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ABSTRACT

A classical approach to program derivation is to progressively ex-
tend a simple specification and then incrementally refine it to an im-
plementation. We claim this approach is hard or impractical when
reverse engineering legacy software architectures. We present a
case study that shows optimizations and pushouts—in addition to
refinements and extensions—are essential for practical stepwise de-
velopment of complex software architectures.

Categories and Subject Descriptors

D.1.2 [Programming Techniques]: Automatic Programming; D.2.2
[Software Engineering]: Design Tools and Techniques; D.2.11
[Software Engineering]: Software Architectures; F.3.3 [Logics
and Meanings of Programs]: Studies of Program Constructs

General Terms
Design, Theory
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1. INTRODUCTION

At a recent NSF workshop on the Future of Software Engineer-
ing [45], there was consensus on the need for automated support
for program evolution—for the obvious reason that programs can
be very complicated structures whose safe and correct manipulation
should yield a major improvement in the software lifecycle [24].

Workshop discussions revealed an interesting open problem. Clas-
sical approaches to program development define the spec of a sim-
ple program A; and progressively extend it with additional func-
tionality until the desired, fully-formed spec A4 is completed. Then
A4 is incrementally refined to an implementation, arriving at pro-
gram Dy (Figure 1a) [53]. A variation is after each extension, an
implementation is produced by “replaying derivations” [6, 24, 38].
After the workshop it was obvious (to us) that how one accom-
plishes derivation replay in the presence of extensions is not well
understood.
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Figure 1: Paths

We are exploring transformation-based derivations of pipe-and-filter
architectures to reverse engineer designs of legacy architectures.
Our goals are to reveal a process to derive architectural designs and
to reconstruct these applications directly from our derivations.

We discovered that prior work on refinement under-appreciates
two key ideas. First, optimizations are essential—one must erase
modular boundaries in order to achieve designs that have non-func-
tional properties (e.g. efficiency or fault-tolerance). Optimizations
are not always part of refinement methodologies [27, 30, 38, 59].

Second, architectural designs can be very complicated. We found
it impractical to refine fully-elaborated specifications—the refine-
ments were too complex to understand and explain. Instead, we
followed an incremental path (Figure 1b) that (a) refined a simple
spec to its implementation at different levels of abstraction (designs
Bi, C1, D1), and then (b) incrementally extended these implemen-
tations using pushouts (completing a directed square [} from an
incomplete square [ ) to complete the commuting diagram of Fig-
ure 1b [47]. Each step (refinement, optimization, extension) was
relatively easy to understand, allowing us to comprehend how a
legacy application worked despite its complexity. Pushouts were
the key for us to understand how to “replay derivations.”

We present a case study of how we reverse-engineered the ar-
chitecture of a complex, state-of-the-art asynchronous crash-fault
tolerant server. We demonstrate the essential role of optimizations
and pushouts—in addition to refinement and extension—by show-
ing how we recover architectures of two versions of the system
(both of which had no formal architectural description prior to our
work): first a synchronous server and then an extension to an asyn-
chronous server.

Stated differently, without optimizations and pushouts, we could
not have reengineered legacy architectures nor could we have for-
ward-engineered (reconstructed) them. Our conclusion is that op-
timizations and pushouts are essential for practical stepwise devel-
opment of complex software architectures.

2. REFINEMENTS AND OPTIMIZATIONS

A pipe-and-filter (PnF) architecture is a directed multigraph of
boxes and connectors that implements a system. A box is a compo-
nent with input and output ports. A connector is a communication
path for messages drawn in the direction of dataflow from an output
port to one or more input ports [50].
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Figure 2: Pipe and Filter Architectures

FILTER

A filter architecture is an example (Figure 2a). It consists of a
single box FILTER that takes a stream of photographs P as input,
examines each photograph p in P, and outputs p only if some crite-
ria is satisfied. A shorter stream Q is produced. FILTER may have
other parameters, such as a photograph type and filtering criteria.
We elide these details.

An architectural transformation is a mapping (a multigraph re-
write) of an input architecture to an output architecture. We use
three types of transformations: refinement, optimization, and ex-
tension. We discuss the first two now.

2.1 Refinement

Suppose there are multiple (but semantically equivalent) filtering
boxes, filter, and filtery, each with its own distinct perfor-
mance characteristics. A transformation could replace the FILTER
box of Figure 2a with the f£iltery box resulting in Figure 2b. An-
other transformation replaces the FILTER box of Figure 2a with its
map-reduce counterpart in Figure 2c, showing that an input stream
can be split into substreams, each substream is filtered in parallel,
and the output substreams are merged [16].

The collection of such transformations used in a domain forms
a graph grammar: let A be an interface (a box that defines only the
input/output ports and—at least informally—box semantics), and
let g1, g2,... denote architectures (multigraphs) and/or primitive
boxes that implement A:

A2g1|g2|...;

As an example, if FILTER of Figure 2a is a filter interface and ev-
erything else is an implementation, we have:

FILTER : filter, | filtery
| mnapreducefilter( SPLIT, FILTER, MERGE ) ;

where mapreducefilter( SPLIT, FILTER, MERGE ) is the archi-
tecture of Figure 2c that is parameterized by implementations of
the SPLIT, FILTER, and MERGE interfaces. Replacing an interface
with an implementation is refinement [59].

Of course, the g; multigraphs can reference other interfaces which
have their own productions (implementations). The set of multi-
graphs that can be constructed by substituting implementations for
interfaces defines the language or domain of systems that can be
synthesized by refinement.

In general, a refinement has preconditions to satisfy before it
can be applied. Consequently our grammars are not context-free.
Recording such preconditions is indeed part of our work; we elide
these details.

2.2 Optimization
Refinements alone are insufficient to build efficient systems. Con-
sider the following grammar, where uppercase names are interfaces
and lowercase names are components:
A:aBc|...;
B:b|...;

IDENTITY

(a) (b) ()

Figure 3: Architecture Optimizations

A sentence of this grammar is abc. Suppose composition bc im-
plements interface Z:

Z : bc|q;

Further, domain experts know that composition bc is inefficient and
can be replaced by box q, which is faster. This is accomplished by
abstracting sentence abc to aZ and then refining to a faster pro-
gram by replacing Z with q to yield ag. Abstraction followed by
refinement is the essence of architectural optimization. The pairing
of bc arises because ¢ comes from a refinement of A and b comes
from a refinement of B. Dissolving modular boundaries exposes
inefficiencies which can be removed by optimizations.

Figure 3a is an example. Modular boundaries are indicated by
dashed lines. The LEFT box processes stream H by box F. The
RIGHT box immediately processes its input by box F~1, the inverse
of F. Figure 3b dissolves these boundaries, exposes the inefficiency,
and reveals the IDENTITY abstraction of which (F followed by F~1)
is an implementation. Figure 3c is the optimized architecture.

With optimizations, our grammars become a set of bi-directional
rewrite rules (interface < implementation pairs) called a Thue
System [8].

2.3 Application to Case Studies

The PnF architecture of our case study was never conceived in
terms of transformations and was not built with the aid of soft-
ware architectural models. However, the novelty, indeed genius, of
its design can be expressed in terms of a sequence of transforma-
tions that were implicitly used by their authors. It was built over a
five month period during which its authors used less rigid engineer-
ing approaches. The authors did what felt natural, but effectively
used transformations. (Exposing these transformations and making
them explicit is one of our contributions). There may be no a priori
reason or justification for why the authors chose particular trans-
formations, other than they were necessary for that system or that
they introduced a novel algorithm or protocol.

Further, our explanations are no substitute for domain expertise;
they are intended to complement, encode, and structure domain
knowledge for others to follow. Expressing designs by transforma-
tions may be novel to domain experts, but the end result is rarely
surprising to them. Further, the assumptions we use are standard
fare for the domain. On the other hand, non-experts may find the
assumptions or the choice of transformations unintuitive. In any
case, our approach offers a simple and effective way to reveal ar-
chitectural details of PnF applications incrementally and be able to
recreate these applications from these descriptions.

3. THE SCFT ARCHITECTURE OF
UPRIGHT

Our interest in PnF architectures originally stemmed from a re-
verse-engineering effort to understand Figure 4, which is a portion
of the PnF architecture of Upright, a state-of-the-art Asynchronous
Crash-Fault Tolerant (ACFT) server [14]. We could not explain or
derive this architecture directly. Instead, we first derived a simpler
architecture for a Synchronous Crash-Fault Tolerant (SCFT) server.
In later sections, we extend our SCFT design to an ACFT design.
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Figure 4: Asynchronous Crash Fault Tolerant Architecture

3.1 Basic Request Processing

Request-processing applications (RPAs) have multiple clients
sending requests (a.k.a. messages) to a server. Client requests can
read or write the server’s internal state, which persists across re-
quests. That servers have state is important: crash-fault tolerance
(CFT) of non-stateful servers is trivial.!

RPAs have a cylinder topology representing the cyclic flow of
request-response. We unroll the cylinder (Figure 5a) by breaking
the seam along dotted lines. Figure 5b shows a typical architec-
ture with clients C ...Cy and server S. Each client sends messages
to the server. Messages from different clients are serialized into
a single stream by >. The server receives each message, updates
its state, and then sends its response. Responses are demultiplexed
into multiple output streams, one per client, by <1. Response mes-
sages wrap around the dotted lines. 2

(a) (b)

Figure 5: Unrolled Cylinder Topology

3.2 Synchronous CFT

Crash fault tolerance is the ability of a service to survive a num-
ber of failures. A crash failure occurs when a box stops processing
messages—no messages pass through a failed box and a failed box
cannot create new messages. The failure of network boxes—>, <,
® (reliable broadcast [43]), and e (broadcast)—are treated iden-
tically to software boxes. Failure is self-contained, meaning that
failures do not propagate across box boundaries. 3 4

IReplicating a stateless application is easy: consistency across
replicas is guaranteed by the fact that the replicas never change.

2 CFT servers must uphold two properties: safety and liveness.
Loosely, safety means the server is always in a “good” state, for
varying definitions of “good”, and liveness means that the server
eventually makes progress [43]. Upright provides a serializable
view of RPAs [46]; serialization proofs of Upright’s protocols are
given in [34]. Further, Upright’s protocols uphold a liveness prop-
erty called “eventual liveness” [14]. As consensus in an asyn-
chronous system is impossible [20], the existence of occasional pe-
riods of a well-behaved network is assumed, allowing both SCFT
and ACFT servers to make progress.

3 We assume that each box executes on its own machine. Normally,
multiple boxes are mapped to a single machine. The rule for ma-
chine failure is simple: if a machine fails, all boxes on that machine
fail.

4 All requests and boxes are assumed benign. Malicious behavior
(or even benign behavior outside the accepted application protocol)

The technical objective of SCFT is to eliminate Single Points of
Failure (SPoF) by replicating functionality [49]. An SPoF is the
failure of a single box that causes the entire server abstraction to
fail. Our initial design (Figure 5b) has three SPoFs: the serial-
izer >, the server S, and the demultiplexer <. Client failures never
cause a server abstraction to fail as SCFT servers should expect and
gracefully handle non-responsive clients. We show in the follow-
ing sections how Figure 4 is an extended, refined, and optimized
implementation of Figure 5b that has no SPoFs and is recoverable.

3.2.1 List Refinement

The List transformation maps box S to an architecture where
there is a single box L between the clients and server. L implements
an ordered list of messages, collecting messages from clients and
passing messages one at a time to the server. In effect L makes the
network queue explicit, materializing a placeholder for subsequent
refinements. Figure 6 shows the architecture after applying List.

Figure 6: After the List Refinement

3.2.2 Replication Refinements

The next transformations, Paxos and RepS, replicate boxes to
improve system availability, i.e. to make the server abstraction
more resilient to crashes. See Figure 7.

Figure 7: Replicated Agreement and Server Boxes

First consider the replicating-server refinement RepS. It repli-
cates the server S k-times, indicated by boxes Si ...Sk, and adds
three new boxes: ®, >, and Qs. Box ® reliably broadcasts an
incoming message to each server replica: if one server replica re-
ceives a message, then all replicas receive the message—such a
strong guarantee is necessary for correctness. Replicas receive the
message, update their state, and send responses. > serializes all re-
sponses and box @s collects a quorum of identical responses. Once
Qs receives matching responses from a sufficient number of S repli-
cas, Qs transmits a single response to the client, thus maintaining
the abstraction of a single server S.

Now consider the Paxos refinement of box L [36, 37]. When a
client submits a message, a forwarding box (F) receives it and de-
livers the message to any or all of the m identical agreement boxes
Ay ...Ap. Each A box implements an agreement protocol to guaran-
tee a quorum-decided linear order in which client messages should
be processed. A replicas communicate with each other to determine
the next client message to process. Each A replica votes, sending

is assumed to not occur. Work on Byzantine Fault Tolerance (BFT)
relaxes these assumptions [13, 14, 35]. In any case, the mapping of
a vanilla client-server design to a SCFT design is unaffected: BFT
designs extend SCFT designs.



its “next” message to the quorum box Qa. Qa forwards a single
message to the server once it receives identical messages from a
sufficient number of replicas. In this way, Paxos maintains the
behavior of and interface to a single L box.

The degree of A and S box replication—values m and k—depend
on the number of faults £ to tolerate and the agreement protocol.
Common assignments setm = 2f +1 andk =f +1. >

The Paxos and RepS transformations commute as the order in
which they are applied does not matter. However, both must be
applied to guarantee that the system tolerates the failures of up to
f server and £ agreement boxes. Figure 7 is the result of applying
Paxos and RepS to Figure 6.

3.2.3 Optimizations

Our original architecture of Figure 5b had three SPoFs; our cur-
rent design has eight. (From left to right in Figure 7, they are the
>, F, >, Qa, ®, >, Qs, and < boxes.) Here is where refinement is
insufficient to derive our target architecture; modular boundaries
must be broken to remove SPoFs.

Exactly as explained in Section 2.2, we dissolved boundaries
in Figure 7 to produce Figure 8 and identify three new abstrac-
tions that circumscribe two or three boxes, all of which are SPoFs.
For example the LEFT abstraction contains SPoF boxes > and F.
MIDDLE contains three SPoF boxes (>, Qa, and ®), and the RIGHT
abstraction contains three SPoF boxes (r>, Qs, and ).

Figure 8: Abstractions with Multiple SPoFs

Here is how SPoFs were removed from Upright: Figure 9a shows
that box G consumes n streams I ... I, to produce a single stream T
which is input to box H. In turn, H outputs m streams 01 ...0p. LetR
be interface that G followed by H implements. A rotation swaps the
positions of G and H (possibly replacing them with slightly different
operations H' and G') and replicates them, providing yet another
implementation of R.°
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Figure 9: Rotation Optimization

5 Yin et al. explain the difference in replica count by noticing that
the quorums necessary to prove the protocols correct are larger for
messages coming from the agreement portion (Qa) than for mes-
sages coming from the execution (Qs) [60]. Since a typical server
requires more computational resources than agreement, thus need-
ing a more powerful and expensive machine, using fewer server
replicas in an architecture is desirable.

6Readers will recognize this as commuting diagram G-H =H' - ¢,
The sequential composition of G and H is replaced with a cross-
product of H and G': the end result is two different implementations
of the same abstraction.

To see a real example of a rotation, consider the LEFT abstraction
of Figure 8, which we show again in Figure 10a comprising the se-
quence (>, F). The R, rotation swaps the order of these boxes (see
Figure 10b). Box F is replicated once for each client and > is repli-
cated once for each A;. That is, instead of serializing all requests
and then forwarding, client requests are immediately forwarded and
then serialized before each A replica. The property that each client
request is sent to a subset of A replicas is preserved by R,. As ex-
pected, the interface of n input channels and m output channels is
maintained. But now, F and > boxes are no longer SPoFs in Fig-
ure 10b.

Figure 10: The R, Rotation

The MIDDLE abstraction of Figure 8, replicated in Figure 11a,
consists of the box sequence (>>,Qa,®). Transformation Ry, is a
pair of rotations that modify the order (>>,Qa, ®) to (>>,®, Qa) (Fig-
ure 11b) and finally to (®,>>, Qa) (Figure 11c). That is, instead of
taking a quorum of responses from A replicas and reliably broad-
casting the result, the results of all A replicas are reliably broadcast
and a quorum is taken at each server replica. The property that a
quorum-decided request from replicated A boxes is delivered to all
server replicas is preserved by Ry,

(a) MIDDLE (b) MIDDLE

Figure 11: The R, Optimization

Ry, includes one more optimization that is well-known to domain
experts. Reliable broadcast is very expensive.” By replicating © at
each of the A; boxes, we can take advantage of the fact that quo-
rums are taken at each server and replace the reliable broadcast box
© with the normal (unreliable) network broadcast box e that is sim-
ple to implement. The abstraction in Figure 11d now contains no
SPoFs, and also represents a standard and efficient way to imple-
ment a reliable crossbar [14].

Similarly, transformation R is a pair of rotations that is applied
to the RIGHT abstraction in Figure 8, which maps the box sequence
(>,Qs, <) to (>, <,Qs) and then to (<1, 0>, Qs), thereby eliminating
all SPoFs. Figure 12 is the result of applying Ra—R. to Figure 8. It
is the PnF architecture of Upright’s SCFT design.

7 Experts often use an agreement cluster to implement reliable
broadcast.
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Figure 12: Synchronous Crash Fault Tolerant Architecture

3.2.4 Recap

We used the architecture of Figure 12 to reimplement Upright’s
SCFT design. More details about model validation are postponed
until Section 5.6. Our next task is to extend the SCFT architecture
to an ACFT architecture (i.e. mapping from Figure 12 to Figure 4).

Y
AN

4. PUSHOUTS AND EXTENSIONS

Think of a refinement as a vertical mapping from an initial ar-
chitecture A to a resultant architecture B. We also need transforma-
tions that extend architectures with more functionality. Extensions
are horizontal mappings, such as mapping architecture A to archi-
tecture E (Figure 13).

extension

A——>E
g v
B ------ > F

pushout

Figure 13: Pushout

An architectural extension augments an architecture by adding
new functionality and ports to existing boxes, generalizing connec-
tors, and adding new boxes and connectors. In software product
lines, extensions are called features [29]. A common special case
of extension is box extension, where new capabilities and ports are
added to a box. Extending a box is equivalent to adding one or
more features, which can be accomplished by preprocessors (e.g.
#ifdef inclusion of extra code) or by more sophisticated means [3,
5, 31]. Connectors can also be extended (e.g. messages of type M
are transmitted; an extension transmits a subtype T of M). We write
X ~~ Y to mean that X is extended to Y.

Figure 14 illustrates architectural extension o ~~ . Figure 14a.
shows architecture o with a Sort and WebServer box. The Web-
Server takes sorted tuples and creates a webpage of sorted results.
Figure 14 shows an extended architecture B that permits sort keys
to be altered at run time. Sort and WebServer are extended with
new ports (Sort ~» ESort and WebServer ~~» EWebServer) and
a feedback connector labeled newKey is added. A newKey mes-
sage changes the key that ESort uses to sort incoming tuples (e.g.
switching from last names to ID numbers in a patient database or
artists to album titles in a music player).

() —>{ Sort H WebServer‘ (B)—b{ ESort H EWebServer ‘
U ke

Figure 14: Architecture Extension o ~~ 3

Refinement is different than extension. Refinement preserves se-
mantics; it maps an interface to a streaming architecture that im-
plements that interface. The interface is not altered and new con-
nectors external to it are not added. In contrast, extension enhances
the semantics of an architecture by elaborating existing boxes with
new ports, new functionality, and new boxes and connectors.®

8 Interestingly, well-known tools for data flow architectures, like

A pushout is a completion of the commuting diagram of Fig-
ure 13. Given refinement or optimization A — B and extension
A ~~ E, the goal is to determine architecture F so that E — F is a
refinement or optimization and B ~~ F is an extension.”

We use pushouts to map Upright’s SCFT architecture to its cor-
responding ACFT architecture in the next section.

5. THE ACFT ARCHITECTURE OF
UPRIGHT

Failure is permanent in an SCFT architecture. If a box fails, it
no longer responds and will never respond again. An SCFT archi-
tecture supports the failure of £ boxes. When the limit is exceeded,
the entire system is in a failed state, the one-server abstraction is
violated, and safety and liveness are no longer guaranteed.

In this section, we explain how domain experts relaxed restric-
tions on liveness. An ACFT architecture guarantees liveness even
with an occasional poorly behaved network or temporary box fail-
ure (and always guarantees safety), assuming the network eventu-
ally enters a sufficiently long well-behaved period. That is, liveness
is guaranteed even with occasional network asynchrony.

In effect ACFT limits the situations where a client sees an un-
responsive server abstraction. The mechanisms that support asyn-
chrony also allow the architecture to mask some failures by en-
abling a box to be restarted and catch up. A box that fails and
recovers is considered correct, albeit slow. The other boxes will
continue to make progress; a recovering box may not be able to
catch up immediately. If other boxes fail, the remaining servers
may have to wait for the recovering servers to catch up (as required
by quorum boxes), at which point the system can resume servicing
client requests [14]. Note: boxes may still crash and enter a state
where they will never again process requests; asynchrony support
cannot mask all failures.

5.1 Road Map

Figure 15 shows a road map (commuting diagram) of where we
are and where we are going. We began with the topmost left node
(labeled Figure 5b) and incrementally refined and optimized down-
ward until we reached the bottommost left node (Figure 12). In the
next sections, we use extensions Asyncy ... Asyncs to map each of
the architectures on the left to corresponding architectures on the
right. The dashed vertical arrows in Figure 15 are extended refine-
ments and optimizations (List ~» RList, Paxos ~» RPaxos, etc.)
that complete the commuting diagram.

Fig 5?/_0 Async, {? Fig 16
Start | st ! RList
Here |
Y )
Fig6 T J\") Fig 17
‘
Paxos - RepS i RPaxos - RRepS
‘
Fig7 O Ao, é Fig18
End 1
Here  — Ra Ry - Re iRa' Ry Re- Ry
Fig12 O —eme———O Fig 19
ync,
SCFT ACFT

Figure 15: Roadmap in Our ACFT Designs

LabVIEW [44], Weaves [23], Fractal [10], and Click [32] support
refinement, but not extension and not optimization. Our use of
the terms refinement and extension is consistent with that used in
formal methods [52].

9 The objects of this category are designs of a system at different
levels of abstraction and with different functionality.



5.2 Asynchronous Extension async,

Asyncg extends S (the interface of a non-recoverable server) to
RS (the interface of a recoverable asynchronous server), S ~» RS%.
Recovering from asynchrony includes logging, checkpointing, and
the ability to load a checkpoint and replay the log upon restart.
Most modern request-processing servers implement this function-
ality, such as Hadoop [25] and Zookeeper [61]. Figure 16 is the
initial PnF architecture of an ACFT server.

Figure 16: Initial ACFT Architecture

5.3 The Asynco and List Pushout

Recall that the List refinement introduces an L box in front of
server S in Figure 6, where L is part of the greater abstraction of
one correct server. For the entire abstraction to be recoverable, all
of its stateful internal boxes must be recoverable. Asyncy modi-
fies the architecture of Figure 6 with two box extensions, L ~» RL
and RS% ~~ RSﬁ, and adds a new connector: the recoverable list
box needs information from the recoverable server to checkpoint
the server’s state. A “feedback” connector is used to transport this
request. The result is Figure 17.

Figure 17: After Extension Async; or Refinement RList

Admittedly, Figure 17 is evident only to domain experts. To non-
experts, Figure 17 simply states that the recoverable list and server
boxes are tightly coupled in Upright’s design.

5.4 The Async, and Paxos -Reps Pushout

Recall the Paxos and RepS refinements replicate agreement and
server boxes. Asyncy extends agreement and server boxes to sup-
port asynchronous recovery and adds new boxes and connectors to
implement the “feedback™ connector of Figure 17. The result is
Figure 18.

Figure 18: After Extension Async, or Refinement RPaxos -
RRepS

Server Replication.

When the recoverable server RSP of Figure 17 is replicated, it
needs to communicate with other replicas. The reason lies in the
recovery algorithm for replicated servers: when a replica crashes,
other servers continue to make progress. When the failed server
recovers—it may be behind—other client messages may have been
processed in the interim. For the failed server to catch up, it must
fetch checkpoint state from other replicas.

Extension Asyncy maps each server box S of Figure 7 to a re-
coverable server box RSY, S ~» RSY. The server box is extended to
account for server recovery (as RSP, discussed above) and for the
following situation. After processing a fixed number of client mes-
sages, the agreement box asks the server for its current checkpoint.
The agreement box can only accept a checkpoint if it receives a
quorum of matching checkpoints from server replicas.'0 Further,
when a server crashes and attempts to recover, it asks the agreement
box for the latest checkpoint. This “Help, I need to recover!” mes-
sage comes from just one server, and the agreement box does not
wait for a quorum (as one will never come). A special quorum box
Qr (a) takes quorums of checkpoint messages from servers and (b)
immediately passes along recovery messages of servers that have
fallen behind. In this way, extension Asyncy or refinement RRepS
maintains the abstraction of a single recoverable server RsP.

Agreement Replication.

Extension Asyncy, maps each agreement box A of Figure 7 to
a recoverable agreement box RA, A ~~ RA, that performs the same
tasks as an A box, but in addition, responds to new messages, such
as one for receiving the current checkpoint on which the RA replicas
must agree.ll Further, a reliable broadcast (®) is introduced that
sends all incoming “Help” messages from the server abstraction to
all agreement replicas RA1 ...RAp. In this way, extension Asyncy
or refinement RPaxos maintains the behavior of and interface to a
single RL box.

5.5 The async, and g, -Rr, -R. Pushout

Once again, we are at a point where refinement is inadequate to
complete the AFCT design; optimizations are needed to complete
the ACFT architecture. The transformation that maps Figure 18 to
Figure 19 is simple: the same optimizations (R, - Ry - Rc) that were
used in the SCFT architecture are replayed. Further, the additional
boxes that were added in Figure 18 are all SPoFs. Transforma-
tion Rq is a pair of rotations that modify the order (>,Qr,®) to
(>,®,Qr) and then to (®,>>,Qr). Further, Rq replaces the reliable
broadcast ® with the normal broadcast . Doing so removes SPoFs
and preserves the property that all replica RA boxes receive quorum-
decided messages from server replicas (or “Help!” messages from
recovering servers). Optimization R, - Ry, - Rc - Rg of Figure 18, or
equivalently extension Asyncs of Figure 12, yields Figure 19 (Fig-
ure 4), Upright’s ACFT server architecture.

5.6 Validation

We implemented both the SCFT and ACFT architectures by hand,
incrementally as described above, using Python 3 atop a custom-
built, light-weight streaming-application framework (code for this
case study can be downloaded from [21]). Each box was a process;
messages were transferred via sockets. We tested the initial archi-

10By receiving occasionally checkpoints from the server, the agree-
ment nodes can implement recovery without the requirement of an
infinite replay log. This optimization is obviously desirable.

ITAs part of the transformation, the agreement protocol must now
not only agree upon the next client request to transmit, but also on
the checkpoint to save to stable storage.
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Figure 19: Asynchronous Crash Fault Tolerant Architecture

tecture and each subsequent architecture that was derived, thereby
validating our transformations.

As future work we hope to collaborate with our ACFT colleagues
to formally prove the correctness of each individual transforma-
tion, making this work an example of the correct by construction
paradigm. As mentioned earlier, Clement et al. have a proof of the
composite transformation for the ACFT architecture [14], but not
proofs for each individual transformation. Although special cases
of the ACFT proof reduce to proofs of specific compositions of
transformations, it is unclear whether proofs of individual transfor-
mations are ultimately simpler than proofs of a single composite
transformation.

Interestingly, rotations were unfamiliar to our ACFT colleagues.
Their informal designs went directly from Figure 5b to Figure 19,
avoiding our incremental construction of a reliable crossbar. This
discovery suggests how our approach may explain complex and
intuitive designs in a structured way.

5.7 Epilog

We continued to elaborate our ACFT design to Upright’s full de-
sign for a Byzantine Fault Tolerant (BFT) server. This required
architectural extensions and pushouts to the ACFT architectures
(right-hand sides of Figure 15) to add batching, authentication, and
machine boundaries.

In doing so, we saw a pattern that shed light on limitations of
classical approaches. The first is simple: optimizations are not
always included in refinement methodologies. Optimizations are
essential in Upright’s design.

Second, classical approaches are known to have difficulty scal-
ing [48]. To see this, consider Figure 20. Traditionally, one starts
with a simple architecture A; and progressively extends it to Ag,
A3, and A4 before refinements Ay — By, B4 — C4, and C4 — D4 are
applied to derive the final architecture Dy.

We observed that the sequence of extensions that are applied to
an initial architecture are generally easy to understand—there is

Traditional Path

A —> A, —> A,—> A,

Lol

B, —>B,—>B,—>B8,

NN

G —>C—>C—>C,

Lol

Incremental Path

Figure 20: Paths

little or no detail at this level. (This is the Aj = --- = A4 path). In
contrast, the transformations that are applied to the fully-extended
architecture Ay integrate all of the refinements, optimizations, and
extensions that preceded it. For example, refinement B4 — C4 maps
the result of composite arrow A; = By to the result of composite
arrow Ay = C4. While each individual arrow of a composite can
be grasped by uninitiated readers, monolithic composites are only
understood by domain experts.

This observation has practical significance: had we followed
the classical approach where a specification is fully elaborated be-
fore refinement takes place [52], we could not have understood, let
alone derived, Upright’s architecture. The required (composite) re-
finements were simply too complicated to understand and explain.
Pushouts were needed to synthesize complicated architectural de-
signs. Their use allows us to understand how “derivation replay”
is accomplished in the presence of extensions. We now know what
to add and what to change in a derivation.

Stated bluntly, classical approaches without the aid of pushouts
and optimizations cannot describe practical systems.

6. RELATED WORK

The idea of using pushouts is not new in software development.
Smith [51] used pushouts to automatically compute how to apply
an abstract algebraic specification of an extension to an algebraic
specification of an algorithm. Morphisms model how extensions
are applied to abstract algebraic specifications, and tactics are used
to find possible ways of applying the same extension to concrete
algorithms. Smith starts with algebraic specifications, whereas we
use pipe-and-filter architectures.

Amphion is a classic example of Knowledge Base Software En-
gineering (KBSE) [38]. It provides a DSL to write an abstract FOL
specification (theorem) of the problem to solve. Amphion relies
on a domain theory (a formalization of a domain and its imple-
mented components in a library) and uses deductive synthesis to
prove the theorem from which a program is extracted. If a theorem
is changed, Amphion starts its entire process from scratch. This is
possible if one has a rather complete knowledge base. In our case,
the set of extensions (features) that can be applied to an architec-
ture is open-ended. And even in the common case where one limits
the set of extensions, there is the problem of how to populate the
knowledge base with transformations that can derive extended pro-
grams. Pushouts explain how refinements of extended architectures
can be created.

Pipe-and-filter architectures are a fundamental class of software
designs [22]. Practical tools for building PnF architectures have
a long history. LabVIEW [44], Weaves [23], and Fractal [10] are
platforms for executing PnF architectures. Other component-based
systems or languages follow a similar approach [22, 32, 54, 58].
Refinement is their sole abstraction; user-defined optimizations, ex-
tensions, and pushouts are absent.

Our work is an example of Model Driven Engineering (MDE):
we map high-level models of architectures to low-level models of
architectures. We rely on endogenous transformations—transfor-
mations whose domain and co-domain are the same. Most of the
MBDE literature focuses on exogenous transformations—mappings
whose domain and co-domain are different [40]. For example, each
architectural style has its own metamodel. Prior work mapped ar-
chitectures of one style to an architecture of another [1, 18, 26,
56]. Endogenous transformations have been used sparingly, not for
incremental architectural development as we do, but to simulate ar-
chitecture execution (e.g. adding and removing clients in a client-
server system) [11, 41]. The few cases where endogenous trans-
formations are composed to produce MDE designs [55, 57, 62]



deal with simple transformations that encode extensions as model
deltas, not refinements and optimizations that we present.

Banach et al. [4] propose the concept of retrenchment to im-
prove the refinements ability to deal with the complexity of the
real world, or the limitations of models closer to the implementa-
tion (e.g. the need to handle error situations). Retrenchment may
be compared to extensions, as both allow to add new behavior to
models/specifications. However, retrenchment deals with exoge-
nous transformations, adding new behavior to specifications in one
domain to a more concrete domain.

Burstall and Darlington [12] proposed a transformation system
for recursive programs. Their folding and unfolding operations are
similar to our abstraction and refinement transformations. They
used equational rewrites, whereas we are using graph rewrites. More-
over, their approach did not account for extensions or pushouts, that
were essential to our work.

There is a rich collection of papers on architecture refinement;
we limit our discussions to key papers for lack of space. Tradi-
tional approaches start with an abstract architecture or specification
and then apply refinements to progressively expose more hierarchi-
cal detail on how the abstract architecture is implemented. Some
researchers have shown that their refinements can be verified, not
violating any of the original design’s properties [7, 26, 41, 42]. Our
work differs from traditional refinement in three ways: 1) We start
with a simple architecture and apply endogenous transformations to
extend it and to expose implementation details. 2) We are unaware
of prior work that uses architectural optimizations and pushouts in
the development of PnF systems. And 3) the role of extension in
SWD architectural design is under-appreciated. Broy seems to lay
the mathematical foundations for extension [9], but we are unaware
of a recent system that puts his ideas into practice.

Our work is an example of software architecture recovery [17,
33]. Classic research focuses on tools, data exchange formats,
and metrics for extracting and clustering information from source
(code, makefiles, documentation, etc.) and application execution
traces to reconstruct an architecture [19, 28, 39]. Our approach
is different: our decomposition is based on semantics and not met-
rics; our source is our understanding of a domain and that which we
can gain from domain-experts, rather than from code and execution
traces. Our work is more in line with architectural recovery using
MDE, where a system is described by multiple viewpoints (meta-
models) and their views (models) [19]. But even here our work
is different, as we start with a well-known viewpoint (a pipe-and-
filter architecture) and stress the role of transformations to derive
an architecture’s design.

Some of our refinements are similar to algorithmic skeletons [15],
in particular the map skeleton [2]. Although some skeleton ap-
proaches support optimizations of skeleton compositions [2], they
do not provide support for user-defined optimizations, nor exten-
sions.

Finally, our work may eventually be an example of the correct
by construction paradigm: if the initial architecture is correct, and
its transformations are correct, the resulting architecture is correct.
Clement et al. have a proof of the composite transformation for the
ACFT architecture [14], but not proofs for each individual transfor-
mation.

7. CONCLUSIONS

Automated support for program derivation and program evolu-
tion is an important objective: it is widely believed that it will yield
a major improvement in the software lifecycle [24]. We seek to
reveal a process by which architectural designs can be defined by

refinement, optimization, and extension, from which legacy appli-
cations can be reconstructed from our models.

In this paper, we explained how we reverse-engineered Upright,
a complex state-of-the-art asynchronous crash fault tolerant (ACFT)
server. We provided strong evidence for the following points: (1)
that optimizations and pushouts—in addition to refinement and ex-
tension—are essential in software architectural recovery, and (2)
that refining fully-specified systems can be difficult or impractical.
We found it easier to refine a simple description of a system through
a series of progressively more detailed implementations, and then
extend each of these implementations using pushouts to “replay
derivations” of prior refinements. The value in doing so is that we
now know how to populate a knowledge base of transformations,
transformations that can be grasped by uninitiated readers, while
monolithic composite transformations are only understood by do-
main experts. To validate our study, we recreated Upright’s ACFT
and SCFT architectures following the derivation that we presented
in this paper.

As of this writing, we are building a domain-independent MDE
tool that aids the process described in this paper, and that supports
refinements, extensions, and optimizations. This paper provides
a foundation to codify domain-specific knowledge in a machine-
manipulatable way, which is a necessary foundational step for build-
ing semi-automated tools for 1) reverse engineering software archi-
tectures from complex, expert-built applications, and 2) recreating
applications using these models.
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