

Shape = 1.0

Relative Di�erence

Pe
rc

en
ta

ge

-0.4 -0.2 0.0 0.2 0.4

0.
0

0.
2

0.
4

0.
6

0.
8

Shape = 1.5

Relative Di�erence

Pe
rc

en
ta

ge

-0.4 -0.2 0.0 0.2 0.4

0.
0

0.
2

0.
4

0.
6

0.
8

Shape = 2.0

Relative Di�erence

Pe
rc

en
ta

ge

-0.4 -0.2 0.0 0.2 0.4

0.
0

0.
2

0.
4

0.
6

0.
8

Figure 2.9: Histograms of relative performance by workflow shape a .

and late evaluation mode, 12% show 9% better performance with early evaluation
mode, and 3% show 7% of worse performance. The only difference is a = 1.0, which
shows an average performance improvement of 13.2% instead of 9%, and an average
performance degradation of -3.1% instead of -7%. For a = 1.0, the workflow height
and width is the same, which means that all activities are equally distributed. This
gives the scheduler the most opportunities for improving the mapping.

Table 2.6 and Figure 2.10 show the experimental results concerning the output
degree of workflow activities. Also here there is hardly any difference between

“nesus-book”
2018/7/13
page 53

Programming Models and Runtimes 53

Outdegree No
change

Early
better

Late
better

Average
improvement

Average
degradation

1 84.4% 11.8% 3.8% 9.1% -6.9%
3 83.8% 12.8% 3.4% 9.5% -7.4%
20 84.6% 12.1% 3.3% 9.3% -8.2%

Table 2.6 Results by outdegree.

Outdegree = 1

Relative Di�erence

Pe
rc

en
ta

ge

-0.4 -0.2 0.0 0.2 0.4

0.
0

0.
2

0.
4

0.
6

0.
8

Outdegree = 3

Relative Di�erence

Pe
rc

en
ta

ge

-0.4 -0.2 0.0 0.2 0.4

0.
0

0.
2

0.
4

0.
6

0.
8

Outdegree = 20

Relative Di�erence

Pe
rc

en
ta

ge

-0.4 -0.2 0.0 0.2 0.4

0.
0

0.
2

0.
4

0.
6

0.
8

Figure 2.10: Histograms of relative performance by outdegree.

different output degrees. For 84% of the experiments there is no significant difference
between early and late enactment mode, for 12% of the experiments early enactment
mode causes 9% of better performance, and for 3% of the experiments the early
enactment mode causes 7% of worse performance.

Nested = No

Relative Di�erence

Pe
rc

en
ta

ge

-0.4 0.0 0.2 0.4

0.
0

0.
4

0.
8

Nested = Yes

Relative Di�erence

Pe
rc

en
ta

ge

-0.4 -0.2 0.0 0.2 0.4

0.
0

0.
4

0.
8

Figure 2.11: Histograms of relative performance by composite nesting level.

Table 2.6 and Figure 2.10 show the experimental results considering whether
there is nested composite activities in the workflow. Also here, there is hardly any
difference, 84% showing the same performance, 12% showing better performance
with early enactment mode with a performance improvement of 9% and 3% show 7%
of worse performance.

2.2.8 Conclusion
The impact of early and late enactment modes on workflow execution performance
were evaluated. Early evaluation mode provides more information to the scheduler,
which can calculate a potentially better schedule, improving the workflow perfor-
mance. On the other hand, early evaluation mode causes a significant increase in
workflow enactment overhead degrading workflow execution performance and limit-

“nesus-book”
2018/7/13
page 54

54 Ultrascale Computing Systems

Nested No
change

Early
better

Late
better

Average
improvement

Average
degradation

No 83.7% 12.4% 3.9% 9.3% -7.9%
Yes 83.6% 12.7% 3.7% 9.3% -7%

Table 2.7 Results by composite nesting level.

ing scalability. In order to find guidelines to when early evaluation mode significantly
improves workflow performance, results were broken down according to several
parameters defining workflow shape and structure.

The first relevant result is that for 85.7% of the experiments we could not find a
significant difference in workflow performance between early and late execution mode.
We conclude that it is safe to use late evaluation mode for most workflows to get
better scalability and less enactment overhead without the fear of loosing performance
because of a suboptimal workflow schedule. Only for 11.6% of the experiments
we observed a significantly better performance with early enactment mode with an
average improvement of 11.6% and a maximum improvement of 43%. For 2.7% of
the experiments, we observed a significantly worse performance with early evaluation
mode with an average performance degradation of 7.3% and a maximum performance
degradation of 39.6%.

The second relevant result is that for 14.3% of the experiments, while there
is a significant difference in performance between early and late enactment mode,
no decisive guidelines were identified when a workflow performs better. The best
enactment mode is highly individual for each workflow and no correspondence can
be made to a specific parameter defining workflow shape or structure. The only way
to determine whether early or late enactment will cause a better performance is to
execute the workflow using both modes and compare the results.

Based on these results, the late enactment mode was selected as the default mode
in MWRE. According to the experiments, the potential performance improvement of
early enactment mode due to a better scheduling is too insignificant compared to the
downsides of a higher enactment overhead and worse scalability.

MWRE is a workflow engine for shared-memory heterogeneous manycore com-
puters, and thus, MWRE workflows have different characteristics than DCI (Cloud)
workflows. More precisely, they feature a more complex workflow structure with a
higher number of shorter running activities. The experimental results reflect this and,
therefore, only have limited validity for common DCI environments. Because DCI
workflows have a simpler structure with a lower number of longer running activities,
the early evaluation mode here has less impact on scheduling performance.

2.3 Towards General Purpose Computations at the Edge

Originally designed to exploit the power of multi-core processors through virtualiza-
tion, Cloud Computing [93] has changed over the past decade to support ultrascale
computations. The new paradigm, often called aggregation, collects a large number

“nesus-book”
2018/7/13
page 55

Programming Models and Runtimes 55

of resources in a pool to form a single service with huge storage and computation
capacities. Unfortunately, with the huge amounts of data generated via modern appli-
cations, the cloud center has become a bottleneck and a single point of failure. This
advocated an extended paradigm, called Edge Computing, that brings part of the data
storage and computation closer to the user. The benefits are plenty: reduced delays,
high availability, low bandwidth usage, improved data privacy, etc. In this section,
we introduce recent advances in edge computing that makes the coordination of edge
networks synchronization-free and convergent. We address the main challenges facing
applications on the data management and communication aspects. The section also
provides convenient runtime environments for different categories of edge computing
scenarios16.

2.3.1 Motivation
Edge Computing offers the opportunity to build new and existing ultrascale applica-
tions that take advantage of a large and heterogeneous assortment of edge devices and
environments. Fully realizing the opportunities that are created by edge computing,
requires dealing with a set of key challenges related with the high number of different
components that compose such systems and the interactions among them. In this
work, was address the main challenges on the communication and data management
levels allowing for robust communication and available data access.

On the communication frontend, the fact that applications are composed of com-
ponents running in heterogeneous environments requires robust and efficient solutions
for tracking these components. This implies the development of highly robust and
adaptive membership services and mechanisms that allow efficient communication
among these components. Among the promising class of gossip-based communica-
tion protocols are those “hybrid” ones [94, 95], in which payloads are propagated
though an elected logical spanning tree, supported by lightweight meta-data across
the graph for recovery (reconstructing another logical tree) under failures.

The consequences of such hostile environments are also present on the data man-
agement level. Since application components run on different administrative domains
scattered across heterogeneous environments, communication links between these
components can be disrupted by external factors (i.e, network partitions) frequently.
This implies that the progress of computations executed across different application
components cannot depend on continuous communication with other components,
or in other words, cannot depend on synchronous interactions. This advocates the
use of synchronization-free (i.e., sync-free) programming abstractions backed by
sync-free data propagation and replication techniques. An interesting approach is
to make use of Conflict-free Replicated Data Types (CRDTs) [96, 97, 98] that are
proven abstractions designed to achieve convergence under such conditions (this is
explained later in more details).

16Credits go to all team members contributed to the success of this work within the EU FP7 Syncfree
project and EU H2020 LightKone project. The research leading to these results has received funding
from the European Union’s Horizon 2020 - The EU Framework Programme for Research and Innovation
2014-2020, under grant agreement No. 732505, LightKone project.

“nesus-book”
2018/7/13
page 56

56 Ultrascale Computing Systems

Finally, heterogeneity is the norm in ultrascale edge applications, and it exists
at various layers: execution environments, communication media, data sources,
operating systems, programming languages, etc. Addressing this heterogeneity can
be achieved by leveraging on different run-time supports and frameworks that provide
a more unified vision of resources to application developers. These different run-time
and frameworks will have to inter-operate through the use of standard protocols and
common data representation models.

In the following we refine the challenges associated with tapping on edge com-
puting to design ultrascale applications, and discuss enabling technology that paves
the way to tackle these challenges, and finally discuss a set of run-time and framework
support that can simplify the design of such applications.

2.3.2 Edge Computing Opportunities
Edge Environments. To the contrary of cloud computing where the data and com-
putation is centralized at the cloud data centers, the edge computing paradigm en-
compasses a large number of highly distinct execution environments that are defined
by the network topology, connectivity, locality, and the storage and computation
capacities of the devices used. In particular, we identify we identify the following
interesting edge environments:

• Fog Computing: a variant of cloud computing where the cloud is divided
into smaller cloud infrastructures located in the user vicinity. In such environ-
ments, each fog cloud often serves as an individual cloud, although the data can
eventually be incorporated with other fog [99, 100].

• Mobile Cloudlets: small cloud datacenters that are located at the edge and
are tailored to support mobile applications with powerful computations and low
response times, e.g., in ISP gateways or 5G towers [101, 102, 103].

• Hardware-based Clouds: self-contained devices, such as routers, gateways,
or set-up boxes, that are enriched with additional computational and storage
capabilities like [104, 105].

• Peer-to-Peer (P2P) Clouds: these environments try to leverage existing devices,
e.g., user mobiles, laptops, and computers in volunteer networks, aiming to
cooperate towards achieving a common goal [106, 107, 94].

• Things and Sensor Network Clouds: resource constrained devices, e.g., Internet
of Things devices, sensors, and actuators, capable of performing some computa-
tions on data without accessing or delegating to the (possibly unreachable) cloud
center [108].

All of these different scenarios are characterized by having highly heterogeneous
devices in terms of processing power and memory, but also regarding their connectiv-
ity to the backbone of the Internet or even their up-times (being continually running
or being operating for only small periods of time). These different devices naturally,
run different operating systems, from general purpose Linux based operating systems
in the case of servers in cloud and private infrastructures, to proprietary operating sys-
tems in the case of set-up boxes, mobile operating systems, general purpose multi-user
operating system or even single process operating systems in the case of small sensors

“nesus-book”
2018/7/13
page 57

Programming Models and Runtimes 57

and actuators. Gathering the capacity of devices with very different properties is
highly challenging, and devising solutions that can exploit devices located in different
edge devices brings additional challenges. Next we will discuss some of the key high
level challenges in tapping the potential of the edge.

Challenges at the Edge Despite the diversity of edge computing environments,
components, and properties, the major challenges are common to most of the scenarios.
In particular, we recognize the following four challenges:

Scalability. One of the reasons to move the data and computation off the cloud
data center to the edge is to reduce the I/O overload on the cloud and avoid bot-
tlenecks related with the limited network capability connecting clients to the cloud
infrastructures. Nevertheless, this raises another challenges on handling the data
and computation in a distributed way especially in ultra-scale systems composed of,
potentially, many data centers and thousands of edge devices. This scale requires
special techniques across the data, computation, and communication planes. As cap-
tured by the CAP theorem [109], and because scaling out will increase the potential
for network portions, link failures, and arbitrary communication delays, ensuring
availability—as an essential requirement for most applications including novel edge
applications—requires relaxing the consistency model employed in the design and
implementation of these solutions. Consequently, the computation should also be
decentralized and coordinated to achieve the common goals of the entire system.
Finally, the communication middlewares should also scale to afford a high number of
nodes, e.g., through asynchronous, P2P, or gossip protocols.

Interoperability. Considering the edge categories discussed above, one can notice
the notable diversity level of the devices and platforms used within the same or
across edge clouds. This brings interoperability challenges if all components shall
communicate with each others, thus requiring well studied interfaces and possibly in-
troducing a common layer that all components can understand without compromising
the characteristics deemed essential.

Resilience. While cloud datacenters use high quality equipment for the network
and devices, edge computing often use commodity equipment that are far from perfect
regarding failures. The problem is extrapolated with edge network problems that are
likely to be loosely connected, mobile, and hostile. This threatens the quality of the
service and makes the data and communication components even more complex. That
said, one must consider the performance as well as the cost trade-offs (being a major
factor due to the constrained resources).

Security and Privacy. Given the heterogeneity of the edge applications, security
and privacy measures must be analyzed and tackled individually. However, in general,
it is desired to find a common security layer or security measures that govern a wide
range of applications. Security and privacy on the edge need to be addressed on the
infrastructure and data levels. The former can be deployed at the communication
or network layer, ranging from establishing secure connections to enforcing secure
group dynamics, and cover several dimensions including data integrity, data privacy,
or resilience to DoS attacks. On the other hand, edge applications often deal with

“nesus-book”
2018/7/13
page 58

58 Ultrascale Computing Systems

sensitive data which likely requires lightweight encryption and data sanitization tech-
niques to control the disclosure of such data. These may also include secret-sharing,
anonymization, noise addition or partitioning, etc., depending on the specific security
and functional requirements of the implementations.

Use Cases. As discussed in the edge environments, edge computing supports a
plenty of applications and use-cases. In this section, we focus on three categories in
which most of the use-cases lie:

• Time series applications. This category spans a multitude of applications with
the popularity of IoT. The scenario is often a type of time series where data is
generated by the IoT devices, e.g., sensors, and pushed to the edge devices to get
stored, aggregated, and partially computed. The aggregated data is then pushed
to the center of the cloud for further handling. The data-flow can sometimes be
in the opposite sense if actuator devices exist; in this case, the processed data in
the cloud is pushed back to the actuators to do some action. Consequently, this
scenario represents a hybrid model of light and heavy devices, different types of
networks (e.g., Zig-bee, WIFI, WAN, etc), as well as data-flow direction.

• Mobile edge applications. This category covers all the applications in which
devices are mobile and public. This makes the model very hostile as link failure
and delays are expected, and the availability of nodes cannot be guaranteed (e.g.,
a mobile device can be switched off). The communication in such use cases does
not follow a particular data-flow pattern, but it is often P2P or gossip-based due to
the dominant dynamic graph-like network of nodes. In such applications, devices
have moderate storage and computation resources that makes the interaction
symmetric. Obviously, the main challenges in such use-cases are reseliance and
availability. In some cases, access points, towers, or routers with more capacities
can assist in storage, computation, and communication, which can be used as
third party authority when needed.

• Highly available databases. This category is a natural evolution of scalable
databases in cloud and cluster systems. The intuition is to replicate the database
geographically, brining replicas or cache servers closer to the user. In this
scenario, devices are at least commodity computers or servers with non-scarce
capacities, and then network is often the Internet. In addition to availability, the
challenge in such use-cases is to tolerate network partitions and optimize data
locality (especially when partial replication is used). These scenarios are close to
Fog Computing and Cloudlets with the difference that all node must work as a
single (often loosely) coordinated system.

2.3.3 Enabling Technologies for the Edge
Synchronization-Free Computing. Edge devices and edge networks are both un-
reliable. This follows both from their design, e.g., they are low-power systems that
are often offline, and from the nature of the edge itself, e.g., it is directly involved

“nesus-book”
2018/7/13
page 59

Programming Models and Runtimes 59

with real world activities, such as in Internet of Things. Despite this unreliability, we
would like to perform computations directly on the edge.

To perform computations directly on the edge, we need distributed data structures
and operations that tolerate the unreliability of the edge. Synchronization-free com-
puting fits the bill because of its very weak synchronization requirement. A prominent
example is Conflict-free Replicated DataType (CRDT), which is a replicated data
type that is designed to support temporary divergence at each replica, while guaran-
teeing that when all updates are delivered to all replicas of a given instance, they will
converge to the same state. (More details about CRDTs can be found in Chapter 4
or by referring to [96, 97, 98].) CRDTs naturally tolerate node problems, namely
nodes going offline and online and node crashes, and network problems, namely
partitions, message loss, message reordering, and message duplication. Node crashes
are tolerated as long as the desired state exists on at least one correct node. The
following results on CRDT computations are summarized from [110].

CRDT Definition. For the purposes of this section, we define a CRDT instance to
be a replicated object that satisfies the following conditions:

• Basic structure: It consists of n replicas where each replica has an initial state, a
current state, and two methods, query and update, that each executes at a single
replica.

• Eventual delivery: An update delivered at some correct replica is eventually
delivered at all correct replicas.

• Termination: All method executions terminate.
• Strong Eventual Consistency (SEC): All correct replicas that have delivered the

same updates have equal state.

This definition is slightly more general than the one given in the original report
on CRDTs [96]. In that report, an additional condition is added: that each replica
will always eventually send its state to each other replica, where it is merged using
a join operation. This condition is too strong for CRDT composition, since it no
longer holds for a system containing more than one CRDT instance. We explain the
conditions needed for CRDT composition in the next section.

CRDT Composition. The properties of CRDTs make them desirable for computa-
tion in distributed systems. It is possible to extend these properties to full programs
where the nodes are CRDTs and the edges are monotonic functions. To achieve this,
it is sufficient to add the following two conditions on the merge schedule, i.e., the
sequence of allowed replica-to-replica communications:

• Weak synchronization: For any execution of a CRDT instance, it is always
true that eventually every replica will successfully send a message to each other
replica.

• Determinism: Given two executions of a CRDT instance with the same set of
updates but a different merge schedule, then replicas that have delivered the same
updates in the two executions have equal state.

The first condition allows each CRDT instance to send the merge messages
it requires to satisfy the CRDT conditions. The second condition ensures that the
execution of each CRDT instance is deterministic, which makes it a form of functional

“nesus-book”
2018/7/13
page 60

60 Ultrascale Computing Systems

programming. We remark that SEC by itself is not enough for this, since the states of
replicas in different executions that have delivered the same updates can be different,
even though SEC guarantees that they are equal in the same execution. In practice,
enforcing determinism is not difficult but it depends on the type of the CRDT instance.
Article [110] explains how to do it for a set that has add and remove operations (the
so-called Observed-Remove Set).

We define a CRDT composition to be a directed acyclic graph where each node
is a CRDT instance, and each node with at least one incoming edge is associated
to a function of all incoming edges arranged in a particular order. Given the first
of the two conditions introduced above, we can show that the execution of a CRDT
composition satisfies the same properties as a single CRDT instance. If the second
condition is added, then the CRDT composition behaves like a functional program.

Hybrid Gossip Communication. Gossip is a well known and effective approach
for implementing robust and efficient communication strategies on highly dynamic
and large-scale system [107, 95]. In its most simple form, in a gossip protocol, each
node periodically interacts with a randomly selected node. In this interaction both
exchange information about their local state (and potentially merge it). Since all nodes
do this in parallel and in an independent fashion, after approximately one round-trip
time, all nodes will have performed, at least, one merge step, and on average two
merge steps (one initiated by the node itself and another initiated by some peer). We
usually call this period of interactions a cycle. After a small number of cycles, the
network converges to a globally consistent vision of the system state. This simple
approach cab be used, for instance to compute aggregate functions, such as inferring
the network size or load. Interestingly, this can also be used for other, and more
complex, purposes such as managing the membership of large-scale system, which
implies building and maintaining an overlay (i.e, logical) network topology, in a way
that is both robust and scalable, but also to support robust data dissemination in such
systems.

Gossip-based approaches have been shown to be highly resilient to network
faults, due to the inherent redundancy that its core to the design of gossip protocols.
Unfortunately, this redundancy also leads to efficiency penalties. Hybrid gossip
addresses this aspect of gossip protocols. In a nutshell, the key idea of hybrid gossip
is to leverage on the feedback produced by previous gossip interactions among nodes,
such that an effective and non-redundant structure of communication can naturally
emerge. The topology of this emergent structure depends on the computation being
performed by nodes, and it enables nodes significantly improve the communication
and coordination cost by restricting the exchange of information among node to
the logical links that belong to this structure, lowering the among of redundant
communication.

Key to maintaining the fault-tolerance of gossip protocols in hybrid gossip is the
use of the remaining communication paths among nodes (those that are not selected
to be part of the emergent structure) to convey minimal control information. This
control information enables the system to detect (and recover) from failures that might

“nesus-book”
2018/7/13
page 61

Programming Models and Runtimes 61

affect the emergent structure. Moreover, in highly dynamic scenarios, the additional
communication paths allow nodes to fall back to a pure gossip strategy, for instance,
when there are a significant number of concurrent nodes crashes or network failures.

Interesting, hybrid gossip solutions naturally allow different components of the
system to operate using either the emergent structure or a pure gossip approach si-
multaneously. Hence, components of the system that are in stable conditions (i.e, low
membership dynamics and low failures) will operate resorting to the emergent struc-
ture, while components of the system that are subjected to high churn or network/node
failure will fallback to use pure gossip while still being able to inter-operate with the
components using the emergent structure.

Therefore, hybrid gossip approaches enable applications to, effectively and
transparently, benefit from the resilience of a pure gossip approach entwined with the
efficiency of a gossip approach that leverages an emergent communication topology.
The hybrid gossip approach has been introduced in [94, 111]. The Plumtree protocol
in particular, shows how to build an efficient and robust spanning tree connecting
large number of nodes to support reliable application-level broadcast. This solution is
currently used in industry, for example, the Basho Riak database uses it to manage
the underlying structure of its ring topology which is used to map data object keys
into nodes (through consistent-hashing).

2.3.4 Runtime for Edge Scenarios
Above we have discussed enabling technologies that can be leveraged to build new
and exciting edge applications in the ultrascale domain. Tapping into these enabling
technologies can however, be a complex task for developers. Therefore, it becomes
relevant to provide frameworks, tools, and other artifacts that exploit these technolo-
gies in a coherent way, providing high level abstractions to programmers that aim at
developing their ultrascale edge applications. We now discuss some existing runtime
support tools and frameworks that have been recently proposed to this end.

Antidote. Antidote is a geo-replicated key-value store, designed for providing
strong guarantees to applications while exhibiting high availability, thus providing
a good compromise in the consistency versus availability trade-off in the design
of cloud databases. These proprties make Antidote a strong candidate as an edge
database especially when edge nodes have non-scarce resources (e.g., commodity
servers).

In particular, some cloud databases adopt a strong consistency model by enforcing
a serialization in the execution of operation, leading to high latency and unavailability
under failures and network partitions. Other databases adopt a weak consistency
model where any replica can execute any operation, with updates being propagated
asynchronously to other replicas. This approach leads to low latency and high
availability even under network partition, but replicas can diverge. On the other
hand, Antidote allows any operation to execute in any replica, but provides additional
guarantees to the application as we explain next.

First, Antidote relies on CRDTs for guaranteeing that concurrent updates are
merged in a deterministic way. Antidote provides a library of CRDTs with different
concurrency semantics, including registers, counters, sets and maps. The applications

“nesus-book”
2018/7/13
page 62

62 Ultrascale Computing Systems

programmer must select the most appropriate CRDT, considering its functionality
and concurrency semantics (e.g., add-wins, remove-wins).

Second, Antidote enforces causal consistency, guaranteeing that whenever an
update u may depend on update v, if a client observes update u he also observes update
v. Applications can leverage this property to guarantee their correctness when the
correctness depends on the order of updates, e.g., an update executed after changing
the access control policies should not be visible in a replica with the old access control
policies.

Third, Antidote provides a highly available form of transactions, where reads
observe a causally-consistent snapshot of the database and writes are made visible
atomically. Unlike standard transactions, write-write conflicts are solved by merging
the concurrent update. Applications can leverage these highly-available transactions
to guarantee that a set of updates is made visible atomically.

Fourth, Antidote provides support for efficiently enforcing numeric invariants,
such as guaranteeing that the value of a counter remains larger than 0. To this end, it
includes an implementation of a Bounded Counter CRDT [112], a shared integer that
must remain within some bounds. The implementation uses escrow techniques [113]
for allowing an operation to execute in a replica without coordination in most cases.

Finally, associated with Antidote, we have developed a set of tools to verify
whether an application can execute correctly under weak consistency, and when this
is not the case, what coordination is necessary. These tools are backed by a principled
approach to reason about the consistency of distributed systems [114].

Antidote is designed to be deployed in a set of geo-distributed data centers.
Within each cluster, data is sharded among the servers. Data is geo-replicated across
data centers. The execution of transactions in Antidote, and the replication of updates
across data centers, is controlled by Cure [115], a highly scalable protocol that en-
forces transactional causal+ consistency (combining CRDTs for eventual consistency,
causal consistency and highly available transactions).

Legion. Legion [2] is a new framework for developing collaborative web appli-
cations that transparently leverage on the principles of edge computing by enabling
direct browser-to-browser communication. Legion was implemented in javascript
and it uses the Web Real-Time Communications (https://webrtc.org) to establish direct
communication channels among web application users. At its core, Legion enables
applications to transparently replicate, in the form of CRDTs, relevant application
state in clients. Clients can then modify the application state locally, and through
the use of hybrid gossip mechanisms, synchronize directly among them, without the
need to go through the web application server. The server however is still used both
to ensure the durability of the application state, but also to assist in the operation
of Legion, namely to simplify the task of creating the initial webRTC connections
among clients when they enter the application.

A simplified architecture of Legion is illustrated in Figure 2.12. Legion can
be used by a web application simply by importing a javascript script. This script
provides the application access to the Legion API. The API exposes to the application
the ability to manipulate data objects that can be used to model the application state.
These data objects include records, counters, lists, and maps. All of these objects

“nesus-book”
2018/7/13
page 63

Programming Models and Runtimes 63

Web	Application

Legion	Framework

Legion	API

Communication	
Primitives	and	
Overlay	Logic

Object	Storage	
and	CRDT	Library

Connection	Manager	(server	and	peers)

Figure 2.12: The Legion architecture (adapted from [2])

are internally represented by Legion through CRDTs which simplifies the the direct
synchronization among clients of shared application state. This is provided by an
extensible CRDT Library that is part of the Object Store component of Legion . The
synchronization of objects among clients (and that of a subset of clients with the
server to ensure durability) is transparently managed by the Object Store.

To guide the synchronization process, Legion leverages on an unstructured
overlay network, whose construction is guided by the principles of hybrid gossip, and
takes into consideration the relative distance of each client among them. This allows
clients to mostly interact and synchronize with clients that are in their vicinity. While
the typical use case in Legion is to have clients interacting through the manipulation
of shared data objects, web applications also have access to communication primitives
that enable them to disseminate messages among the currently active clients of the
application in a decentralized fashion. This is achieved by a gossip-based broadcast
protocol that operates on top of the legion overlay network.

Finally, Legion also takes into account security, by ensuring that before clients
can start to replicate and manipulate application data objects they authenticate on a
server. Moreover, Legion exposes an adapter API, that allows developers to integrate
their Legion-backed applications with existing backends. The framework provides
adapters to the Google Real Time API17. These adapters allow the developers to
leverage this backed to do any combination of the following: authentication and
access control, data storage for durability, and support to the WebRTC signaling
protocol required to create webRTC connections among browsers. More details on
the design and operation of Legion can be found in [2]. Legion is open source and
available, along side some demo applications through https://legion.di.fct.unl.pt.

17https://developers.google.com/google-apps/realtime/application

“nesus-book”
2018/7/13
page 64

64 Ultrascale Computing Systems

Edge	network	 Data	center	

Sensors	and	aggregation	 Database	and	analytics	

Data	stream	

Edge	network	

Sensors	and	aggregation	
Database	and	analytics	(Lasp)	

Traditional	architecture	for	edge	applications	 Proposed	architecture	
Figure 2.13: Proposed architecture for edge applications using Lasp

Lasp. The Lasp language and programming system [116] was designed for
application development on unreliable distributed systems, and in particular for edge
computing. Lasp allows developers to write applications by composing CRDTs, as
explained above [110]. In addition to composition, Lasp also provides a monotonic
conditional operation that allows executing application logic based on monotonic
conditions on CRDTs. The Lasp implementation combines a programming layer
based on synchronization-free computing with a communication layer based on hybrid
gossip. This makes the implementation highly resilient and well-adapted to edge
networks.

Many of today’s edge applications use the cloud as a database to store data
coming from the edge. By using Lasp as their database, such applications can be
translated to fully run on the edge (see Figure 2.13). This cannot be done with
traditional cloud databases since they are not designed to run on unreliable edge
networks. In the proposed architecture, the edge network runs everything: the sensors
and aggregation software on individual edge nodes, and the database (Lasp) on all
edge nodes. Analytics computations can be run either as an internal Lasp computation
or external to Lasp on individual nodes, using Lasp just as a database.

Example Lasp program. A typical application for Lasp is the scenario of ad-
vertisements counter that counts the total number of times each advertisement is
displayed on all client mobile phones, up to a preset threshold for each. Figure 2.14
defines graphically part of the Lasp program for this application. The actual code is a
straightforward translation of this graph. The application has the following properties:

• Replicated data: Data is fully replicated to every client in the system. This
replicated data is under high contention by each client.

• High scalability: Clients are individual mobile phone instances of the applica-
tion, thus the application should scale to millions of clients.

• High availability: Clients need to continue operation when disconnected as
mobile phones frequently have periods of signal loss (offline operation).

This application can be implemented completely on the edge, as explained previously,
or partly on the cloud. For this application we have demonstrated the scalability of

“nesus-book”
2018/7/13
page 65

Programming Models and Runtimes 65

Figure 2.14: A Lasp computation to derive the set of displayable advertisements in
the advertisement counter scenario. On the left, Ads and Contracts give information
for the advertisements, including how many times they have been displayed, and
their contracts, including the threshold for each advertisement. On the right are the
advertisements that can be displayed. All data structures are sets, similar to database
relations, and the computation is similar to an incremental SQL query.

the Lasp prototype implementation up to 1024 nodes by using the Amazon cloud
computing environment to simulate the edge network [117].

2.3.5 Future Directions
Building additional tools and support for a new generation of ultrascale edge ap-
plications is quite relevant and challenging. The varied nature of edge computing
environments, which can combine small private clouds and data centers, special-
ized routing equipment and 5G towers, users desktops, laptops and even cellphones,
to small things sensors and actuators, makes it a daunting task to build a single
runtime support that can efficiently operate on all such devices and deal with their
heterogeneity.

While we presented a set of tools and frameworks that can ease the development
of ultrascale edge computing applications and services, these do not cover all possible
execution scenarios. That path to build such support requires not only the development
of specialized runtimes for different edge settings, but also devising standard protocols
and data representation models that allow the natural integration of different runtimes
in a cohesive and effective edge architecture.

Current solutions for data replication and management are also unsuitable for the
ultrascale that one is expected to find in emerging edge computing applications. The
use of CRDTs to address the requirements of data management in this setting presents
a viable approach. However, further efforts have to be dedicated in designing new and

“nesus-book”
2018/7/13
page 66

66 Ultrascale Computing Systems

efficient synchronization mechanisms that can naturally adapt to the heterogeneity of
the execution environment.

2.4 Spectral Graph Partitioning for Process Placement on
Heterogeneous Platforms

It is customary in the literature to model a distributed application as a graph, whose
vertices are processes, or computing tasks, and an edge between tasks denotes a
communication between them. The edges are weighted with a positive value to mark
the magnitude of this communication. Frequently used magnitudes to measure the
communications are the data volume, in total number of bytes, or the number of
messages interchanged [118].

In this setting, spectral techniques divide the set of vertices in two parts, equal in
number of vertices, in such a way that the total communications from one part to the
other is lesser than between the two parts of any other partition. The practical interest
for this is to assign each part to a computation node, so the slow communication link
between two nodes are used less than the quick intra-node links. It is imposed that the
computational nodes are similar in performance, and also similar the computational
requirements of the vertices, in order for the assignation be balanced. The theoretical
resource that allows to compute this in an effective way is the Fiedler eigenvector of
the Laplacian matrix of the graph [119]. The study of the eigenvalues and eigenvectors
of a matrix is called spectral resolution [120], hence the name of the method.

In this subsection we describe the spectral method as it is customarily used. We
also propose to extend the previous scheme in two directions. First, we consider
that each vertex has assigned a volume or weight, positive but possibly different
depending on the vertex. To divide the set of vertices into two parts, so that the
part have the same volume (possibly with different number of vertices), we consider
the Fiedler eigenvalue of a generalized Laplacian (that we will define) which has
similar properties to the standard Laplacian. The practical interest of this extension
comes from the fact than the computational requirements of each vertex (process)
can be different, and we are interested in a partition in vertex subsets with equal
computational load (not necessarily equal number of vertices).

A second extension is to consider the division in two parts, where the fraction
of total volume assigned to each part is not the same, but can be predefined to p and
1� p to each part, for a fraction p of the total of vertices. The Fiedler eigenvector
of the generalized Laplacian can be used to this end. This is of interest for the case
where the two subsets of vertices/processes will be assigned to computational units
that are not equal in speed, being instead proportional to p and 1� p. Hence, the
partition of tasks is conformal with the speed of the intended processors. We also
discuss the problem of partitioning in more than two parts. We find difficult to put it
in this scheme.

For the structure of the subsection, in the following subsubsection we describe
notation about graphs and Linear Algebra. Then we introduce the Spectral Partition-
ing technique using the Laplacian . The material is standard but our presentation
emphasizes the operator view (that is, avoid references to coordinates as much as

“nesus-book”
2018/7/13
page 67

Programming Models and Runtimes 67

possible). The subsubsection 2.4.3 is our work about weighted graph partitioning
using a potential over the vertices. We use a finite element model as example. After
a numerical comparison of performance against other partition methods, using the
software Scotch, we draw some conclusions.

2.4.1 Graphs and Matrices. Examples
A graph G = (V,E) consists of a set V of vertices, and a set E of edges, being each
edge a set {u,v} of two vertices u,v 2V . Each edge {u,v}, also noted u⇠ v, is said
that joins u and v. Note that this structure does not models loops or directed arrows.

A weight on edges is a map

w : E! R.

The weight of the edge u ⇠ v is denoted w(u,v). If a weight on the edges is not
specified, implicitly the constant unit weight must be considered (that is, w(u,v) = 1
for each (u⇠ v) 2 E).

The degree of a vertex is the number of vertices adjacent to it.
A potential on vertices is a map

p : V ! R.

The set of all potentials (that is, of all functions V ! R) is denoted RV .
We choose an ordering of the set of vertices, V = {v1, . . . ,vn}. The adjacency

matrix of G (for this conventional ordering) is the n⇥n symmetric matrix A:

A =

0

BBB@

a11 a12 · · · a1n
a21 a22 a2n

...
. . .

...
an1 an2 · · · ann

1

CCCA
with ai j =

⇢
1 if vi ⇠ v j
0 if not for i, j 2 {1, . . . ,n}.

For a edge weight w, its weighted adjacency matrix is Aw with entries ai j where

ai j =

⇢
w(vi,v j) if vi ⇠ v j
0 if not

The adjacency matrix is the matrix of the constant unit weight w(u,v) = 1 if u⇠ v. We
will consider mainly positive edge weights (that is, weigths w such that w(u,v)> 0
for each (u⇠ v) 2 E), with the notable exception of the Laplacian.

We represent a vertex potential p :V!R as the vector p=(p(v1), p(v2), . . . , p(vn)).
A weighted adjacency matrix Aw operates in RV , the set of vertex potentials, as a
matrix multiplication.

Aw : RV �! RV

p 7�! Aw p

That is, the vector Aw p has as j-entry the value Ân
j=0 ai j p(v j).

“nesus-book”
2018/7/13
page 68

68 Ultrascale Computing Systems

Figure 2.15: Square mesh of size 40⇥41

To give an intuitive interpretation of this setting, we consider a easily visualizable
graph: the vertices are a square lattice of dots, and four edges join each one with
those placed up, down, left and right (three edges for lateral vertices and two for the
corners, figure 2.15). This type of graph is used in finite elements computations. It is
symmetric.

As example of weight in this graph, let’s take that each edge has weight one,
so Aw = A is the adjacency matrix. As an example of potential p0, we consider that
p0(v0) = 1 in one vertex v0, and p0(v) = 0 in the other ones, v 6= v0. The application
of A to that potential, Ap0, transfers the value 1 to the vertices adjacent to v0. That
is, p1 = Ap0 takes the value 1 in vertexes adjacent to v0, and 0 in others. A second
application p2 = A2 p0 widens the circle of influence: p2(v) is the number of paths
of two edges from v0 to v. The iterated application pk = Ak p0 produces a sequence
p0, p1, p2, . . ., in a transfer process. We can assign to the sum of potential Ân

i=0 pk(vi)
the meaning of the total amount of material that comprises pk. In the process induced
by A the total amount of material is not constant, but is multiplied by four in the
majority of the vertices, the inner vertices. Therefore is not exactly a diffusion process.
Taking another weight on edges, being w(u,v) the inverse of the number of arrows
that come out of u, it can be seen that Ân

i=0 pk(vi) (with pk = Ak
w p0) is constant, and

the process is properly a diffusion process.
It is pertinent to mention iterations in the above example because the eigenvalues

p are those potentials that verify Ap = l p (equivalently An p = l n p). And they are
precisely the potentials invariant (except for a factor l n) under iterations of A.

2.4.2 Laplacian and Partitions
A partition of a set V is an array (V1,V2) of two subsets of V such that

V1[V2 =V and V1\V2 = /0.

A partition of a graph G = (V,E) is a partition of the underlying set of vertices. An
edge u⇠ v in G is cut by a partition (V1,V2) if u 2V1 and v 2V2 or vice versa (u 2V2

“nesus-book”
2018/7/13
page 69

Programming Models and Runtimes 69

and v 2 V1). If the graph is weighted, the total weight of the cut, or total cut, is
cut(V1,V2) = Âu2V1

v2V2

w(u,v).

If there are several partitions in a graph, usually is preferable that which minimum
number of cuts (or total cut, if weighted). We are interested in partitions with
minimal cut, but with balanced number of vertices, that is |V1 |=|V2 | (if |V | is even,
|V1 |=|V2 | ±1 if it is odd). We express the combinatorial problem of finding these
partitions using Linear Algebra, in particular the spectrum (that is, eigenvalues and
eigenvectors18) of the Laplacian matrix, later defined.

Let us suppose given an order V = {v1,v2, . . . ,vn} in the set of vertices. A vector
x = (x1, . . . ,xn) corresponding to a potential of RV has an entry xi for each vi. The
characteristic vector cS of a set S 2V is cS = (c1, . . . ,cn) with:

ci =

(
1 if vi 2 S
0 if vi 62 S

Sometimes is preferable to use other values than 0 or 1 in the vector expression
of a combinatorial object like a subset or partition [119]. For two real values b1,b2,
the (b1,b2)-indicator vector of a partition (V1,V2) is the vector (x1, . . . ,xn) with

xi =

(
b1 if vi 2V1

b2 if vi 2V2

For example, the (0,1)-indicator is the characteristic of the second set of the
partition. We use mainly (1,-1)-indicators.

The following proposition summarizes some graph and combinatorial properties
expressed in Linear Algebra language. We denote with a dot · the inner product in
RV , and with 1 = (1, . . . ,1) the vector all whose entries are 1. The degree of a vertex
u 2V is the cardinal of the set {v 2V such that u⇠ v}, that is, the number of vertices
adjacent to u. The degree vector is (d1,d2, . . . ,dn) where di is the degree of vi.

Proposition 1. Let G = (V,E) a graph of adjacency matrix A. For two sets S,T ⇢V
of characteristics cS,cT :

1. 1 · cS is the cardinal of S, that is, 1 · cS =| S |. Also cS · cS =| S |.
2. cS · cT =| S\T |.
3. The vector A1 has, in the i-th entry, the degree of vi, that is, A1 is the degree

vector
A1 = (d1,d2, . . . ,dn).

Also 1 ·A1 = Âi di.
4. AcS has, in entry i-th, the number of edges to vi from a vertex in S. That is,

calling S⇠ v = {s 2V such that s⇠ v and s 2 S},

AcS = (x1,x2, . . . ,xn) with xi =| S⇠ vi |

18We recall, that, given a matrix A, l is an eigenvalue of A if there exist an vector v such that Av = lv. In
this case, v is the associated eigenvector of l .

“nesus-book”
2018/7/13
page 70

70 Ultrascale Computing Systems

If Aw is a weighted adjacency matrix, the i-th entry of AwcS is the sum of the
weight of the edges of the form s⇠ vi with s 2 S. That is,

AwcS = (x1,x2, . . . ,xn) with xi = Â
u2S⇠vi

w(u)

Proof. It is easy to do the computations for these claims from the definitions. For
example, for c), we have that the i-th entry of A1 is Â j=0 nai j · 1. As ai j is 1 if
vi ⇠ v j (and 0 in other case), then Ân

j=0 ai j = Â j|vi⇠v j 1, that is precisely the number
of vertices adjacent to vi.

If we call Dg the matrix with the degree vector in the diagonal and zero off-
diagonal:

Dg =

0

BBB@

d1 0 · · · 0
0 d2 0
...

. . .
...

0 0 · · · dn

1

CCCA

from a similar easy computation we have 1 ·Dg1 = Âi di. For any partition, if x is it
(1,-1)-indicator, we also have x ·Dgx = Âi di, because the minus signs compensate in
the entries where them appear.

In this context, it is traditional to define the Laplacian matrix L as

L = Dg�A.

See for example [121] or [122]. The rationale behind this definition is the
following relationship between the cut of a partition and the transform by L of its
characteristic vectors.

Theorem 1. For a partition (V1,V2), of (1,-1)-indicator x, we have;

cut(V1,V2) =
x ·Lx

4

Proof. For a partition (V1,V2), being c1 and c2 characteristic vectors of its sets, the
sum of the weight of the edges u ⇠ v with u 2 V1 and v 2 V2 is c1 ·Ac2. Therefore,
cut(V1,V2) = c1 ·Ac2. By the symmetry of A, it is also equal to c2 ·Ac1.

If x is the (1,-1)-indicator of (V1,V2), then x = c1� c2, and:

x ·Ax = (c1� c2) ·A(c1� c2) =

= c1 ·Ac1 + c2 ·Ac2� (c1 ·Ac2 + c2 ·Ac1) =

= c1 ·Ac1 + c2 ·Ac2�2cut(V1,V2)

Besides, as c1 + c2 = 1, that is c1 = 1� c2, then c1 · Ac1 = c1 ·A(1� c2) =
c1 ·A1� c1 ·Ac2. Likewise c2 ·Ac2 = c2 ·A1� c2 ·Ac1, hence

c1 ·Ac1 + c2 ·Ac2 = c1 ·A1� c1 ·Ac2 + c2 ·A1� c2 ·Ac1 =

= (c1 + c2) ·A1� (c1 ·Ac2 + c1 ·Ac2) = 1 ·A1�2cut(V1,V2)

“nesus-book”
2018/7/13
page 71

Programming Models and Runtimes 71

Hence

x ·Ax = c1 ·Ac1 + c2 ·Ac2�2cut(V1,V2) =

= 1 ·A1�2cut(V1,V2)�2cut(V1,V2) = Â
i

di�4cut(V1,V2)

That is, 4cut(V1,V2) = Âi di� x ·Ax. As Âi di = x ·Dgx, we can express Âi di�
x ·Ax = x ·Dgx� x ·Ax = x ·Lx. Therefore

cut(V1,V2) =
x ·Lx

4

We have deduced this well known identity in matrix form, instead of summatory
form as usual, to avoid the index chasing. This way also makes explicit the role of the

values b1,b2 using in indicators (as it is done in [119]). For example if x is a (
1
2
,�1

2
)-

indicator of (V1,V2), then cut(V1,V2) = x ·Lx. In general if x is a (b1,b2)-indicator the
cost of its cut is x·Lx

(b2�b1)2 . This deduction also shows the role of the diagonal degree
matrix.

In addition to the expression of cost as a bilineal form with matrix L, we express
the requirement that the partition (V1,V2) be balanced as 1 · x = 0. Hence, the prob-
lem of finding the balanced partition of minimal cost is the following problem of
combinatorial optimization:

Minimize
x

x ·Lx
subject to xi =±1, i = 1, . . . ,n

1 · x = 0.

To solve this combinatorial problem it is customary to relax the restrain xi =
±1. The relaxed problem has several features that ease its numerical resolution: L
is symmetric, hence its eigenvalues are real and there are a orthonormal basis of
eigenvectors [123]. Besides, 1 is a eigenvector of eigenvalue 0, because Dg1�A1 = 0.
Also, the eigenvalues are non-negative [124] 0 = µ0  µ1  · · · µn�1 (numbering
then without multiplicity 0 = l0 < l1 < · · ·< lk). These features of L are generally
deduced from its expression as summatory of squares, that we have avoided. Here we
derive them from standard facts of numerical matrix analysis.

The main result in numerical eigenvalue computation is the Min-max Theorem
[120]. In our case, this implies l1 = minx 6=0

x·Lx
x·x , the minimum is reached in a vector

x1 of norm 1, that is eigenvalue for l1. As the eigenvectors of different eigenvalues
are orthogonal, 1 · x1 = 0. That is x1 is a solution of the relaxed problem.

The first non-null eigenvalue l1 is the Fiedler value and its eigenvector x1 is the
Fiedler vector, by [125]. It solves the relaxed problem, numerically with computa-
tional complexity of O(n3). Rounding xi gives a (1,�1)-indicator of a partition. The
solution of the relaxed problem is an approximation of the combinatorial problem.
This problem is NP-hard [118], hence the interest of a relaxed approximation. A
bound of the error of this approximation, involving l1, is given by the bound of Mohar

“nesus-book”
2018/7/13
page 72

72 Ultrascale Computing Systems

[126]. Being Dg the maximum vertex degree of G, F(G) the cost of the minimal cut,
and Sp(G) the cut obtained by Fiedler eigenvector:

F(G) Sp(G)
q

l1(2Dg�l1).

These properties, included the bound of Mohar, can be translated for Laplacians
with vertex potential, a generalization of the Laplacian that we define in the next
subsubsection, and that allows us to extend the spectral partition to unequal vertex
load.

2.4.3 Laplacian with Potential of Vertex Weights
A potential is a function p : V �! R, and its diagonal form is the matrix Dp = (di j)
with dii = p(xi), di j = 0 if i 6= j. The Laplacian with potential p (or p-Laplacian) is:

Lp = L+Dp

That is Lp = Dg�A+Dp. Some properties of the p-Laplacian are similar to those of
the Laplacian.

If the potential p is non-negative, Lp has a real eigenvalue that is positive and
of maximum absolute value between the eigenvalues (known as Perron eigenvalue).
There is an eigenvector of the Perron eigenvalue that is positive (the Perron eigenvector
r).

The max-min theorem for the operator Lp gives us that l1 = min x 6=0
x·r=0

x·Lpx
x·x , and

the minimum is reached in its eigenvectors. Conventionally, the eigenvector of l1 of
norm 1 and with greater number of nonnegative values is the Fiedler vector f .

The spectral decomposition of Lp assure that f ·r = 0. This can be viewed, like
in the previous Laplacian, that the positive and negative values of the Fiedler vector
is an indicator of two sets of vertices that cut V in two parts of equal sum of Perron
values.

To build potential p in such a way that the Perron vector r have predetermined
values ri, we have developed the following result. A = (ai j) is the adjacency matrix
and (Ar)i the i-th component of the vector Ar .

Theorem 2. The potential

p(xi) = 1+aii�
(Ar)i

ri

has r as Perron vector.

By the above discussion, the p-Laplacian of this potential has a Fiedler vector
orthogonal to the Perron vector (that is, it produces a partition in parts of equal
total load at the vertices), and that in addition, by the extremal Max-min property,
minimizes the cost of communications in the relaxed problem.

Also, by taking this Fiedler vector as an approximation to the combinatorial
solution, that is, the unrelaxed problem, the error can be bounded with an expression

“nesus-book”
2018/7/13
page 73

Programming Models and Runtimes 73

Figure 2.16: Eigenvalues of the mesh. The area of main eigenvalues is zoomed.

similar to that of Mohar. Being, as above, F(G) the cost of the minimal cut, and
Spp(G) the cut obtained by Fiedler eigenvector of Lp:

F(G) Spp(G)

s

2l1 max
i

di�aii

ri

With these results, we can mimic the traditional partition techniques, but incorpo-
rating the load at the vertices. In addition, the division into two parts can be done by
assigning unequal proportions of the load (for example 30%-70%).

The unequal load has been addressed in the literature either by modeling as a
generalized eigenvalue problem [127], or by using several eigenvectors [128]. Both
approaches have their own drawbacks [118]. For our purposes, the main disadvantage
is that the vertex load is not embodied in the Laplacian. As we want to consider
mappings from application graph to machine graph, the loads should be included in
the model.

2.4.4 Mesh graph
In this subsection first we give an example of spectral decomposition of the mesh
graph of figure 2.15 . We will see that the eigenvector of the dominant eigenvalue
partitions the square. In this example of Cartesian graph, the adjacency matrix has
side 40 ·41 = 1640. The 1640 eigenvalues, in increasing order, are plotted in figure
2.16 and, as the matrix is symmetric, the Jordan form is diagonal. [129].

Each vector is a value in every vertex, so we can plot it as a z value of height
above the xy plane were the square lattice is displayed. With this convention, the first
and second eigenvectors (with respect the ordering eigenvalues) can be seen in figure
2.17.

Note that these are the eigenvectors of the adjacency matrix, not the Laplacian.
However, the first eigenvector, bell-shaped and positive, is symmetrically posed in
the square. We consider that each vertex has a load proportional to the corresponding
entry of this first eigenvector. The second eigenvector, orthogonal to it, has positive
and negative entries defining a partition of the mesh, whose two parts are equal in
total load (measured by the first eigenvector).

“nesus-book”
2018/7/13
page 74

74 Ultrascale Computing Systems

Figure 2.17: The first two eigenvectors of the mesh.

Figure 2.18: Laplacian eigenvalues of square lattice. The area of main eigenvalues is
zoomed.

In the case of the Laplacian, first and second eigenvectors (Perron and Fiedler)
are in figure 2.18. And these are also, as in the adjacency matrix, one positive and
the other partitioning the vertices in two sets of vertices. The sets have equal load,
measured by the first eigenvector, that being constant gives us equal number of
vertexes in each part.

The adjacency matrix and the Laplacian matrix have been taken as examples.
They differ only in the diagonal, so the adjacency matrix is a particular type of p-

Figure 2.19: Eigenvectors of square lattice.

“nesus-book”
2018/7/13
page 75

Programming Models and Runtimes 75

Laplacian: one that has as potential the degree at each vertex. This example has been
considered because it is easy to represent the eigenvectors, and to see that the first
eigenvector (Perron in the case of the adjacency matrix) corresponds to a load at each
vertex (uniform in the case of Laplacian).

2.4.5 Numerical Experiment

0.8

0.9

1.0

1.1

1.2

1.3

1.4

14
4

33
3S

P3e
lt
4e

lt
59

8a
ad

d2
0

ad
d3

2

am
az

onau
to

bc
sst

k2
9

bc
sst

k3
0

bc
sst

k3
1

bc
sst

k3
2

bc
sst

k3
3

bra
ck2

ca
−C

on
dM

at

co
m−

db
lp
cra

ckcs4 ctida
ta

fe_
4e

lt2

fe_
oc

ea
n

fe_
pw

t

fe_
rot

or

fe_
sp

he
re

fe_
too

th

fin
an

51
2
m14

b
t60

k uk

vib
rob

ox
wave

whit
ak

er3wing

wing
_n

od
al

Graphs

C
ut

 R
at

io

Method
dfssn/spctrl
gbbs/spctrl
hgrd/spctrl

Figure 2.20: Ratio of cut improvement of the spectral method against others.

In this subsection we describe a comparison, using the partitioning software
Scotch [130], of the spectral method described above against other method of graph
partition. We have integrated the spectral bipartition method (with vertex loads) in
Scotch. We resorted to the LAPACK library [131] for the eigenvector computation due
to their availability, but it is preferable to use libraries specialized in sparse matrices,
such as [132]. The Fiedler eigenvector is used as an initial method in a multilevel
approach (see [118] for technical background). In Fig 2.20, we do a comparison with
some of the initial methods present in Scotch (Diffusion, Gibbs-Pole-Stockmeyer,
H-greedy) over the graphs of the Walshaw collection [133], and also some bigger
graphs from the dataset of [134]. The cut produced with the spectral method, for
bipartitions, is about 10% better than the other methods. There are some cases where
the spectral method behaves equal or worse. In the figure, we plot the value "cost of
the cut of other method / cost of the spectral cut ", hence a value of 1 means equal
cost, greater than 1 means that spectral has lower cost.

The tests are meant to compare initial methods, leaving the contribution of
coarsening-uncoarsening as equal as possible between methods. To be precise, the
tests include, for each graph of Walshaw benchmark (excluding fe_body and MemPlus,
which are not connected) five different coarsening processes: up to 64, or 128, or
256, or 512, or 1024 vertices. Then each of these initial graph is bipartitioned by

“nesus-book”
2018/7/13
page 76

76 Ultrascale Computing Systems

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.5

14
4

33
3S

P3e
lt
4e

lt
59

8a
ad

d2
0

ad
d3

2

am
az

onau
to

bc
sst

k2
9

bc
sst

k3
0

bc
sst

k3
1

bc
sst

k3
2

bc
sst

k3
3

bra
ck2

ca
−C

on
dM

at

co
m−

db
lp
cra

ckcs4 ctida
ta

fe_
4e

lt2

fe_
oc

ea
n

fe_
pw

t

fe_
rot

or

fe_
sp

he
re

fe_
too

th

fin
an

51
2
m14

b
t60

k uk

vib
rob

ox
wave

whit
ak

er3wing

wing
_n

od
al

Graphs

Ti
m

e
R

at
io Method

dfssn/spctrl
gbbs/spctrl
hgrd/spctrl

Figure 2.21: Ratio of time improvement of the spectral method against others

diffusion, Gibbs, hgreedy and spectral methods, and then are uncoarsened with the
Fiduccia-Mattheyses algorithm [135]. The final measure is the cost of the cut obtained.
Unit loads and weights of the input graph are considered. In the plot we use the mean
of the five measures for each pair graph-method.

In Figure 2.21 we also compare the timing of running each method compared to
the spectral method. We plot the ratio of the time of three other ones compared to the
spectral method (hence the higher, the faster the spectral method). We see balanced
results here where in some cases the spectral method is much faster but for some
graphs (e.g. vibrobox) the ratio is lower than 0.6. However, the geometric mean of
the ratio is 0.986, which means that, on average, the spectral method is comparable
in terms of timings to the other methods. This is a good result as computing the
eigenvectors can be very long. Actually, the coarsening phase that happens only in
the other methods takes also a lot of time that has a strong impact on the timings.

2.4.6 Conclusions
The bipartition through the Fiedler eigenvector can be done by incorporating the loads
of the vertices in the model of the graph, without the need to introduce these loads a
posteriori in the resolution process. The classical techniques of analysis of the error
of the approximation can be generalized to this new approach. Bipartition can be
done in unbalanced parts, with a predetermined ratio, minimizing communications.
However, extending this scheme to partitions in three or more parts does not seem
straightforward. The numerical results, in comparison with the more usual methods,
are favorable to the spectral method, especially in graphs of a certain type, such as
those from social networks.

“nesus-book”
2018/7/13
page 77

Programming Models and Runtimes 77

2.5 Summary

This paper has shown some works related to UCS and the variety of systems that cloud
be integrated in those complex environments. However, there are still several research
topics and challenges that must be faced to cope with such complexity. Below, some
of them are shown

Cloud/Fog/Dew Big Data Computing: In the future the highest opportunities lie in
the availability of massive scale cloud infrastructure which will be omnipresent.
To effectively use these available resources, massively federated and scalable
software with orchestration through network awareness will be necessary. As
an extension of links between UCS and Clouds, data access models for data
mining in Exascale systems will be a key research topic. The integration will be
between Cloud systems but also Fog and future type of infrastructure, leading
to need on machine-to-machine computing and Cloud computing integration.
Heterogeneity of such system will continue to increase, leading to the need to
be able to integrate warehouse-scale computing using purpose-designed chips.
Integrating the lowest, Dew-level devices will present additional challanges due
to the extreme quantities of Physical Edge Devices, their severely low processing
power and communication means, and the huge amounts of data generated.

HPC: One of the key point will be the availability of programming abstractions
for the different fields of Exascale such as data analysis, machine learning,
scientific computing, Big Data management, smart cities, that will be based on
asynchronous algorithms for overlapping communication and computation. To
reach this overlap, parallel applications (such as the MPI-based one) will need
to be optimized using platform topology and performance information. One
crucial research topic will be programmability of UCS as applications will run
millions of parallel execution flows. New workflow programming for very large
plate forms will be needed. But interoperability and sustainability will only be
reached when code will be prevented to be platform specific and still efficient on
different platforms. From a broader point of view, the scale of UCS will lead to
Supercomputing on demand leading to a better use of the vast amount of available
resources. The efficiency will be linked to researches on performance evaluation,
modelling and optimization of data parallel applications on heterogeneous HPC
platforms. Management of such large distributed systems will be based on future
researches on complex systems modelling, self-organizing systems and cellular
automata.

Application-driven topics: With the aim of harnessing the power of UCS, scientific
community will be able to improve dramatically the quality of models. One
key example will be the research focus on meteorology beyond wind simulation
(Interfacing between different software packages and data formats, necessary
for integration of simulations for complex tasks). New tools will be needed to
use UCS for scientists from diverse fields, but tools only available to computer
scientists will be needed such as the Hardware/Software Co-design models to
guide together the development of hardware and software infrastructure.

“nesus-book”
2018/7/13
page 78

78 Ultrascale Computing Systems

Tool-driven: Several tools will be needed to use efficiently UCS. Some tools can be
provided by software, but also abstract models and new programming paradigms
helping programmers to better use the available resources are helpful. Due
to the scale of the systems, one key element will be resource-efficient models
for automatic recovery from minute-to-minute failures. As security is often
forgotten by programmers, software-defined security models will be needed
on large scale distributed infrastructure to simplify its usage. One way to
increase security and privacy will be to create new secure Privacy-Preserving data
management algorithms such as machine learning. To address code sustainability
and adaptation evolution on code production is needed such as source-to-source
translators and MDE (Model Driven Engineering) in order to adapt to the
underlying hardware.

In order to support some of those challenges, several breaktroughs are expected
in order to reach proper support for programmers and users in the Ultrascale context
as described in the NESUS research roadmap[6]:

Improve the programmability of complex systems Due to the size of these sys-
tems, it is no more possible for the programmer to have a precised and detailed
global view of the state of its application. Thus he needs to have support from
programming frameworks to simplify this view;

Break the wall between runtime and programming frameworks Exascale sytems
are so complex that runtime need high level information from the programmers
and the programmer need some information on the runtime to understand how
to harness its power;

Enabling behavioral sensitive runtime. Runtime cannot run application as black
boxes anymore as large scale systems are composed of a large number of
interconnected elements. Network profile must be known to reduce impact on
neighboor applications for example.

“nesus-book”
2018/7/13
page 79

Chapter 3

RESILIENCE AND FAULT TOLERANCE
Pascal Bouvry1 and Sebastien Varrette2 and Tuan Anh

Trinh3 and Muhammad Umer Wasim4 and Abdallah A.Z.A.
Ibrahim5 and Xavier Besseron 6

Keywords: resilience, fault tolerance, compliance, AI, blockchain, resource dynamic
reallocation, resilience, Ultra-scale.

As discussed in the Introduction, Ultrascale computing is a new computing
paradigm that comes naturally from the necessity of computing systems that should
be able to handle massive data in possibly very large scale distributed systems,
enabling new forms of applications that can serve a very large amount of users and
in a timely manner that we have never experienced before. It is very challenging to
find sustainable solutions for UCS due to their scale and a wide range of possible
applications and involved technologies. For example, we need to deal with cross
fertilization among HPC, large scale distributed systems, and big data management.

One of the challenges regarding sustainable UCS is resilience. Traditionally,
it has been an important aspect in the area of critical infrastructure protection (e.g.
the traditional electrical grid and the smart grids). Furthermore, it has also become
popular in the area of information and communication technology (ICT), ICT systems,
computing and large-scale distributed systems. The existing practices of dependable
design deal reasonably well with achieving and predicting dependability in systems
that are relatively closed and unchanging. Yet, the tendency to make all kinds of
large-scale systems more interconnected, open, and able to change without new
intervention by designers, makes existing techniques inadequate to deliver the same
levels of dependability. For instance, evolution of the system itself and its uses impairs
dependability: new components "create" system design faults or vulnerabilities by
feature interaction or by triggering pre-existing bugs in existing components; likewise,

1University of Luxembourg,Luxembourg
2University of Luxembourg, Luxembourg
3Corvinus University of Budapest, Hungary
4University of Luxembourg, Luxembourg
5University of Luxembourg, Luxembourg
6University of Luxembourg, Luxembourg

“nesus-book”
2018/7/13
page 80

80 Ultrascale Computing Systems

new patterns of use arise, new interconnections open the system to attack by new
potential adversaries, and so on. Another one, which attracted less interest in the
literature, but becomes more and more crucial with the expected convergence with
the Cloud computing paradigm, is the notion of regulation in such system to assess
the QoS and SLA proposed for the use of these platforms. This chapter covers both
aspects through the reproduction of two articles: [3] and [136].

In this chapter, we show an introduction to resilience in UCS form two facets:
technical and legal. Thus, the rest of this chapter is organized as follows: Section 3.1
reviews the basic notions of faults, fault tolerance and robustness. Applications
and implementations within UCS are also proposed, while novel challenges and
opportunities linked to the development of DLT. Then regulation compliance aspects
are covered in the section 3.2. Finally, Section 3.3 concludes the paper and provides
some future directions and perspectives opened by this study.

3.1 Security and reliability in Ultra-scale System

3.1.1 Faults, Fault Tolerance and Robustness

y Ryyy kyyy jyyy 9yyy 8yyy
y

y�ky�9y�ey�3R

Number of processors

Fa
ili
ng

pr
ob

ab
ili
ty

Execution time
1 day
5 days
10 days
20 days

Figure 3.1: Typical probability of failure with increasing number of processors in a
computing system.

As as illustrated in the Figure 3.1 and due to their inherent scale, UCS are
naturally prone to errors and failures which are no longer rare events [137, 138, 139,
140].

There are many sources of faults in distributed computing and they are inevitable
due to the defects introduced into the system at the stages of its design, construction
or through its exploitation (e.g. software bugs, hardware faults, problems with data
transfer) [141, 138, 139, 140]. A fault may occur by a deviation of a system from the
required operation leading to an error (for instance a software bug becomes apparent
after a subroutine call). This transition is called a fault activation, i.e. a dormant
fault (not producing any errors) becomes active. An error is detected if its presence
is indicated by a message or a signal, whereas not detected, present errors are called
latent. Errors in the system may cause a (service) failure and depending on its type,
successive faults and errors may be introduced (error/failure propagation). The
distinction between faults, errors and failures is important because these terms create
boundaries allowing analysis and coping with different threats. In essence, faults are

“nesus-book”
2018/7/13
page 81

Resilience and Fault Tolerance 81

the cause of errors (reflected in the state) which without proper handling may lead to
failures (wrong and unexpected outcome). Following these definitions, fault tolerance
is an ability of a system to behave in a well-defined manner once an error occurs.

There are five specific fault models relevant in distributed computing: omission,
duplication, timing, crash, and byzantine failures [141, ?].

Omission and duplication failures are linked with problems in communication.
Send-omission corresponds to a situation, when a message is not sent; receive-
omission — when a message is not received. Duplication failures occur in the
opposite situation — a message is sent or received more than once.

Timing failures occur when time constraints concerning the service execution
or data delivery are not met. This type is not limited to delays only, since too early
delivery of a service may also be undesirable.

The crash failure occurs in four variants, each additionally associated with its
persistence. Transient crash failures correspond to the service restart: amnesia-crash
(the system is restored to a predefined initial state, independent on the previous inputs),
partial-amnesia-crash (a part of the system stays in the state before the crash, where
the rest is reset to the initial conditions), and pause-crash (the system is restored to
the state it had before the crash). Halt-crash is a permanent failure encountered when
the system or the service is not restarted and remains unresponsive.

The last model — byzantine failure (also called arbitrary) — covers any (very
often unexpected and inconsistent) responses of a service or a system at arbitrary
times. In this case, failures may emerge periodically with varying results, scope,
effects, etc. This is the most general and serious type of failure [141, ?].

Dependable computing and Fault tolerance techniques
Faults, errors and failures are threats to system’s dependability. A system is described
as dependable, when it is able to fulfil a contract for the delivery of its services
avoiding frequent downtimes caused by failures.

Dependable
computing

Fault
acceptance

Fault
avoidance

Provision

Assessment
Fault

forecasting

Fault
tolerance

Fault
removal

Fault
prevention

Figure 3.2: Means for dependable computing [3]

Identification of threats does not automatically guarantee dependable computing.
For this purpose, four main groups of appropriate methods have been defined [141]:

“nesus-book”
2018/7/13
page 82

82 Ultrascale Computing Systems

fault prevention, fault tolerance, fault removal, and fault forecasting. As visible
on fig. 3.2, all of them can be analyzed from two points of view — either as means
of avoidance/acceptance of faults or as approaches to support/assess dependability.
Fault tolerance techniques aim to reduce (or even eliminate) the amount of service
failures in the presence of faults. The main goal of fault prevention methods is to
minimize the number of faults occurred or introduced through usage and enforcement
of various policies (concerning usage, access, development etc.) The next group —
fault removal techniques — is concentrated around testing and verification (including
formal methods). Finally, fault forecasting consists of means to estimate occurrences
and consequences of faults (at a given time and later).

Fault tolerance techniques may be divided into two main and complementary cate-
gories [141]: error detection, and recovery. Error detection may be performed during
normal service operation or while it is suspended. The first approach in this cate-
gory — concurrent detection — is based on various tests carried out by components
(software and/or hardware) involved in the particular activity or by elements specially
designated for this function. For example, a component may calculate and verify
checksums for the data which is processed by it. On the other hand, a firewall is a
good illustration of a designated piece of hardware (or software) oriented on detection
of intrusions and other malicious activities. Preemptive detection is associated with
the maintenance and diagnostics of a system or a service. The focus in this approach
is laid on identification of latent faults and dormant errors. It may be carried out
at a system startup, at a service bootstrap, or during special maintenance sessions.
After an error of a fault is detected, recovery methods are applied. Depending on
the problem type, error or fault handling techniques are used. The first group is
focused on elimination of errors from the system state, while the second are designed
to prevent activation of faults. In [141], the specific methods are separated from each
other, where in practice this boundary is fuzzy and depends on the specific service
and system types. Generally, error handling is solved through:

1. Rollback [142]: the system is restored to the last known, error-free state. The
approach here depends on a method used to track the changes of the state. A well
known technique is checkpointing — the state of a system is saved periodically
(e.g. the snapshot of a process is stored on a disk) as a potential recovery point
in the future. Obviously, this solution is not straightforward in the case of
distributed systems and there are many factors to consider. In such environment,
checkpointing can be coordinated or not — with differences in reliability and the
cost of synchronisation of the distributed components – see [?, ?, ?].
Rollback can be also implemented through the message logging. In this case, the
communication between the components is tracked rather than their state. In case
of an error, the system is restored by replaying the historical messages, allowing
it to reach global consistency [?]. Sometimes both techniques are treated as one,
as usually they complement each other.

2. Rollforward: the current, erroneous system state is discarded and replaced with
a one newly created and initialised.

“nesus-book”
2018/7/13
page 83

Resilience and Fault Tolerance 83

3. Compensation, an approach based on components’ redundancy and replication,
sometimes referred to as fault masking. In the first case, additional components
(usually hardware) are kept in reserve [?]. If failures or errors occur, they are
used to compensate the losses. For example, a connection to the Internet of a
cloud platform should be based on solutions from at least two different ISP.

Replication is based on the dispersion of multiple copies of the service com-
ponents. A schema with replicas used only for the purpose of fault tolerance is
called a passive (primary-backup) replication [?]. On the other hand, an active
replication is when the replicas participate in providing the service, leading to
increased performance and applicability of load balancing techniques. Coherence
is the major challenge here, and various approaches are used to support it. For
instance, read-write protocols are crucial in active replication, as all replicas are
expected to have the same state. Another worth to note example is clearly visible
in volunteer-based platforms. An appropriate selection policy of the correct
service response is needed when replicas return different answers, i.e. a method
to reach quorum consensus is required.

These techniques are not exclusive and can be used together. If the system can not be
restored to a correct state thanks to the compensation, rollback may be attempted. If
this fails, then rollforward may be used.
The above methods may be referred to as general-purpose techniques. These solutions
are relatively generic, which aids their implementation for almost any distributed
computation. It is also possible to delegate responsibility for fault tolerance to the
service (or application) itself, allowing tailoring the solution for specific needs —
therefore forming an application-specific approach. A perfect example in this context
is ABFT, originally applied to distributed matrix operations [143], where original
matrices are extended with checksums before being scattered among the processing
resources. This allows detection, location and correction of certain miscalculations,
creating a disk-less checkpointing method. Similarly, in certain cases it is possible to
continue the computation or the service operation despite the occurring errors. For
instance, unavailable resource resulting from a crash-stop failure can be excluded
from further use. In this work, the idea will be further analysed and extended to the
context of byzantine errors and the nature-inspired distributed algorithms.

Fault handling techniques are applied after the system is restored to an error-free
state (using the methods described above). As the aim now is to prevent future activa-
tion of detected faults, four subgroups according to the intention of the operation may
be created. These are [141]: diagnosis (the error(s) are identified and their source(s)
are located), isolation (faulty components are logically or physically separated and
excluded from the service), reconfiguration (the service/platform is reconfigured to
substitute or bypass the faulty elements), and reinitialization (the configuration of the
system is adapted to the new conditions).

Robustness
When a given system is resilient to a given type of fault, one generally claims that
this system is robust. Yet defining rigorously robustness is not an easy task and many
contributions come with their own interpretation of what robustness is. Actually, there

“nesus-book”
2018/7/13
page 84

84 Ultrascale Computing Systems

exists a systematic framework that permits to define a robust system unambiguously.
In fact, this should be probably applied to any system or approach claiming to propose
a fault-tolerance mechanism. This framework, formalized in [144], answers the
following three questions:

1. What behavior of the system makes it robust?
2. What uncertainties is the system robust against?
3. Quantitatively, exactly how robust is the system?

The first question is generally linked to the technique or the algorithm applied.
The second — explicitly lists the type of faults or disturbing elements targeted by
the system. Answering it is critical to delimit the application range of the designed
system and to avoid counter examples selected in a context not addressed by the
robust mechanism. The third and the last question is probably the most difficult to
answer, and at the same time the most vital to characterize the limits of the system.
Indeed, there is nearly always a threshold on the error/fault rate above which the
proposed infrastructure fails to remain robust and breaks (in some sense).

3.1.2 Fault Tolerance in UCS
Computing Hardware Resilience
As mentioned before, any implementation of fault tolerance (or indeed of fault detec-
tion) in hardware implies compensation, i.e. the use of redundancy and replication.
In terms of data or information redundancy, a general approach consists in the use
of non-minimal coding to represent the data in a system. By far the most common
implementation of data redundancy implies the use of error detecting codes (EDC),
when the objective is fault detection, and of error correcting codes (ECC), when the
objective is fault tolerance [145].

Memory elements for instance are probably the hardware components that require
the highest degree of fault tolerance: their extremely regular structure implies that
transistor density in memories is substantially greater than in any other device (the
largest memory device commercial available in 2015 reaches a transistor count of
almost 140 billion, compared for example to the 4.3 billion of the largest processor).
This level of density has resulted in the introduction of fault tolerant features even in
commonly available commercial memories. Reliability in memories takes essentially
two forms: to protect against single faults, the use of redundant ECC memory is
common and well-advertised [146], while marginally less known is the use of spare
memory locations to replace permanently damaged ones. The latter technique, used
extensively at fabrication for laser-based permanent reconfiguration, has also been
applied in an on-line self-repair setting [147].

At the level of the computing elements, the development of high-performance
processors has been driven by both performance and energy efficiency. As a result
and due to their redundancy requirements and thus their negative implications both for
performance and for power consumption, relatively little research into fault tolerant
cores has reached the consumer market, leading to limited developments. The situation
is somewhat different outside of the high-performance market (typically in the spatial
domain), where examples of processors specifically designed for fault tolerance exist.

“nesus-book”
2018/7/13
page 85

Resilience and Fault Tolerance 85

More recently, the RAZOR approach [148] represents a fault tolerance technique
aimed specifically at detecting (and possibly correcting) timing errors within processor
pipelines using a particular kind of time redundancy approach that exploits delays in
the clock distribution lines.

Network Resilience
Networks are a crucial element of UCS and more generally any system where proces-
sors have to share information, and therefore they represent a fundamental aspect of
any multi-processor system. Often rivalling in size and complexity with the processing
units themselves, networks and their routers have traditionally been a fertile ground
for research on fault tolerance. Indeed, even when limiting the scope of the investiga-
tion to on-chip networks, numerous books and surveys exist that classify, describe,
and analyse the most significant approaches to fault tolerance [149][150][151]). Very
broadly, most of the fundamental redundancy techniques have been applied, in one
form or another, to the problem of implementing fault-tolerant on-chip networks,
ranging from data redundancy (i.e. parity or ECC encoding of transmitted packets),
through hardware redundancy (i.e. additional routing logic), to time redundancy (i.e.
repeated data transmission).

Recent studies [152] also consider a change in the communication pattern, typ-
ically using self-healing protocols based on gossiping. Gossip protocols define a
pure P2P network over a large set of computing resources and exploit randomness to
virally disseminate information while maintaining connectivity in a self-organized
(independent of the initial state) equilibrium. Such equilibrium emerges from the
loosely-coupled and distributed run of the protocol within different and independent
communicating components. The epidemic nature provides high fault-resilience and
self-healing properties meant to be crucial for large-scale computing platforms as
UCS, at the cost of an overhead in terms of messages routing performance [153].

Software and MPI Resilience
We have mentioned previously that application specific approaches relying on ABFT
which permit to tailor the fault-tolerant mechanism solution for specific needs, there-
fore forming an application-specific approach.

More generally, the compute units of current and future HPC systems are more
and more complex and diverse (including for instance co-processors or GPU accelera-
tors) such that smarter ways to efficiently program them are required. At this level,
programming models initially introduced to abstract from the compute resources and
leverage available parallelism, have to adapt. In particular, parallel programming
models meant as ways to express parallelism inside applications, have to be compliant
with a common programming language, which comes with a compiler and a runtime
to ensure an efficient execution.

Various programming models have emerged as parallel machines evolved, and
they follow different paradigms, yet the most popular one is based on Message
Passing oriented toward distributed and interconnected memory systems. In this
model, multiple instances of the program (or processes) allow to share computational
resources. A process contains everything needed for executing a program: its own

“nesus-book”
2018/7/13
page 86

86 Ultrascale Computing Systems

address space, a set of instructions, and a context. They communicate with each other
through messages passed over the network.

The main implementation of this model is of course MPI, a standard library
introduced in 1991. It is designed for distributed memory machines, and it involves
processes running concurrently and parallelizing the program. Communications are
to be made explicit by the user and MPI supports both point-to-point as well as
collective communications. It is now widely and largely adopted for most scien-
tific codes, having interfaces in many programming languages. The standard has
been revised in multiple versions, the most recent being the MPI 3.1 [154] standard
which introduced Non Blocking Collectives, allowing asynchronous communications
between processes.

Numerous implementations of MPI are available, such as OpenMPI, MPICH2,
MVAPICH2, Intel MPI or MPC (Multi-Processor Computing).

Nowadays, MPI remains a straightforward and effective way to program large-
scale MPI. Fault tolerance aspects are reviewed in [155] as the MPI standard does not
clearly define behavior of MPI implementation if one or several processes of an MPI
application are abnormally aborted. There is a dedicated working group7 covering
this topic, and several MPI implementations embed fault tolerance mechanisms. First
attempts rely on a complete checkpointing and message logging to enable replacement
of aborted processes – the checkpoints avoid reconstructing computations from the
beginning through the message logs. This requires a reliable subsystem for the
checkpoints and message logs, as well as for the "dispatcher" process leading to a
coordinated checkpoint. More recent approaches try to mitigate this requirement,
such as the one proposed in ULFM 2.0, Intel MPI or MPICH. For instance, ULFM
enables user-level deployment of in-memory diskless checkpoints, stored on other
compute nodes. It features reduced I/O activities to offer a decreased the failure free
overhead while enabling better restart speed. Yet its development remains at an early
stage. In all cases, building a resilient MPI program encompasses a minimal set of
features:

• Detection and notification of failures. Typically only processes involved in a
communication with a failed process might detect the occurence of a failure to
limit the scope and noise induced by the detection operations.

• Definition of a failure scope to enable error propagation. This is typically left
to application-specific settings.

• Error Recovery strategy. This remains of course the main issue to solve and
a work in progress, for instance to define who should be in charge of defining
the fault-tolerant strategy and the type of feedback the application receive. As
an illustration, at the moment of writing, ULFM is not a recovery strategy, but a
minimalistic set of building blocks for implementing complex recovery strategies.

3.1.3 Blockchains and DLT
Blockchains are immutable DLT system implemented in a distributed fashion (i.e.
without a central repository) and usually without a central authority [156]. At their
7See http://mpi-forum.org/mpi-30/ft-wg

“nesus-book”
2018/7/13
page 87

Resilience and Fault Tolerance 87

most basic level, they enable a community of users to record transactions in a ledger
that is public to that community, such that no transaction can be changed once
published. This technology became widely known starting in 2008 when it was
applied to enable the emergence of electronic currencies where digital transfers of
money take place in distributed systems. It has enabled the success of e-commerce
systems such as Bitcoin, Ethereum, Ripple, and Litecoin [157]. Because of this,
blockchains are often viewed as bound to Bitcoin or possibly e-currency solutions in
general. However, the technology is more broadly useful and is available for a variety
of applications.

Indeed at the heart of DLT resides a consensus algorithm which is responsible
for maintaining the data structure i.e. define the way new blocks representing sets
of transactions are added. Each node maintains a copy of the blockchain and may
propose a new block to the other participating nodes (called miners in the traditional
PoW consensus model). Thus the consensus model enable a group of mutually
distrusting users to work together to decide which block is agreed to expand the
structure, and without any central authority. A list of the main consensus models
currently available is proposed in the Table 3.1.

Consensus Model Example
PoA POANetwork, Kovan and Rinkeby testnets...

PoW Bitcoin, Ethereum (until version 3), Litecoin, Primecoin, Monero,
Zcash, Namecoin...

PoS Peercoin (PoST), Ethereum (starting version 4), Netcoin (PoU)...
DPoS Nano / Raiblocks (block lattice)...
PoR Spacemint...
DAG IOTA (Tangle), Hashgraph...

BFT
PBFT, Ripple (FBA), Algorand (BA ?)...

Table 3.1 Overview of the main consensus models used within DLT.

The traditional PoW is not adapted for UCS – it involves intentionally resource-
intensive tasks (taking large amounts of processing power, memory, or both) yet using
these systems for these duties is counter-productive and against energy efficiency
objectives. More recent and alternative proposals seems more suited for an effective
usage on UCS, typically the ones relying on PoS, DAG and the resolution of the BGP
enabling BFT. The range of possible applications is wide, for instance to securely
store computing transactions or to enable QoS regulation from smart contracts.
A smart contract is a collection of code and data (sometimes referred to as functions
and state) that is deployed to a blockchain such as Ethereum. Any future transactions
sent to the blockchain can then send data to public methods offered by the smart
contract. The contract executes the appropriate method with the user provided data to
perform a service. The code, being on the blockchain, is immutable and therefore can
be used (among other purposes) as a trusted third party for validating the SLA of the
system. The next section demonstrates such a use case.

“nesus-book”
2018/7/13
page 88

88 Ultrascale Computing Systems

3.2 Regulation Compliance in Ultra-scale System

Today’s law driven societies based on the use of smart contracts, are transforming
the way economies function around the globe.Regulation compliance is the common
model used to ensure desired level of reliability in any system, which is expected to
be more an more crucial for large-scale computing platforms such as UCS.

Leaving aside the technological details of the running a smart contract on top
of such systems, this section presents the design and implementation of NESUS
Watchdog, a software bot/agent adapted from the one proposed in [136] and inspired
from the work performed in [158]. The underlying concept of NESUS Watchdog is
built upon the notion factor analysis and stochastic modeling from the disciplines of
unsupervised machine learning and Data Science, respectively. The aim of NESUS
Watchdog is to monitor an UCS as per pre-define regulations (a smart contract) and
penalize the system in case of a breach that (a) has a potential to create substantial
damage and (b) has high probability to occur in the future.

3.2.1 NESUS Watchdog and Regulatory Compliance
As seen in the section 3.1.3, a smart contract is a piece of code that resides on a
blockchain network and is identified by a unique address. It includes a set of exe-
cutable functions and state variables. The functions are executed when a transaction is
invoked by a certain condition (or by an electronic event or data). These transactions
include input parameters that are required by the functions in the contract. Upon the
execution of a function, the state variables in the contract may change depending on
the logic implemented in the function. This execution is self-enforceable, i.e. once
a smart contract is concluded its further execution is neither dependent on intend of
contractual parties or any unplanned third part, nor does it require any additional
approvals or actions from their side [159]. Thus breach of contract and mechanism ad-
dressing the breach becomes irrelevant during the execution of a smart contract [160].
However, even though the breach becomes irrelevant during the execution, what if an
output of a smart contract results in a breach? For example, deviation in an output
of a smart contract is a breach if a service provider of an UCS provides "90% actual
uptime" on average as compared to agreed "95% uptime".

The NESUS Watchdog, hereafter referred as a bot, reuse the concepts proposed
in [158] and performs a two-phase validation process for the potential breach by a
smart contract executed on top of an UCS. Initially, it assesses significance of the
breach to ensure that it has a potential to create substantial damage. Afterwards, if the
significance is high, it assesses the probability of the breach. In case the probability is
also high, i.e. the breach frequently occurred in the past and there is certainty for it to
occur in the future, the bot invokes a transaction and executes a function in a smart
contract that results in the penalization. Figure 3.3 presents an example of a smart
contract for quality of service (QoS) in an UCS and a context where the contract is
implemented using the bot.

“nesus-book”
2018/7/13
page 89

Resilience and Fault Tolerance 89

Figure 3.3: The Bot enabled Smart Contract

Assessing Significance of Breach
To assess the significance of a breach within the system, the bot relies on the notion
of communality [161], a measure of variance a broader concept of Probability-based
Factor Model (PFM) from the discipline of unsupervised machine learning [162] [163].
In the example provided in Figure 3.3, it would correspond to the measure of the
relationship between contract (QoS) and its output e.g. latency. Its high value indicates
a strong relationship between the two and endorses the related breach, e.g. latency >

threshold), to be considered as significant.
Communality is estimated by using SEM. SEM is a statistical approach used to

examine association between a latent variable (or goal) and an observed variables
(or criteria) [162] [163]. Latent variable is a theoretical construct that is inferred
from the variables that are observed in the field. In figure 3.3, QoS is a latent
variable, which is inferred from the variables (throughput or latency) that are observed
during in the field. In SEM, the most popular and frequently used methods to
estimate communality are Principal Factor Analysis (PFA) and Maximum Likelihood
(ML) [162] [163]. Considering that ML estimation assumes normal distribution of
observed variables and that the bot deals with observed variables without making any
prior assumption, PFA was used to estimate communality. In PFA, the relationship
vector L = (l1l2 . . .ln)

0 between a latent variable F and observed variables vector
Y = (y1y2 . . .yn)

0 is expressed in a variance-covariance matrix notation as:

cov(Y) = cov(LF)+Y,

where Y is a vector that represents uniqueness of observed variables not shared with
the latent variable. By using covariance property cov(AZ) = Acov(Z)AT , cov(LF)
in the right hand side of above equation can be expanded to Lcov(F)LT +Y.
Moreover, since we consider here only a single latent factor (the QoS), F is simply an
identity matrix, thus cov(F) = 1. It follows that:

cov(Y) = LLT +Y
Within HPC and UCSs, Y is generally not commensurated, i.e. observed vari-

ables (throughput, latency etc.) are measured in different units and scales. In this

“nesus-book”
2018/7/13
page 90

90 Ultrascale Computing Systems

case, standardized Y has to be used. After standardization, the covariance becomes
correlation (r) and subsequently, the covariance matrix cov(Y) becomes a correlation
matrix R = LLT +Y, which can be expanded as:

2

64
1 · · · r1n
...

. . .
...

r1n · · · 1

3

75=

2

6664

l1
l2
...

ln

3

7775
⇥
l1 l2 · · · ln

⇤
+

2

64
Y1 · · · 0
...

. . .
...

0 · · · Yn

3

75

Bringing Y to left hand side and performing subtraction,

2

64
1�Y1 · · · r1n

...
. . .

...
r1n · · · 1�Y1

3

75=

2

6664

l1
l2
...

ln

3

7775
⇥
l1 l2 · · · ln

⇤
= LLT

Subtracting unique variance from one (1�Y) will yield shared variance of an ob-
served variable for the latent variable, which is equal to square of li [162] [163].
Respectively, (li)2 can replace (1�Y) and the above equation will become:

2

64
(l1)2 · · · r1n

...
. . .

...
r1n · · · (l1)2

3

75= LLT

Accordingly, in a reduced form, we obtain the following equation:
2

64
(l1)2 · · · r1n

...
. . .

...
r1n · · · (l1)2

3

75= R�Y = LLT
,

where R�Y is a "reduced correlation matrix". If R�Y is positive semi-definite
matrix , i.e. it satisfies R�Y = (R�Y)T , then this implies that R�Y has the
following spectral decomposition (i.e. a factorization into a canonical form, whereby
the matrix is represented in terms of its eigenvectors to identify latent variable and
corresponding eigenvalues to show strength of identified latent variable):

R�Y =UDUT

In this equation, U is the matrix of eigenvectors of R�Y and D is the diagonal
matrix of corresponding eigenvalues Q1Q2 . . .Qn.

D =

2

64
Q1 · · · 0
...

. . .
...

0 · · · Qn

3

75

The important property of a positive semi-definite matrix is that its eigenvalues
are always positive or null. Hence, Qi � 0 and consequently, D can be factored into
D

1
2 D

1
2 . In particular:

“nesus-book”
2018/7/13
page 91

Resilience and Fault Tolerance 91

R�Y =
⇣

UD
1
2

⌘⇣
D

1
2 UT

⌘
= LLT

In a general expanded form:

L =
⇣

UD
1
2

⌘
=

2

64
u11 · · · u1n

...
. . .

...
un1 · · · unn

3

75⇥

2

64

p
Q1 · · · 0
...

. . .
...

0 · · ·
p

Qn

3

75

Yet it can be observed that in the above form, L (or UD
1
2) is presented as a n⇥ n

matrix, however, as we consider here a single latent variable (the QoS within an UCS),
L must be n⇥1 matrix representing L = (l1l2 . . .ln)

0 . Hence, from the right hand
side of above equation, the largest eigenvalue Qi and corresponding eigenvector Ui
are used for calculation of L , i.e., L = Ui

p
Qi. The squared value of L is called

communality (z) and can be written as:

z = L2 =

2

6664

(u1)2

(u2)2

...
(un)2

3

7775
Qi

In the above equation, the eigenvector contains estimated unit-scaled loadings or
weights (ui) that are associated with each observed variable. The eigenvalue z is a
shared variance among all the observed variables that represent the latent variable.
Communality is obtained by multiplying squared value of ui with z , which represents
the relationship of latent variable with observed variable.

Coming back to the concrete example proposed in the figure 3.3 to assess the
QoS of an UCS, let’s assume that the communality obtained for "QoS and latency"
is 0.87, when the one collected for "QoS and throughput" is 0.14. The low value
received in the second case indicates a weak relationship and therefore, declares that
the related breach (, i.e. throughput < threshold), is insignificant and unlikely to
create substantial damage.

Assessing Probability of Breach
To assess the probability of breach P(x), the bot uses notion of stochastic modeling
from the domain of Data Science. A stochastic model predicts a random event
weighted by its probability [164]. The bot, based on the distribution model of the
previous breaches (xt�1,xt�2, · · · ,xt�n), suggests a stochastic model with minimum
"square error" to find P(x). In distribution modeling, square error as criteria with the
minimum value indicates the best possible approximation (stochastic model) for the
data. However, it also requires verification in terms of accuracy , i.e. how precisely a
stochastic model can represent the data.
For example, during the distribution analysis, if the bot observes that previous breaches
are lognormal increasing with minimum square error, then the probability of breach
P(x) is:

“nesus-book”
2018/7/13
page 92

92 Ultrascale Computing Systems

P(x) =
1

sx
p

2p
e
�(ln(x)�µ)2

2s2 , i f (xt�1,xt�2, · · · ,xt�n)⇠ LOGN(µ,s)

To verify the accuracy of above model, the bot performs a Paired Sample T-Test.
In the test, it determines whether the mean difference between two samples, , i.e.
previous breaches and random data generated using LOGN(µ,s) in equation 2, is
zero or not. For later case, , i.e. 6= 0 (when the difference between the two is not
negligible), the bot dismisses the use of the expected stochastic model. This is actually
the limitation of the bot.

3.2.2 Illustration: Penalization by Nexus Watchdog
This subsection presents an empirical illustration of penalizations by the bot in UCS
for three HPC workflows: Redis, MongoDB, and Memcached Servers access. The
HPC facility of the University of Luxembourg and Docker containers were used to
emulate contractual environment of these workflows. Each of these scenarios were
operated under a workload generated from the Yahoo Cloud Service Benchmark
(YCSB) [165] which was deployed to continuously monitor the QoS of the system
in terms of throughput (operations per second), read latency (time to read data from
database), and update latency (time to update data in database). For the experiments
described in the sequel, the input parameters given to be passed to the YCSB bench-
mark for evaluation correspond to the different number of operations (ranging from 0
to 10,000), an increasing number of records (ranging from 0 to 10,000), and a number
of threads ranging from 0 to 100. Python (for scripting) and R (for data visualization)
were used to identify the smart contract breach, in which case the bot was activated
to request penalization. In addition, several data analysis tools were used to assist
the PFM analysis such as Arena Input analyzer, STATA or IBM Statistical Analysis
Software Package (SPSS).
Figure 3.4 presents YCSB monitoring of service providers in terms of unit-scaled
throughput, read latency and update latency. The YCSB data of all three service
providers was used by the bot to calculate communality for throughput (0.38), read
latency (0.46), and update latency (0.33). It can be observed that read latency has
highest value and consequently, the strongest relationship with QoS. Therefore, the
related breach, , i.e. read latency > threshold, is significant and most likely to create
substantial damage.

For each workflow, the following operations were performed: (a) the threshold
was set to average read latency, which was calculated from its YCSB data, (b) based
on the condition, , i.e. read latency > average read latency, previous breaches
(xt�1,xt�2, · · · ,xt�n) were identified, (c) distribution modeling of previous breaches
was performed, and (d) stochastic model with minimum square error was identified
and further verified for accuracy using Paired Sample T-Test. The stochastic models
for read latency of Redis and Memcached successfully passed the T-Test. However,
for MongoDB (as it failed the prior T-Test) the procedure in preceding paragraph
was repeated for throughput (with second highest communality value of 0.38) and
stochastic model identified successfully passed the T-Test.

“nesus-book”
2018/7/13
page 93

Resilience and Fault Tolerance 93

0 2000 4000 6000 8000 10000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Number of Operations

N
or

m
al

ize
d

Th
ro

ug
hp

ut
YCSB
Redis
MongoDB
Memcached

0 2000 4000 6000 8000 10000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Number of Operations

N
or

m
al

ize
d

R
ea

d
La

te
nc

y

YCSB
Redis
MongoDB
Memcached

0 2000 4000 6000 8000 10000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Number of Operations

N
or

m
al

ize
d

U
pd

at
e

La
te

nc
y

YCSB
Redis
MongoDB
Memcached

Figure 3.4: YCSB (version 0.12.0) Monitoring of Redis, MongoDB, and Memcached

The tables 3.2 and 3.3 present the implementation and results of the PFM analysis
conducted within the NESUS watchdog for the considered workflows. For instance,
the top figures shows previous breaches based on two conditions: "read latency
> average read latency" for Redis and Memcached, and "throughput < average
throughput" for MongoDB. The obtained distribution models are exhibited in each
case, as well as the parameters of the stochastic models. It can be observed that for
Redis and Memecached, previous breaches in read latency are lognormal increasing
and for MongoDB, previous breaches in throughput are beta increasing. We propose
within each HPC workflow the measured square error (Redis: 0.007417, Memcashed:
0.003444, and MongoDB : 0.018634). Moreover, as p-values of Paired Sample T-
Test (Redis: 0.5449, Memcashed: 0.8258, and MongoDB: 0.4788) are greater than
0.05, the null hypothesis (the two samples are same) is accepted as compared to
alternate hypothesis (the two samples are different). Hence, the stochastic models for
Redis (read latency) , i.e. 0.12+LOGN(0.204,0.117), Memcached (read latency) ,
i.e. 0.27+LOGN(0.245,0.137), and MongoDB (throughput) , i.e. �0.48+0.17⇤
BETA(2.49,1.48), can be used by PFM to find probability of breach P(x). In

“nesus-book”
2018/7/13
page 94

94 Ultrascale Computing Systems

Table 3.2 NESUS Watchdog (a software bot) - Stochastic Models and Penalization
for the Redis and Memcached workflows.

Redis Memcached

●

●
●●

●

●

●
●●
●
●●
●
●
●

●●●●●
●

●

●

●●

●

●
●

●

●

●

●●
●●●

●
●●

●●
●
●●●

●
●

●
●
●

●

●
●
●
●●
●
●
●
●
●

●

●●

●●
●
●
●
●
●●
●
●
●●

●

●

●
●
●

●
●●

●
●
●●●●
●

●

●
●

●●
●●
●

●

●

●●

●

●

●

●
●●●
●

●

●
●●

●

●

●

●

●●●

●
●

●

●
●

●●●
●
●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●●

●

●
●

●●

●

●

●●
●

●

●
●●

●
●

●

●

●

●
●

●

●

●●

●

●●
●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●●

●

●

●●

●
●

●

●

●●

●

●

●

●

●

●

●●
●

●

●
●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●●

●

●
●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●
●

●●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●●●

●

●

●

●

●

●

●
●●

●

●●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●●

●

●

●

●

●
●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●
●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

0 2000 4000 6000 8000 10000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Number of Operations

R
ea

d
La

te
nc

y
(S

ta
nd

ar
di

ze
d)

●

Redis
Latency (Read)
Breach of Contract

●

●

●

●
●

●

●●

●●●●

●●

●●
●
●●●
●●●
●
●

●

●●

●●●●

●

●

●
●

●
●●
●
●●●●●●●●
●●
●

●

●

●●

●
●●

●
●●

●

●

●

●

●

●●●
●
●

●●

●

●●●
●●●
●
●

●

●
●

●

●
●

●
●
●

●
●●

●

●

●

●●

●

●●

●

●
●
●●

●

●●
●
●

●
●

●
●●
●

●

●

●

●
●

●

●

●

●
●
●
●
●

●

●

●
●●

●

●●●

●●

●

●●●

●

●

●

●

●

●

●●
●

●●

●
●
●
●

●
●●●

●

●●

●

●
●
●●
●

●
●
●

●

●

●
●●

●

●●
●●
●

●

●●

●

●

●●
●●●●
●

●

●
●
●
●

●

●

●

●

●●
●●

●●●●

●
●
●●

●●
●●
●
●
●●

●

●
●
●●●●
●

●
●
●●●

●

●

●

●
●

●

●

●
●

●
●

●●
●

●

●
●
●●

●

●

●

●

●
●
●
●

●
●
●

●

●
●●

●●

●

●●

●
●
●●

●

●

●

●

●●

●

●
●
●●

●●

●

●●

●

●

●
●●

●●●●
●●

●

●

●

●
●
●●●
●

●

●

●

●●●

●

●
●
●

●

●

●●●
●

●

●

●

●

●

●

●●
●

●
●

●

●
●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●
●

●

●

●

●

●

●

●

●
●
●
●●●
●

●

●

●●

●

●

●

●
●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●
●
●

●

●

●
●

●

●●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●
●

●

●

●●
●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●
●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●
●

●

●
●●●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●●
●
●

●

●

●

●
●

●

●

●

●
●
●
●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●
●

●
●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●
●

●

●

●

●

●

●

●

●

●

●

●

●●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●●
●●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●
●

●

●
●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

0 2000 4000 6000 8000 10000
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

Number of Operations

R
ea

d
La

te
nc

y
(S

ta
nd

ar
di

ze
d)

●

Memcached
Read Latency
Breach of Contract

Distribution: Lognormal Distribution: Lognormal
Stochastic Model: 0.12+LOGN(0.204,0.117) Stochastic Model: 0.27+LOGN(0.245,0.137)

Square Error: 0.007417
p-value (t-test): 0.5449(> 0.05)

Equation: P(x) =

(
1

sx
p

2p e
�(ln(x)�µ)2

2s2

Square Error: 0.003444
p-value (t-test): 0.8258(> 0.05)

Equation: P(x) =

(
1

sx
p

2p e
�(ln(x)�µ)2

2s2

Penalization

●●

●

●

●

●

●
●

●●●●●
●

●

●

●

●

●

●●

●

●

●

●

●●

●

●
●

●

●
●

●

●
●
●

●
●

●

●●

●●

●

●

●

●

●
●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●●●

●

●●●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●
●●●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●
●
●

●

●

0 2000 4000 6000 8000 10000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Number of Operations

R
ea

d
La

te
nc

y
(S

ta
nd

ar
di

ze
d)

●●● ●●

●

●●●●●●●●●●●●●●

●

●●●

●

●●●●●●●

●

●●●●●●●●●●●

●

●●●

●

●

●

●

Redis
Breach in Latency (Read)
Probability of Breach
Penalization

●

●

●

●●

●

●●
●

●

●
●
●●

●

●

●
●

●
●

●
●●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●●

●

●

●●

●

●

●

●

●
●

●
●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●
●

●

●

●

●

●

●
●

●

●
●
●

●
●
●

●

●
●●●

●

●

●

●

●

●

●

●●

●

●

●

●
●●
●
●

●

●

●

●
●

●

●

●

●
●
●
●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●
●

●
●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●
●

●

●

●

●

●

●

●

●

●

●

●●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●●
●●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●
●

●

●
●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

0 2000 4000 6000 8000 10000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Number of Operations

R
ea

d
La

te
nc

y
(S

ta
nd

ar
di

ze
d)

● ●● ●●●●●● ●●●

●

●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●

●

●●●

●

●

●●●●

●

●●●●●●●●●●●●●●●●●●●
●

●

●●●●●●●●●
●
●●●●●●●●●
●
●●●●
●
●●
●●●●●●●●

●

●●●●●●

●

●
●
●●

●

●

●

Memcached
Breach in Read Latency
Probability of Breach
Penalization

“nesus-book”
2018/7/13
page 95

Resilience and Fault Tolerance 95

Table 3.3 NESUS Watchdog (a software bot) - Stochastic Models and Penalization
for the MongoDB workflow.

MongoDB

●●
●●
●
●
●

●●
●●●●●
●●

●
●●

●

●

●●
●

●

●●●
●

●

●
●

●
●

●

●●

●

●●

●
●

●

●

●
●

●

●●

●

●

●

●●

●
●

●
●
●

●

●●

●

●●
●●
●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●
●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●
●

●

●
●
●

●●

●

●

●●●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●
●

●
●

●●●

●

●●

●

●

●●

●

●

●
●

●

●
●

●

●●

●

●
●●●

●

●

●

●●

●
●
●
●

●

●

●

●

●
●
●

●

●

●

●

●
●

●

●●●

●

●

●●

●
●
●

●

●

●
●

●

●
●

●

●●

●

●

●
●

●

●

●●

●
●

●

●

●

●
●
●
●●

●

●

●

●●

●

●
●
●
●●
●

●
●

●

●

●
●
●

●

●
●

●

●

●

●

●

●

●

●

●●●

●

●●

●

●

●

●●

●

●●

●

●
●

●●

●

●

●

●

●

●

●

●

●
●

●

●●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●●
●
●

●

●

●

●
●●

●

●

●

●

●

●●●

●

●

●

●

●

●
●●
●
●

●
●

●

●

●

●●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●●

●

●
●

●

●

●
●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●
●

●

●
●
●

●
●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●●

●

●
●●

●

●

●

●

●

●

●

●●

●
●

●

●●

●●

●
●

●

●●
●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●●

●●
●

●

●●
●

●

●

●

●

●●●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●●

●
●

●

●

●

●●●

●

●

●

●
●●

●

●●

●●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●
●

●

●

●

●●
●

●

●
●

●

●

●
●

●

●

●

●
●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●
●

●
●

●

●

●
●

●

●

●●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●●

●
●

●
●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●●

●

●

●

●

●●

●●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●
●

●

●●●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●●

●
●

●
●●
●

●

●●

●

●

●

●
●

●

0 2000 4000 6000 8000 10000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Number of Operations

Th
ro

ug
hp

ut
 (S

ta
nd

ar
di

ze
d)

●

MongoDB
Throughput
Breach of Contract

●

●

●
●

●

●

●
●
●

●

●

●

●
●
●

●

●

●

●

●
●

●

● ●

●
●

●

●

●●
●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

6000 7000 8000 9000 10000

0.
2

0.
3

0.
4

0.
5

0.
6

Number of Operations

Th
ro

ug
hp

ut
 (S

ta
nd

ar
di

ze
d)

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

● ●

●

●

●

●

●●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●
●●

●
●

●

●

●

●

MongoDB
Breach in Throughput
Probability of Breach
Penalization

Distribution: Beta Penalization
Stochastic Model: 0.48+0.17⇤BETA(2.49,1.48)

Square Error: 0.018634
p-value (t-test): 0.4788(> 0.05)

Equation: P(x) =
⇢

xb�1(1�x)a�1
R 1

0 tb�1(1�t)a�1dt

particular, it was demonstrated a lognormal P(x) for Redis and Memcached and beta
P(x) for MongoDB.

Penalization aspects are also illustrated. For Redis and Memcached, the penaliza-
tion request was issued by the bot based on the condition: P(x)> 0.70, whereas, for
MongoDB the condition was: P(x)> 0.45. It can be observed that only Redis and
MongoDB Servers were penalized. Technically, this difference could be attributed to
the fact that Memcached is simply used for caching and therefore, it is less prone to
breach of contract. Whereas, Redis and MongoBD as databases and message brokers
are performing more complex operations and are more likely to cause a breach.

3.3 Conclusion

Due to their scale and the wide range of possible applications and involved technolo-
gies, UCS requires adapted frameworks to enable resilient and secure executions.

“nesus-book”
2018/7/13
page 96

96 Ultrascale Computing Systems

In this chapter, we have reviewed the general concepts of faults, fault tolerance
and robustness before detailing the main approaches suitable for large scale HPC
systems. New opportunities and challenges have been highlighted, in particular at the
level of hardware, network, MPI resilience. Novel data structures based on DLT have
been introduced as a new field worth further investigations for large-scale experiments
and validations. An potential illustration on regulatory compliance within UCS has
been proposed.

What emerges is the need for the apparition of additional disruptive paradigms
and solutions at all levels: from hardware, languages, compilers, operating systems,
middleware, services, and application-level solutions. In this aspects, there are several
research challenges for resilience in Ultrascale systems that should be faced in a near
future:

Characterization of hardware and software faults in Ultrascale systems Characterization
of hardware and software faults is essential for making informed choice about
research needs for the resilience of Ultrascale systems. From the hardware
perspective if silent hardware faults are exceedingly rare, then the hard problem
of detecting such errors in software or tolerating their impact can be ignored.
If errors in storage are exceedingly rare, while errors in compute logic are fre-
quent, then research on mechanisms for hardening data structures and detecting
memory corruptions in software is superfluous.

Development of a standardized fault-handling model Development of a standard-
ized fault-handling model is key to providing guidance to application and system
software developers about how they will be notified about a fault, what types of
faults they may be notified about, and what mechanisms the system provides to
assist recovery from the fault. Applications running on today?s high performance
computing systems are not even notified of faults or given options as to how to
handle faults. If the application happens to detect an error, the computer may
also eventually detect the error and kill the application automatically, making
application recovery problematic.

Improved fault prediction, containment, detection, notification, and recovery Scale
is a major opportunity for applications Ultrascale computing Systems. However,
the larger the scale, the higher the probability of a failure in some part of the
system. To build such a systems, resilience is a must, and that means the we need
better fault prediction mechanisms, containment measures and recovery from
failures to allow the applications keep-on working even if a specific component
fails. [?]

Programming abstractions for resilience in Ultrascale systems Programming ab-
stractions for resilience will be able to grow out of a standardized fault handling
model. Several programming abstractions will need to be developed and sup-
ported in order to develop resilient Ultrascale applications. The development of
fault-tolerant algorithms requires various resilience services.

Standardized evaluation of fault-tolerance approaches Standardized evaluation
of fault tolerance approaches will provide a way to measure the efficiency
of a new approach compared with other known approaches. It will also provide
a way to measure the effectiveness of an approach on different architectures

“nesus-book”
2018/7/13
page 97

Data Management Techniques 97

and at different scales. The latter will be important to determine whether the
approach can scale to serve the needs of Ultrascale systems.

Offering a global view on the reliability/resilience issues will allow to define the
right level of information exchange between all layers and components in order to
have global (cross-layer/component) solution.

“nesus-book”
2018/7/13
page 98

98 Ultrascale Computing Systems

