
Citation: da Silva, D.Q.; dos Santos,

F.N.; Filipe, V.; Sousa, A.J.; Oliveira,

P.M. Edge AI-Based Tree Trunk

Detection for Forestry Monitoring

Robotics. Robotics 2022, 11, 136.

https://doi.org/10.3390/

robotics11060136

Academic Editor: Giulio Reina

Received: 2 November 2022

Accepted: 24 November 2022

Published: 27 November 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

robotics

Article

Edge AI-Based Tree Trunk Detection for Forestry
Monitoring Robotics
Daniel Queirós da Silva 1,2,*,† , Filipe Neves dos Santos 1 , Vítor Filipe 1,2 , Armando Jorge Sousa 1,3

and Paulo Moura Oliveira 1,2

1 INESC Technology and Science (INESC TEC), 4200-465 Porto, Portugal
2 School of Science and Technology, University of Trás-os-Montes e Alto Douro (UTAD),

5000-801 Vila Real, Portugal
3 Faculty of Engineering, University of Porto (FEUP), 4200-465 Porto, Portugal
* Correspondence: daniqsilva1997@gmail.com
† Current address: Campus da FEUP, Rua Dr. Roberto Frias 400, 4200-465 Porto, Portugal.

Abstract: Object identification, such as tree trunk detection, is fundamental for forest robotics.
Intelligent vision systems are of paramount importance in order to improve robotic perception, thus
enhancing the autonomy of forest robots. To that purpose, this paper presents three contributions:
an open dataset of 5325 annotated forest images; a tree trunk detection Edge AI benchmark between
13 deep learning models evaluated on four edge-devices (CPU, TPU, GPU and VPU); and a tree
trunk mapping experiment using an OAK-D as a sensing device. The results showed that YOLOR
was the most reliable trunk detector, achieving a maximum F1 score around 90% while maintaining
high scores for different confidence levels; in terms of inference time, YOLOv4 Tiny was the fastest
model, attaining 1.93 ms on the GPU. YOLOv7 Tiny presented the best trade-off between detection
accuracy and speed, with average inference times under 4 ms on the GPU considering different input
resolutions and at the same time achieving an F1 score similar to YOLOR. This work will enable the
development of advanced artificial vision systems for robotics in forestry monitoring operations.

Keywords: deep learning; edge AI; forest monitoring robotics; object detection; tree trunk detection;
tree trunk mapping

1. Introduction

In recent years, the increasing occurrence of wildfires across Europe (and all over the
world) served as a warning that a better management of the forest is needed. An optimised
forest management process will enable to reduce the losses during the fires events. Forest
represents up to 38% of the total land surface of the European Union countries [1], making
this a very relevant societal and ecological issue.

Over the years, the scientific community has been proposing several works aiming
at better forest monitoring and care by means of imagery methods. Some are to prevent
and detect diseases in forest trees using Deep Learning (DL) and Unmanned Aerial Ve-
hicle (UAV) imagery [2–4] or satellite high-resolution imagery [5]. The use of UAVs as
a remote sensing platform is also a common way of detecting dead trees individually [6]
or in clusters [7], as this can help prevent the occurrence of wildfires. The early detection
of wildfires can help prevent their progress over forest lands, hence reducing their eco-
logical and societal impact. Other ways of detecting forest fires are about segmentation
of burned areas in UAV images [8], flame detection [9–11], flame segmentation [12–15]
or smoke detection [16] with DL in terrestrial and aerial images. These works can enable
an early alert to firefighters about the appearance of a possible forest fire, thus increasing
forest protection and, consequently, forest monitoring. From UAVs to terrestrial vehicles,
the monitoring of the forest areas and forest inventory can be improved with the help
of robotics with advanced intelligent perception systems.
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The use of robotics in forestry has made slow progress mostly due to some inherent
problems that exist in forests: variations of temperature and humidity, steep slope and
harsh terrains, and the general complexity of such environment with high probability
of appearing wild animals and several obstacles, such as boulders, bushes, holes and fallen
trees [17]. Nevertheless, some terrestrial [18–21] and aerial [22–24] robotic platforms have
been developed that can contribute to improve forest protection and monitoring. However,
there are terrain-independent aspects that can compromise the performance of a robot
in a forest such as the absence of good communication means, since Global Navigation
Satellite System (GNSS) and internet connection, in general, do not work well enough
in this domain [25]. Hence, advanced perception solutions are needed to make robots
capable of working under such difficult conditions.

Robotic visual perception in forestry contexts is a topic that has been developing
within the scientific community and plays an important role in the way robots perceive the
world. Back in 2011, a work about 3D log (a tree trunk that was cut off) recognition and
respective pose estimation for log grasping operations was proposed [26]. By means of a
structured light camera, the authors were capable of extracting 3D information about the
logs and, after some 3D segmentation steps and an extrinsic calibration, they reconstructed
the logs and estimated their respective poses. The authors concluded that the reconstruction
errors increased exponentially relatively to the distance to the logs, and that best results
were obtained under 3 m. Another work where the authors proposed the 3D detection
of tree trunks by means of cameras (in this case a stereo-pair) was presented in [27]. Here,
a DL-based 3D object detector was trained on point clouds of tree trunks acquired with
a ZED Stereo 2 camera. The authors concluded that their 3D recognition system was capable
of accurately detecting tree trunks at ranges up to 7 m. Although 3D information about
the surroundings is important for robots for mapping and navigation purposes, the go-to
way of handling the data provided by cameras is 2D. More recently, some works have been
published about tree trunks detection in images (in 2D): some detected tree trunks in street
images [28,29], others focused on detecting tree trunks in forest contexts [30], while others
detected stumps in harvested forest areas [31]. In [32], instead of only detecting logs, it was
aimed at the detection and segmentation of logs for grasping operations. For that, they
trained and tested several DL-based object segmentation methods, and they concluded that
such perception methods and systems can be used as an assistance tool for operators or
even for fully autonomous operations in the forestry domain.

Even though some advances have been made in recent years regarding robotic visual
perception, more work needs to be completed in order to attain safer and smarter robotic
systems to work in forests semi or fully autonomously. With this in mind, this work
produced a study and a use case about forest tree trunks detection and mapping, using
Edge Artificial Intelligence (AI), to support monitoring operations in forests. Edge AI
approaches are important for robotics in general, since it allows running DL-based models
and algorithms on specific hardware devices that can be placed on the robot itself. So,
instead of running these models on self-managed servers or using a cloud service (which
always account with some additional communication latency), the models can be run
locally, hence improving performance, in terms of speed, of the robotics tasks that rely
on them.

This work contributes to the knowledge domain with three contributions:

• Public dataset of forest images fully annotated;
• Benchmark between four different edge-computing hardware and 13 DL models;
• Use case of tree trunks mapping using one DL model combined with an AI-enabled

vision device.

This article is structured as follows: Section 2 reviews the state-of-the-art of cutting-
edge DL models that were used in this work, Section 3 presents the dataset built in this
study, shows some details about the edge-devices used to test the object detection models
and specifies the training and testing conditions of the DL models. Section 4 presents the
obtained testing results in terms of tree trunks detection precision, inference time and the
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accuracy of tree trunks mapping. Section 5 discusses the obtained results, and Section 6
ends this paper presenting the main conclusions and future work.

2. Deep Learning-Based Object Detection Methods

This section presents the DL models that were used in this work to detect forest
tree trunks. The DL methods that were used are the following: Single-Shot Detector
(SSD) [33] combined with MobileNet V1 [34], MobileNet V2 [35] and MobileNet V3 (Small
and Large) [36], three light versions of EfficientDet [37], a tiny version of YOLOv4 [38],
two light versions of YOLOv5 (https://doi.org/10.5281/zenodo.3908559, accessed on 26
July 2022), a tiny version of YOLOv7 [39], a combination of Cross Stage Partial network
(CSP) [40] with YOLOR [41], and a Vision Transformer-based detector called DETR [42].

Single Shot Detector (SSD) [33] is an object detector that generates a set of candidate
bounding boxes with different scales and aspect ratios. At prediction time, the bounding
boxes are scored considering whether an object is present within the box or not. In the
affirmative case, the box is adjusted to better fit the object.

MobileNets [34] are very light and efficient neural network models created for embed-
ded and mobile applications. They are formed by depth-wise separable convolutions that
make the model smaller and computationally lighter. In addition, two hyper-parameters
were implemented which, when tweaked, allow to improve the accuracy and/or speed
of the model. The second version of MobileNets (MobileNet V2) [35] appeared in 2019
and brought some improvements regarding inference speed and model’s size compara-
tively with the previous version. Such improvements were enabled by the implementation
of inverted residuals and linear bottlenecks. The third and last version of MobileNets
(MobileNet V3) [36] was published in late 2019, and it was designed for mobile phones
applications. This was achieved by combining a hardware-aware network architecture
search with a method that takes the best found architecture and fine-tunes the same until
a certain speed is attained. From this work, two variations of MobileNet V3 appeared:
a smaller and a larger one. In general, MobileNet V3 Small is faster and Mobilenet V3 Large
is more accurate than MobileNet V1 and V2.

EfficientDets [37] are a family of object detectors that are more efficient and less
computationally expensive that prior state-of-the-art detectors. The major improvements
made with these detectors are the implementation of a weighted bi-directional feature
pyramid network responsible for a fast multi-scale fusion of features, and a method that
uniformly scales the depth, width and resolution for all architecture compounds at the
same time.

You Only Look Once (YOLO) [43] is a single-stage object detection network that predicts
and scores bounding boxes in one run from full images. YOLO divides the input image into
a grid of cells, and for each cell, it predicts bounding boxes, their confidences and associated
class likelihoods. YOLO proved to be a reliable real-time object detector achieving processing
frequencies of 45 Hz and 155 Hz with its base and smaller models, respectively, while gathering
competitive accuracy results with less than real-time detectors. The second [44] and third [45]
versions of YOLO (YOLOv2 and YOLOv3) suffered some architecture tweaks that brought
improvements for the model in terms of accuracy and speed, outperforming state-of-the-art
models at that time, such as SSD. The fourth version of YOLO (YOLOv4) [38] was published
in 2020, and the major changes were about the use of new features to attempt improve
YOLO. Such features include weighted residual connections, cross-stage partial connections,
cross-mini-batch normalisation, self-adversarial training and mish activation. At that time,
YOLOv4 was the fastest and more accurate real-time object detector, achieving twice the speed
of EfficientDet while keeping a comparable accuracy. YOLOv4 also improved YOLOv3’s
precision and speed by 10% and 12%, respectively.

Since YOLOv4, three new versions of YOLO series have appeared. YOLOv5 is the
fifth version of YOLO and is considered to be “non-official” by the community. The authors
claimed that YOLOv5 achieved better detection and speed performance than previous
YOLO versions and other detectors, but they did not provide a real comparison, for
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instance, with YOLOv4. YOLOv6 [46] corresponds to the YOLO version and was designed
to be mainly applied to industrial applications. The more recent new version of YOLO
is YOLOv7 [39]. This seventh version is currently the best object detector, surpassing all
known state-of-the-art detectors with the highest average precision of 56.8% on the MS
COCO dataset [47] and with inference times ranging from 6 up to 200 ms. The authors
of [39] contributed to this model with a bag-of-freebies approach to tackle two issues that
appeared along the way: replacement of the re-parameterised module and the allocation
of dynamic label assignment.

You Only Learn One Representation (YOLOR) [41] is a network that is inspired in the
way human experience is learned. In fact, in [41], the authors presented a detector that can
encode implicit knowledge (the model learns subconsciously) and explicit knowledge (the
model learns from input data), similarly to the human brain that can learn in an explicit
(from experience) and implicit way.

DEtection TRansformer (DETR) [42] is an object detector that is based on a Vision
Transformer (ViT) [48]. Transformers were recently introduced to tackle Computer Vision
(CV) tasks, as they were the standard architecture for natural language processing tasks.
ViTs (the transformers applied in vision) attained also great results recognising images
compared to the standard Convolutional Neural Networks (CNN) [48] and at the same
time needing fewer resources during training. DETR is also based on the transformer
architecture, but its main goal is to detect objects in images rather than classify the images.
DETR showed comparable results with other detectors, especially with large objects; re-
garding small objects, the authors claim that it is a challenge to train, optimise and detect
these objects.

3. Materials and Methods

This section details the image acquisition process (cameras and platforms that were
used to acquire the data), presents the post-processing that was made on the images (data
labelling, augmentation operations and pre-train dataset splitting), shows the training
environment, model configurations and conversions, and presents the trunk detection
evaluation metrics used and the experiments that were performed in this work.

3.1. Image Acquisition Process

The dataset used in this work corresponds to a new version of the dataset presented
in [49], with more than 2000 new images and annotations. The images that were added were
from a Robot Operating System (ROS) bag dataset presented in [50]. The image dataset was
acquired in three different regions of Portugal: Lobão (41◦11′22.09′′ N, 8◦29′55.54′′ W), Vila
do Conde (41◦21′14.22′′ N, 8◦44′30.66′′ W) and Valongo (40◦59′05.10′′ N, 8◦29′17.41′′ W).
In these regions, eucalyptus and pinus are the predominant tree species. In each forestry
area, video footage was captured using five different cameras: FLIR M232 (https://www.
flir.eu/products/m232, accessed on 26 July 2022), ZED Stereo (https://www.stereolabs.
com/zed, accessed on 26 July 2022), Allied Mako G-125 (https://www.alliedvision.com/
en/camera-selector/detail/mako/G-125, accessed on 26 July 2022), OAK-D (https://store.
opencv.ai/products/oak-d, accessed on 26 July 2022), and GoPro Hero6 (https://gopro.
com/en/gb/update/hero6, accessed on 26 July 2022). Only GoPro was transported by
hand during image recording process; the other cameras were mounted on ground robotic
vehicles. OAK-D was the only camera that was placed facing sideways; the others were
placed pointing towards the front.

The images were extracted from the videos using a sub-sampling methodology and
were filtered according to the presence of any defects on them, such as blur or incandescence
caused by the sun. The result was a total of 5325 images belonging to different cameras
and spectra (visible and thermal images). Table 1 presents some features of the images
that are part of the original dataset. Compared to the previous version, this dataset has
2430 more images which were all recorded in Valongo with three of the five cameras: ZED
(640 images), FLIR (940 thermal images), and OAK-D (850 images). This new dataset

https://www.flir.eu/products/m232
https://www.flir.eu/products/m232
https://www.stereolabs.com/zed
https://www.stereolabs.com/zed
https://www.alliedvision.com/en/camera-selector/detail/mako/G-125
https://www.alliedvision.com/en/camera-selector/detail/mako/G-125
https://store.opencv.ai/products/oak-d
https://store.opencv.ai/products/oak-d
https://gopro.com/en/gb/update/hero6
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was made publicly available (https://doi.org/10.5281/zenodo.7186052, accessed on 11
October 2022).

Table 1. Features of the original dataset images.

Camera Resolution
(Width × Height) Spectrum Footage

Location # Images

FLIR M232 640 × 512 Thermal Lobão, Valongo 866, 940
ZED Stereo 1280 × 720 Visible Valongo 1487
Allied Mako G-125 1292 × 964 Visible Vila do Conde 467
OAK-D 1280 × 720 Visible Valongo 850
GoPro Hero6 1920 × 1080 Visible Lobão 715

3.2. Data Labelling, Augmentation and Splitting

After acquiring images from the forestry areas, those images were labelled using
Computer Vision Annotation Tool (CVAT) (https://github.com/opencv/cvat, accessed
on 26 July 2022) with the Pascal Visual Object Classes format [51]. All images and their
labels from the original dataset went through nine augmentation processes, resulting
in each original image being transformed into nine new versions—the nine augmentation
operations are explained in Table 2. Dataset augmentation is an important step and must be
taken because training DL models require large amounts of data in order to achieve a good
performance in unseen data; missing this step could compromise the accuracy of the models.
In the end of the augmentation processes, the size of the augmented dataset was about
53,250 images (9× 5325 + 5325). However, images without any label (absence of trunks)
were discarded. So, the final size of the augmented dataset was actually 49,608 images
(3642 images were removed).

Before using the augmented dataset for DL training, the same was split into three
subsets: training, validation and testing. The ratios that were used to perform this division
were 70% for training, 10% for validation and 20% for testing, so 34,723 images, 4964 images
and 9910 images for the train, validation and test sets, respectively. From the test set, two
different subsets were considered for testing the DL models: one is made by augmented
images and corresponds to 100% of the test set, the other is made by only original (non-
augmented) images which comprises 10% of the test set.

Table 2. Augmentation operations applied to the original images.

Operation Value Description

Blur Random Blur the image
Flip - Flip the image horizontally

Hue and Saturation Random Change image’s hue and
saturation levels

Contrast Random Change image’s contrast level
Noise Random Gaussian noise addition
Rotation −15◦ Rotate image −15◦

Rotation +15◦ Rotate image +15◦

Scale 0.7× Scale the image by 0.7
Scale 1.3× Scale the image by 1.3

3.3. Configuration, Training and Conversion of Deep Learning-Based Object Detection Models

The DL models that were chosen for the task at hand were: SSD MobileNet V1, SSD
MobileNet V2, SSD MobileNet V3 Small, SSD MobileNet V3 Large, EfficientDet Lite0, Effi-
cientDet Lite1, EfficientDet Lite2, YOLOv4 Tiny, YOLOv5 Nano, YOLOv5 Small, YOLOv7
Tiny, YOLOR-CSP and DETR-ResNet50. In terms of network architecture, YOLOv4 Tiny
was the only model that suffered a minor change, regarding its activation function that
originally was Leaky Rectified Linear Unit (ReLU), and we changed it to ReLU.

https://doi.org/10.5281/zenodo.7186052
https://github.com/opencv/cvat
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The SSD-based models were trained using TensorFlow Object Detection Application
Programming Interface (API) 1 (https://github.com/tensorflow/models/tree/master/
research/object_detection, accessed on 26 July 2022), the three versions of EfficientDet
Lite were trained using TensorFlow 2 Lite Model Maker (https://www.tensorflow.org/
lite/models/modify/model_maker, accessed on 26 July 2022), YOLOv4 Tiny was trained
using Darknet (https://github.com/AlexeyAB/darknet, accessed on 26 July 2022), and
the remaining models were trained using PyTorch (https://pytorch.org/, accessed on 26
July 2022).

All models were trained using an NVIDIA GeForce 3090 Graphics Processing Unit
(GPU) with 32 GygaByte (GB) of available memory and a compute capability of 35× 1012

floating point Operations Per Second (OPS). A transfer learning approach was taken to
train the DL models, and their training parameters are defined in Table 3. The learning rate
and input resolution were kept default, the batch size was selected according to the GPU
memory and the training epochs were chosen in a way that all models’ training loss curves
converged with a variation of less than 5%. A relevant aspect to be mentioned is that the
input resolution of DETR-ResNet50 can vary between 800 and 1333 pixels in width and
height [42]. So, the resolution (indicated with “*” in Table 3) is in fact the maximum input
resolution the model can have during training.

Table 3. Training parameters of the Deep Learning models.

Model Input
Resolution Learning Rate Batch Size Epochs

SSD MobileNet V1 300 × 300 0.002 32 130
SSD MobileNet V2 300 × 300 0.002 32 80
SSD MobileNet V3 Small 320 × 320 0.002 32 130
SSD MobileNet V3 Large 320 × 320 0.002 32 65
EfficientDet Lite0 320 × 320 0.08 64 70
EfficientDet Lite1 384 × 384 0.08 64 70
EfficientDet Lite2 448 × 448 0.08 64 70
YOLOv4 Tiny 416 × 416 0.002 64 74
YOLOv5 Nano 640 × 640 0.01 32 50
YOLOv5 Small 640 × 640 0.01 32 50
YOLOv7 Tiny 640 × 640 0.01 32 100
YOLOR-CSP 640 × 640 0.002 8 100
DETR-ResNet50 1333 × 1333 * 0.0001 8 200

After training, 10 models were quantised (weights of 8-bit integer) with success and
were converted to run on Coral USB Accelerator’s Tensor Processing Unit (TPU) (https://
coral.ai/products/accelerator, accessed on 26 July 2022): SSD-based models were quantised
using Quantisation-Aware Training, and EfficientDet Lite models, YOLOv4 Tiny and
YOLOv5 models were quantised using Post-Training Quantisation. In order for a model to
be fully supported on the TPU, its operations must be supported by the TPU; otherwise,
such operations will be run on the Central Processing Unit (CPU) instead on the TPU. So,
Table 4 shows the number of supported and unsupported operations and the respective
ratio in percentage. It is important to mention that we had to reduce the input resolution
of YOLOv5 models to a maximum of 448 × 448 pixels to enable their successful conversion
for the TPU.

https://github.com/tensorflow/models/tree/master/research/object_detection
https://github.com/tensorflow/models/tree/master/research/object_detection
https://www.tensorflow.org/lite/models/modify/model_maker
https://www.tensorflow.org/lite/models/modify/model_maker
https://github.com/AlexeyAB/darknet
https://pytorch.org/
https://coral.ai/products/accelerator
https://coral.ai/products/accelerator
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Table 4. Quantisation results with the number of supported and unsupported operations of each
model to run on the TPU.

Model Supported
Operations

Unsupported
Operations

Ratio of Supported
Operations

SSD MobileNet V1 73 3 96%
SSD MobileNet V2 108 3 97%
SSD MobileNet V3 Small 138 57 70%
SSD MobileNet V3 Large 150 55 73%
EfficientDet Lite0 264 3 99%
EfficientDet Lite1 319 3 99%
EfficientDet Lite2 354 3 99%
YOLOv4 Tiny 41 4 91%
YOLOv5 Nano 256 0 100%
YOLOv5 Small 255 0 100%

3.4. Tree Trunks Detection Evaluation, Tree Trunks Mapping and Research Experiments

In this section, the evaluation metrics and edge-devices that were used to perform tree
trunks detection are presented. Additionally, the tree trunk mapping algorithm and the
research experiments that were conducted in this work are detailed.

3.4.1. Evaluation Metrics and Devices

The models evaluation was made by running inference on the test subset (defined
in Section 3.2). Then, the detections outputted from the models were filtered using Non-
Maximum Suppression (NMS) with 10% and 60% confidence thresholds and the overlapping
threshold, respectively. This way, only detections with confidence above 10% were considered.
The metric that was chosen to evaluate accuracy-wise the models was the F1 score, as this
metric allows to maximise, at the same time, two well-known metrics in this domain: Precision
(measures the detections that are objects) and Recall (measures the objects that are detected).

In addition to evaluating the models in terms of detection accuracy, they were also
evaluated in terms of inference time in four different edge-devices, which are presented
in Table 5. The NVIDIA GeForce RTX 3090 GPU served as the baseline for the other devices,
and the Intel Movidius Myriad X Visual Processing Unit (VPU) of OAK-D was used to
deploy some models to perform real-time tree trunks mapping. The lower the inference
time of the models, the more likely the models are to perform tasks in real-time.

Table 5. Specifications of the hardware platforms to perform Deep Learning inference.

Processing Unit Name Platform Memory (GB) Compute Capability
(OPS ×1012)

CPU Quad core Cortex-A72
(ARM v8) Raspberry Pi 4B 4 0.0135 (float)

GPU 10496-core NVIDIA
GeForce RTX 3090 Desktop computer 24 35 (float)

GPU 128-core NVIDIA
Maxwell Jetson Nano 2 0.472 (float)

TPU Google Edge TPU
co-processor Coral USB Accelerator - 4 (int8)

VPU Intel Movidius Myriad
X OAK-D - 1.4 (float)

3.4.2. Tree Trunk Mapping Algorithm

The tree trunk mapping algorithm receives data from an OAK-D perception device,
which is shown in Figure 1. This sensing device has an embedded inertial measurement
device, one colour camera (at the body centre) and two monochromatic cameras that form
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a stereo-vision pair for depth processing. Additionally, the OAK-D has a VPU responsible
for running the object detection neural network to detect the tree trunks.

Figure 1. OAK-D sensing device accommodates an embedded inertial measurement sensor and
three cameras: a monochromatic stereo-vision pair and central coloured camera. This figure is from:
https://docs.luxonis.com/projects/hardware/en/latest/pages/BW1098OAK.html, accessed on 26
July 2022.

The tree trunk algorithm is summarised by Figure 2. The algorithm starts by receiving
the detections made with the centred colour camera which are aligned with the depth
images. This way, it is possible to know almost exactly (because depth computation by
means of stereo vision has inherent errors) the distance to the detected objects. With
such detections, we masked the bounding boxes on the respective depth images, and
through a depth thresholding step on the centre point of each bounding box, the objects
are segmented. The trunk mapping is made by means of a visual–inertial odometry
method (OpenVINS [52]) that uses the stereo images and the inertial data of OAK-D to give
an estimation of the six Degrees of Freedom (DoF) relative pose of the device. The final
result is a 2D/3D map with the detected tree trunks. An important aspect to be highlighted
is that all raw data are processed and made available only by OAK-D.

RGB image
Stereo

monochromatic
images

Inertial data Object detection data

Depth image

Detected object pose
estimator

(ROS2 node) 

Visual-inertial
odometry algorithm 

(ROS2 node)

Sensor pose 
(x,y,x,roll,pitch,yaw)

Object pose
(x,y,z)

Segmented depth
image

Object mapper 
(ROS2 node)

2D/3D map with
detected objects

OAK-D

Figure 2. Tree trunk mapping algorithm diagram: green blocks are data provided by sensors, yellow
blocks are computational data, blue blocks are computational nodes, and purple blocks are results.
The computational nodes have been developed in ROS2, of which, one of them computes the detected
object XYZ pose, the other corresponds to a visual–inertial odometry algorithm that estimates the
sensor’s six DoF poses, and the last one uses the information given by the latter two and maps the
detected objects.

https://docs.luxonis.com/projects/hardware/en/latest/pages/BW1098OAK.html
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3.4.3. Tree Trunk Detection Experiments

The experiments conducted in this work were:

1. Original test subset vs. augmented test subset;
2. Non-quantised vs. quantised weights;
3. Decrease of input resolutions for YOLOv5, YOLOv7, YOLOR and DETR models;
4. Evolution of F1 score across several confidence levels;
5. Inference speed in four edge-devices;
6. Tree trunks mapping with an OAK-D.

Experiment #1 is about assessing the detection accuracy of the models, using the F1
score, in the original test data subset versus in the augmented test data subset. Normally,
augmentation processes are only applied to the training and/or validation datasets [53],
so we have also used augmented images in the test subset to measure the impact of their
utilisation for testing DL models.

Experiment #2 is about evaluating the detection accuracy of the quantised models,
using the F1 score, compared to their non-quantised variants. Normally, the non-quantised
variants of the models are more precise than the quantised ones for the same task, since the
weights of the former are in floating point format and, after being quantised, are turned
into a less precise floating point format (for instance, from 32-bit floating point precision to
16-bit) or event into an integer format [54].

Experiment #3 is about decreasing the input resolution of higher resolution models,
such as YOLOv5, YOLOv7, YOLOR and DETR, in order to observe the variation of detection
accuracy and also to make a fair comparison among all models, since the other models have
much lower input resolutions than the four aforementioned. The input resolutions selected
were 320 × 320 and 448 × 448. The first one was chosen because it was very close to the
input resolution of the SSD models and EfficientDet Lite0, the second was chosen because it
was close to the remaining EfficientDet Lite’s and YOLOv4’s input resolution, and also for
being the maximum accepted input resolution for the TPU (as mentioned in Section 3.3).

Experiment #4 is about assessing the evolution of models’ F1 scores, on the original
test subset, across a confidence range from 10% to 90% with steps of 10%, producing nine
confidence levels. This way, it was possible to study the most and least robust models to
perform trunk detection.

Experiment #5 is about evaluating the inference speed of the models in four different
edge-devices, which are defined in Table 5: Raspberry Pi 4B (CPU), Jetson Nano (GPU),
Google Coral Accelerator (TPU), and NVIDIA GeForce RTX 3090 (GPU) that served as a
baseline for inference speed assessing. For this experiment, the input resolutions considered
for running YOLOv5, YOLOv7, YOLOR and DETR models on the CPU and TPU were
320 × 320 and 448 × 448, since these two are more constrained in terms of hardware and
the second resolution is the maximum accepted by the TPU; hence, a fair comparison could
be made with these two hardware. This experiment also allowed to study a field called
Edge AI that has been gaining importance in recent years, where the AI data processing is
completed at the edge rather than in the cloud. This type of approach enables the data to
be processed in real-time, at high frame rates and at the location where it was collected [55].
This approach allows one to run algorithms on that data and collect its processing results
right after.

Experiment #6 is about taking one of the 13 models, deploying it to the OAK-D edge-
device (presented in the last row of Table 5) and combining these two with a higher-level
perception algorithm to map tree trunks in real-time and in a real-world context. The OAK-
D was mounted on a terrestrial robotic platform as shown in Figure 3. The robot traversed
a straight line twice (round trip) in an urban area that had trees with the aim of the detecting
and mapping them.
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Figure 3. Robotic platform with OAK-D (surrounded by an orange rectangle).

4. Results

This section presents the results of the six experiments made throughout this work: the
effect on the models detection accuracy when tested on augmented data; the effect on the
models detection accuracy when using quantised rather than non-quantised weights; the
effect on the models detection accuracy when using lower input resolutions; the evolution
of the models detection accuracy over a confidence range of 10% to 90%; the models speed
during inference on four edge-devices; and the deployment and running of a trunk detector
on a OAK-D to map surrounding tree trunks.

4.1. Results of Experiments #1, #2 and #3—Impact of Testing Models Using Augmented Data,
Impact of Quantisation and Decreasing the Input Resolution in Models’ Detection Accuracy

The results of experiment #1—presented by Tables 6 and 7—show that in the majority
of cases (about 71%), the F1 score obtained in the original test subset was higher than in the
augmented one; in fact, only DETR obtained an absolute difference larger than 2%, so
one may assume that the F1 score differences between the augmented and the original
test subset can be considered almost irrelevant. The best non-quantised trunk detector
in the original test subset, considering all input resolutions, was YOLOv7 Tiny (90.62%)
with an input of 640 × 640 pixels, which was followed by YOLOR-CSP (90.41%) with
448 × 448; these two models were the best in the augmented test subset, having been tied
with a 90.35% F1 score for an input of 640 × 640. On the opposite, SSD MobileNets were
in general the worst non-quantised models both in the original and augmented test subsets,
being only better than DETR for lower input resolutions.

With respect to experiment #2, by comparing the results of Tables 6 and 7, one can
observe that all quantised models suffered a decrease in terms of detection accuracy com-
paratively with their non-quantised version, and the ones that went through Post-Training
Quantisation suffered more than the ones whose training was made with a Quantisation-
aware approach.

From Tables 6 and 7, one can also extract the results of experiment #3. All models
whose input resolutions were tweaked (YOLOv5, YOLOv7, YOLOR and DETR) presented
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a detection accuracy drop, being that DETR presented the worst absolute deviations with
non-quantised weights—about 9% from large (640× 640) to medium resolution (448 × 448)
and 28% from medium to small resolution (320 × 320); and YOLOv5 Small presented
the worst absolute deviations with quantised weights—about 17% from 448 × 448 to
320 × 320. The model that presented minimal detection accuracy variation was YOLOR
with an absolute difference below 0.5% between different resolution levels.

Table 6. Detection results in the original and augmented datasets with variable resolutions for some
models and non-quantised weights. For each dataset, the best F1 score is in bold, and the worst is
in italic.

Model Input Resolution Best F1
Original Augmented

SSD MobileNet V1 300 × 300 67.62% 67.78%
SSD MobileNet V2 300 × 300 62.63% 61.47%
SSD MobileNet V3 Small 320 × 320 64.39% 64.63%
SSD MobileNet V3 Large 320 × 320 70.06% 69.91%
EfficientDet Lite0 320 × 320 75.27% 74.63%
EfficientDet Lite1 384 × 384 80.36% 79.98%
EfficientDet Lite2 448 × 448 83.85% 83.00%
YOLOv4 Tiny 416 × 416 82.16% 81.50%

YOLOv5 Nano
640 × 640 82.58% 80.81%
448 × 448 80.85% 79.55%
320 × 320 75.62% 74.67%

YOLOv5 Small
640 × 640 86.02% 85.17%
448 × 448 85.75% 84.75%
320 × 320 81.67% 81.01%

YOLOv7 Tiny
640 × 640 90.62% 90.35%
448 × 448 90.18% 89.64%
320 × 320 88.45% 87.51%

YOLOR-CSP
640 × 640 90.26% 90.35%
448 × 448 90.41% 90.33%
320 × 320 90.10% 90.02%

DETR-ResNet50
640 × 640 77.41% 76.62%
448 × 448 68.29% 67.88%
320 × 320 40.33% 44.20%

Table 7. Detection results in the original and augmented datasets with quantised weights and minor
resolutions for YOLOv5 models. For each dataset, the best F1 score is in bold and the worst is in italic.

Model Input Resolution Best F1
Original Augmented

SSD MobileNet V1 300 × 300 66.90% 66.63%
SSD MobileNet V2 300 × 300 60.82% 59.52%
SSD MobileNet V3 Small 320 × 320 62.57% 63.50%
SSD MobileNet V3 Large 320 × 320 68.27% 68.54%
EfficientDet Lite0 320 × 320 62.42% 63.26%
EfficientDet Lite1 384 × 384 68.91% 69.26%
EfficientDet Lite2 448 × 448 71.21% 71.23%
YOLOv4 Tiny 416 × 416 32.87% 32.41%

YOLOv5 Nano 448 × 448 75.72% 74.84%
320 × 320 64.70% 64.63%

YOLOv5 Small 448 × 448 82.12% 81.86%
320 × 320 65.32% 66.24%



Robotics 2022, 11, 136 12 of 23

Figure 4 presents some examples of the detections obtained with the models when run
on images belonging to the test subset. In the same figure, more specifically in Figure 4d, it
is possible to verify that the models were capable of detecting objects that are tree trunks
but were not annotated as ground-truth, demonstrating the knowledge gain that such
models can benefit from training on larger datasets. Another clue that proves that the
models performed well and remain robust even with the presence of other objects close
to the tree trunks is the fact that they did not detect the person present in Figure 4a as a
false positive.

(a) (b)

(c) (d)

Figure 4. Trunk detections in some example test images: the pink bounding boxes are ground-truth
while the others are detections obtained from trained models: (a) detections in FLIR’s thermal image,
(b) detections in OAK-D’s color image, (c) detections in OAK-D’s color image, (d) detections in ZED’s
color image.

4.2. Results of Experiment #4—Evolution of Detection Accuracy over Confidence Levels

The results of experiment #4, presented by Figures 5–8, show the F1 score of the models
on the original test subset—for this experiment, it was only considered the original test
subset, because it was deduced, from Section 4.1, that the differences of results obtained on
the augmented versus the original test subset were minimal.

The F1 score curves of the non-quantised models (with default input resolutions) for
different confidence thresholds are presented in Figure 5. The same figure shows that:
YOLOR and YOLOv7 are undoubtedly the best trunk detectors and have quite similar F1
score curves (their curves start only to diverge for confidences above approximately 70%);
YOLOv5 Small attains F1 scores above 80% within a 20–70% confidence interval, while
YOLOv5 Nano accomplished that (but with smaller values) for a shorter confidence interval
of 30–55%; YOLOv4 reached quite a stable result with its curve presenting minimal to
normal variation while gathering good F1 scores across different confidences, but in terms
of stability, DETR was the best trunk detector, gathering F1 scores below 80% but presenting
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minimal variation; EfficientDet Lite models gathered similar F1 score curves (their curves
follow the same evolution pattern), but, for the three of them, their accuracy drop starts at
an early stage of 20% confidence; lastly, SSD MobileNet models performed worse than all
models except for EfficientDet Lite models. With respect to these, SSD MobileNet V3 Small
and Large presented better results from confidences within 40–65%, while SSD MobileNet
V1 was only better than EfficientDet Lite0 and Lite1 within 37–50%, and SSD MobileNet V2
was better than the three EfficientDets within a 45–54% confidence range.

YOLOR-CSP

YOLOv7 Tiny 

YOLOv4 Tiny 
YOLOv5 Small 

DETR-R50 

YOLOv5 Nano 
EfficientDet Lite2 

EfficientDet Lite1 

EfficientDet Lite0 

SSD MobileNet V1 

SSD MobileNet V2 

SSD MobileNet V3 Large 

SSD MobileNet V3 Small 

Figure 5. Evolution of F1 score of the non-quantised models, with their default input resolutions,
over several confidence thresholds.

YOLOR-CSP
YOLOv7 Tiny 

YOLOv4 Tiny 

YOLOv5 Small 

DETR-R50 

YOLOv5 Nano 

EfficientDet Lite2 
EfficientDet Lite1 

EfficientDet Lite0 

SSD MobileNet V1 

SSD MobileNet V2 

SSD MobileNet V3 Large 

SSD MobileNet V3 Small 

Figure 6. Evolution of F1 score of the non-quantised models, with minor input resolutions, over
several confidence thresholds.
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YOLOv4 Tiny 

YOLOv5 Small 

YOLOv5 Nano 

EfficientDet Lite2 
EfficientDet Lite1 

EfficientDet Lite0 

SSD MobileNet V1 

SSD MobileNet V2 

SSD MobileNet V3 Large 
SSD MobileNet V3 Small 

Figure 7. Evolution of F1 score of the quantised models, with maximum input resolutions, over
several confidence thresholds.

YOLOv4 Tiny 

YOLOv5 Small 
YOLOv5 Nano 

EfficientDet Lite2 
EfficientDet Lite1 

EfficientDet Lite0 

SSD MobileNet V1 

SSD MobileNet V2 

SSD MobileNet V3 Large 
SSD MobileNet V3 Small 

Figure 8. Evolution of F1 score of the quantised models, with minor input resolutions, over several
confidence thresholds.

With respect to the evolution of F1 scores of non-quantised models but with minor
resolutions for some of them (DETR, YOLOR, YOLOv7 and YOLOv5), Figure 6 shows that,
in general, their curves suffered a decrease in detection accuracy, but the most notorious
was DETR, whose F1 curve dropped from nearly 80% to 40%. YOLOR and YOLOv7
continue to be the best trunk detectors, but YOLOR is consistently better than YOLOv7; and
YOLOv5 models are better than all EfficientDet Lites and SSD MobileNets for a confidence
interval of 32–76%.

Concerning the use of quantised models for inference (on TPUs) with default input
resolutions for SSD MobileNets, EfficientDet Lite and YOLOv4 Tiny models, and with
maximum allowed input resolutions (448 × 448) for YOLOv5 models, Figure 7 presents
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the respective F1 curves across confidences. From the same figure, it can be verified that:
YOLOv4 Tiny suffered the biggest F1 score drop (from 80% to 35%) comparatively to its non-
quantised version; YOLOv5 models continue to perform better than EfficientDets and SSD
MobileNets across the majority of confidences and, with quantised weights, YOLOv5 Small
and Nano are the best trunk detectors; EfficientDet Lite models worsened their results with
quantisation; and SSD MobileNets were the models that suffered less with quantisation,
making them better than EfficienDets for confidence values of 30% to 70%, approximately.

The use of a minor input resolution (320 × 320) for YOLOv5 models made their F1
curves worse, as can be seen in Figure 8. However, for higher confidence values (above
60% and until nearly 80%), they continue to perform the best. For confidences between
40% and 55%, SSD MobileNet V3 Large demonstrated the best F1 score. For the remaining
confidence intervals, EfficientDet Lite models attained best results.

4.3. Results of Experiment #5—Inference Times on Four Distinct Edge-Devices

Table 8 shows the inference speed results regarding experiment #5. A quick analysis
indicates that the majority of the models (11 out of 13) achieve higher inference velocities
(lower inference times) when performing inference on the RTX3090 GPU than on any of the
other devices. For all models, except the SSD-based ones, the inference times obtained on
the Raspberry Pi CPU are the worst; the SSD models obtained worst inference times on
the Jetson Nano GPU. In general, for all cases, the Coral Accelerator TPU and Jetson Nano
GPU were placed second and third, respectively, regarding their inference times.

Table 8. Inference time (in ms) results in different processing units: one TPU, one CPU and two GPUs.
For each edge-device, the lowest time is in bold, and the highest is in italic.

Model Input Resolution

Edge-Devices
GPU GPU CPU TPU

RTX3090 Jetson Nano Raspberry Pi 4 Coral
Accelerator

SSD MobileNet V1 300 × 300 7.43± 0.71 149.53± 505.14 58.42± 5.80 7.30 ± 0.48
SSD MobileNet V2 300 × 300 9.92± 1.10 180.41± 358.27 60.50± 5.03 8.64± 0.55
SSD MobileNet V3 Small 320 × 320 11.80± 1.32 153.55± 783.15 22.25 ± 3.19 53.11± 5.41
SSD MobileNet V3 Large 320 × 320 12.71± 1.29 139.76± 40.33 57.10± 5.28 104.03 ± 8.71
EfficientDet Lite0 320 × 320 16.89± 1.76 —– 176.43± 29.98 27.09± 2.08
EfficientDet Lite1 384 × 384 18.23± 1.88 —– 321.09± 13.44 40.03± 2.92
EfficientDet Lite2 448 × 448 18.76 ± 1.98 —– 532.25± 17.66 68.16± 2.95
YOLOv4 Tiny 416 × 416 1.93 ± 0.07 34.96± 0.46 470.40± 9.71 9.19± 0.50

YOLOv5 Nano
640 × 640 5.40± 0.30 42.91± 0.35 284.06± 34.18 —–
448 × 448 5.32± 0.28 22.99± 0.80 129.07± 10.59 20.22± 0.37
320 × 320 5.24± 0.29 20.21 ± 3.01 61.79± 4.87 10.98± 0.39

YOLOv5 Small
640 × 640 5.47± 0.24 110.04± 2.18 974.57± 44.39 —–
448 × 448 5.48± 0.31 54.54± 0.29 463.48± 14.28 43.75± 0.71
320 × 320 5.44± 0.26 31.01± 0.23 233.68± 30.57 19.08± 0.64

YOLOv7 Tiny
640 × 640 3.50± 0.13 90.14± 2.19 988.79± 9.12 —–
448 × 448 2.91± 0.07 44.82± 0.14 506.53± 2.95 —–
320 × 320 2.50± 0.15 25.29± 0.19 268.88± 11.08 —–

YOLOR-CSP
640 × 640 12.03± 0.18 616.09 ± 9.17 8652.50 ± 49.77 —–
448 × 448 7.72± 0.07 300.89± 7.25 4720.24± 15.52 —–
320 × 320 6.12± 0.06 178.89± 0.53 2201.46± 18.69 —–

DETR-ResNet50
640 × 640 8.43± 0.29 453.07± 48.11 5568.48± 20.22 —–
448 × 448 6.14± 0.29 228.84± 5.09 2863.37± 10.68 —–
320 × 320 4.83± 0.25 143.73± 9.87 1520.74± 9.37 —–

Considering the four edge-devices, YOLOv4 Tiny was the fastest model overall, achiev-
ing 1.93 ms (about 518 Hz) on average when running inference on RTX3090 GPU. YOLOv7
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was the second fastest model, gathering average inference speeds, also on RTX3090 GPU,
between 2.5 ms (400 Hz for an input resolution of 320× 320) and 3.5 ms (286 Hz for an input
resolution of 640 × 640). The slowest model overall was YOLOR-CSP during inference
on the Raspberry Pi 4 CPU with average times from 2.2 to 8.6 s in various resolutions,
which was followed by DETR-ResNet50 on the same hardware (CPU) and across various
resolutions with average times among 1.5 and 5.5 s. Another aspect worth mentioning is
the large standard deviation values presented by SSD MobileNet V1, V2 and V3 Small on
Jetson Nano. These can be explained by the use of a TensorFlow API while testing those
models on Jetson Nano, which could make the inference times to vary considerably.

4.4. Results of Experiment #6—Tree Trunks Mapping

A sample of intermediary steps of the object pose estimator can be seen in Figure 9,
where Figure 9a is the color image passed to the trunk detector running on OAK-D’s VPU,
Figure 9b corresponds to the same color image with the tree trunk detections drawn as
bounding boxes, Figure 9c is the raw depth image, and Figure 9d is the same depth image
masked with the detected tree trunks. As mentioned earlier, the masked depth image
enabled the pose estimation of the detected tree trunks.

(a) (b)

(c) (d)

Figure 9. Results of the distance estimation to the tree trunks by means of depth information: (a) color
image, (b) color image with detected tree trunks, (c) depth image, (d) depth image with detected tree
trunks and their estimated distances.
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The results of the tree trunks mapping experiment are shown in Figure 10. Since only
raw detections were used (without any kind object matching processing), the mapping
results shown in Figure 10a,b present some noise with respect to the tree trunks’ positions,
which can be derived from the inaccuracies of two computational operations: the sensor
pose estimation and/or the sensor’s depth estimation. These two operations are important
for this task, because the first allows obtaining the distance to an object, and the second
gives a relative pose of the sensor, the combination of the two enables obtaining the poses
of tree trunks in relation to the sensor. So, if one of them or the two fail, the final result will
present inconsistencies. As it was said before, the robot traversed a straight line trajectory,
and in both Figure 10a (between y values of −15 and −25) and Figure 10b (between y
values of −5 and −6), there can be noted some divergences of the expected path, which
in turn cause the trunks’ positions to drift. As a minor test, we used a hierarchical clustering
method on the poses of the tree trunks as a way of filtering (object matching on the XY
plane) the trunk’s detections. The results of this test are shown in Figure 10c,d, where the
clusters’ centroids can be observed as tree trunks. The area where this experiment was
performed had nine trees to detect, so one can say that in terms of tree trunk counting,
during the operation illustrated by Figure 10c, more false positives were detected (more tree
trunks were detected than those that actually exist) than during the operation illustrated
by Figure 10d. Additionally, OAK-D managed to produce tree trunk detections at a 23 Hz
rate, while the visual–inertial odometry algorithm ran at 14 Hz, accomplishing tree trunks
mapping in real-time.

(a) (b)

Figure 10. Cont.
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(c) (d)

Figure 10. Trunk mapping results: (a,b) are the mapping results without tree trunk clustering,
(c,d) are the mapping results with tree trunk clustering.

5. Discussion

This section focuses on discussing the results previously presented in Section 4. From
the experiments that were conducted, it is possible to affirm that: models evaluation with
and without augmented data revealed little changes globally in detection accuracy level,
with only one model (DETR) presenting an absolute difference on the F1 score metric larger
than 2%; the impact of quantising the models weights, in order to produce inferences with
them in low-cost hardware devices, is notorious since all quantised models have worsened
their performance in terms of detection accuracy, and so it is the impact of decreasing
the input resolution of some models, as they suffered a detection accuracy drop; the best
two models overall, considering floating-point weights and default input resolutions, are
YOLOR and YOLOv7 by this order, because they both presented similar F1 scores, but
YOLOR seemed to be more robust and confident at detecting tree trunks, as can be seen
in the results of the fourth experiment, more specifically in Figures 5 and 6. The last
experiment was about assessing the use of one of the models at detecting and mapping
tree trunks (by means of additional algorithms); it was proven that such a task can be
accomplished using only one OAK-D sensor running embedded object detection along
with an object pose estimation algorithm and a sensor pose estimation algorithm.

In terms of tree trunks detection performance, this work can be compared with the one
presented in [28], as the authors assessed the detection of trees at ground level, although
their images were taken from the street instead of being captured in forestry locations.
Despite that, by analysing our results, it can be concluded that our models showed excellent
performances, as our top two—YOLOR (640 × 640) and YOLOv7 (640 × 640)—on both the
original and augmented test datasets achieved F1 scores around 90%. Considering that our
models were tested on an augmented test set made of by 9910 images in forestry areas, that
by itself makes the detection even more difficult due to the presence of shadows (this can
be seen in Figure 4d) and the existence of many more trees and more closer to each other
than in the cities. Another important aspect to be highlighted is that even if the authors
claim in [28] that they achieved an average precision of 98% using YOLOv2 [44] with
a ResNet50 [56], their test set only had 89 images, which is around 10 times and 100 times
smaller than our original and augmented test datasets, respectively. Another work to be
mentioned is the one presented in [29]. In this work, the authors made use of a occlusion-



Robotics 2022, 11, 136 19 of 23

aware R-CNN for detecting trees in street images. To assess the performance of their
method, they used a metric called best miss rate, and they claimed to attain a 20.62% on that
metric. In spite of their evaluation metric being different from the one we used, we strongly
believe that our models achieved excellent detection results given that their test dataset is
around 19 times smaller than our augmented test dataset. A similar work was produced
in [30], where the authors proposed an object detector based on YOLOv3 [45] to detect
tree trunks and telegraph/lamp posts. The authors created an original dataset composed
of 812 annotated images (with 90% being trunks); then, they augmented it to obtain a
1198-image dataset, from which they picked randomly 20% of the images (198 images) to
serve as the test dataset. The authors obtained the best results for an overlapping threshold
of 30%, attaining an average recall rate of 90–93%, surpassing the predefined YOLOv3
architecture in best case by around 4%. Comparing to our work, besides having used
a higher overlapping threshold, which makes the detection task more challenging, our
augmented test dataset is much larger than theirs (around 50 times), hence proving the
robustness of our models.

With respect to the tree trunk mapping, in the work proposed in [31], the authors
performed stump detection and localisation in harvested forest terrains using YOLO and
a ZED2 stereo camera. In fact, their object pose estimation system is similar to ours but
works at a much lower rate (6.1 Hz for detection and 5.6 Hz for localisation). In fact, they
mentioned the common existence of a delay when viewing the localisation results. They
did not make stump mapping over an area continuously; they simply pass discrete images
to their system to detect the stumps and give their estimated localisation in those images.
Another aspect to be noted is that their system relies on two separate devices: a ZED
camera and a GPU-based board, called NVIDIA Jetson Xavier, in order to work properly
and provide perception data in real-time. On the other hand, our system only needs one
OAK-D to give inertial data, coloured and depth image data, and also object detection data,
that are fed, in real-time, to higher-level algorithms. Another work that aimed at mapping
trees was the one presented in [27], where the authors also used a ZED2 stereo camera but
instead of training DL algorithms to detect object in images (in 2D), they trained a 3D object
detector to detect tree trunks in 3D data provided by the stereo camera. Then, they used
the spatial mapping programming interface of the manufacturers of the stereo camera to
map the detected trees in 3D space, and after, they applied a clustering method to extract
only the trees from the 3D map.

6. Conclusions

This work aimed at researching forest tree trunks detection by means of Deep Learning
models. To accomplish that, 13 DL-based object detection models were trained and tested
using a new public dataset of manually annotated tree trunks composed by more than
5000 images. The models were evaluated in terms of detection accuracy and inference times
in four different edge-devices. Then, one of the 13 models was picked and deployed to run
inference in real-time on an OAK-D (AI-enabled sensor with an embedded VPU), and the
obtained predictions were used to perform tree trunks mapping.

After the experiments conducted in this work, one can conclude that:

1. The use of test datasets with and without augmented data caused tiny changes
in the detection accuracy level of the models, as only one model (DETR) presented
an absolute difference larger than 2%;

2. The quantisation of models’ weights caused a performance worsening in all models;
3. The diminution of models’ input resolution also lowered their performances during

tree trunks detection;
4. The two trunk detectors that achieved the best results were YOLOR and YOLOv7

achieving around 90% in F1 score, while YOLOR can be considered the best model
overall at detecting tree trunks, as it showed more robustness and more confidence at
this task, whereas the worst model was SSD MobileNet V2;
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5. The fastest model overall was YOLOv4 Tiny, achieving an average inference time
of 1.93 ms on NVIDIA RTX3090, while on Jetson Nano’s GPU, YOLOv5 Nano proved to
be the fastest (20.21 ms); on the Raspberry Pi 4 CPU and Coral’s TPU, SSD MobileNet
V3 Small (22.25 ms) and SSD MobileNet V1 (7.30 ms) were quickest, respectively;

6. Considering the trade-off between detection accuracy and detection speed, YOLOv7
is the best trunk detection model, achieving the highest F1 score similar to YOLOR
with average inference times under 4 ms on the RTX3090 GPU;

7. The tree trunks mapping by means of only one sensor (OAK-D) and some higher-level
estimation algorithms is possible, but it needs additional effort for filtering/matching
the raw trunk detections.

This article explores several approaches to make an accelerated perception for forestry
robotics. The most common approaches were compared, including processing in the vision
sensor and adding dedicated hardware for processing. It is expected that the perception
system presented in this work is able to improve the quality of robotic perception in a
forestry environment, as the proposed strategies are most adequate to autonomous mobile
robotics. As the locomotion of terrestrial robots (specially the wheeled ones) is very difficult
in forests, the DL-based tree trunk detection benchmark in this work can be applied not
only to terrestrial robots but also to aerial robots. However, for the latter, it is necessary for
the robots to fly under the forest canopy so that the tree trunks are visible. Furthermore, the
vision perception system developed in this work can be used for forest inventory purposes,
such as tree counting and tree trunk diameter estimation.

Future work will include training DL models to perform the detection of different
tree species and different forestry objects such as bushes, rocks and obstacles in general to
increase the awareness of a robot and prevent it from getting into dangerous situations. We
will aim to improve the mapping operation using embedded object detection by means
of, for instance, running object tracking inside OAK-D, so instead of producing all of the
object detections, only tracked objects would be outputted from the sensor. These proposals
will enable further developments regarding robotic artificial vision in the forestry domain
in order to achieve a more precise monitoring of the forest resources.
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