2015 IEEE 18th International Conference on Computational Science and Engineering

A Parallel Computing Hybrid Approach for Feature
Selection

Jorge Silva
Instituto de Telecomunicacdes & DCC,
Faculdade de Ciencias,
University of Porto, Portugal
Email: up201007483 @alunos.dcc.fc.up.pt

Abstract—The ultimate goal of feature selection is to select the
smallest subset of features that yields minimum generalization
error from an original set of features. This effectively reduces
the feature space, and thus the complexity of classifiers. Though
several algorithms have been proposed, no single one outperforms
all the other in all scenarios, and the problem is still an actively
researched field. This paper proposes a new hybrid parallel
approach to perform feature selection. The idea is to use a
filter metric to reduce feature space, and then use an innovative
wrapper method to search extensively for the best solution. The
proposed strategy is implemented on a shared memory parallel
environment to speedup the process. We evaluated its parallel
performance using up to 32 cores and our results show 30 times
gain in speed. To test the performance of feature selection we
used five datasets from the well known NIPS challenge and were
able to obtain an average score of 95.90% for all solutions.

[. INTRODUCTION

In 2011, a report by McKinsey Global Institute asserted
that machine learning is the key for innovation, competition,
and productivity [1]. For several years machine learning has
been widely studied, and new techniques and algorithms are
constantly emerging. However, preparing a classifier for a
classification task is not easy and researchers are commonly
faced with difficulties such as: how much data is needed, what
features should be added, and does the dataset has outliers and
noisy data [2]. Usually, researchers gather as much informa-
tion as possible about a problem and turn that information
into a processed dataset for machine learning purposes. This
methodology often leads to datasets with a large number of
features, which in most cases means poor performance from
the learning algorithm. The problem is commonly known as
the curse of dimensionality [3]. Moreover, as more features are
used the higher is the risk of overfitting, which means adapting
a learning algorithm so much to the training data, that it starts
“memorizing” examples instead of learning from them. Thus,
drastically decreasing prediction accuracy for unseen data [3].

Feature selection is the process of selecting a subset of the
original features so that the feature space is reduced according
to a certain evaluation criteria [4]. The goal is to find the
smallest subset possible that yields the minimum general-
ization error. There are several advantages of using feature
selection: improving classification performance, reducing the
time it takes to classify unseen data, and achieving a better
understanding of the process that generates data [5]. Since
feature selection is able to effectively reduce the dimension
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Fig. 1: The four key steps of feature selection.

of the data, it is a commonly used technique to tackle the
previous mentioned classification problems.

Feature selection methods require a full search of the
feature space, testing subsets of features, and evaluating them
to find the final solution. The search space consists of the
combination of all possible subsets, which for a dataset with
n features produces a feature space of size 2". This makes an
exhaustive search impracticable in most cases. For problems
with a large number of features, finding an optimal subset of
features is usually intractable and many problems of this kind
are asserted as NP-hard [6]. Several algorithms exist in the
literature that tackle this problem. Despite their differences
they all follow the same general approach, which consists
in four key steps: subset generation, evaluation of subset,
stopping criterion, and result evaluation [4]. The first step
defines how successors of a subset are generated and how
the search is guided. The second step represents a function
that is used to measure the quality of a subset. The conditions
that make the search stop are defined in the stopping criterion.
Finally, results validation is the process where the final solution
from the feature selection algorithm is evaluated for its quality.
Figure 1 illustrates an overview of the general process.

Depending on the size of the dataset and on the approach,
feature selection algorithms can take significant time to reach
the stopping conditions. Because of that, parallel computing
emerges as an option to tackle this problem. Taking a closer
look at the general procedure, the problem can be reformulated
as a set of multiples tasks. On this scenario, a task could be
defined as the process of generating a new subset, evaluating it,
and checking if the stopping criterion is reached. Understand-
ably, the processing of a task is completely independent of
processing any other. This makes the feature selection problem
an ideal candidate for parallelization.
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Commonly, feature selection algorithms need to compro-
mise the goodness of their solutions in order to provide
results in a practicable time. Moreover, wrapper strategies are
known for producing the best results [6], however they are
not usually used in high dimensional datasets because of their
computational cost. This work proposes a new hybrid feature
selection algorithm that uses a filter procedure to reduce the
feature space and then uses a wrapper search implemented on a
shared memory parallel environment to find the final solution.
With this approach, we aim to achieve better solutions by using
a more computationally expensive approach that explores more
of the search space, combined with parallelism to speedup
execution.

The remainder of the paper is structured as follows: next
we present a brief review of the current state of art of
feature selection algorithms. In section III we thoroughly
explain each component of our approach and how they act
together. Section IV details the proposed novel heuristics
applied in our wrapper search component. Section V details the
implementation of our strategy on a shared memory parallel
architecture. Section VI assesses the parallel performance of
the implemented algorithm. Section VII empirically evaluates
and discusses the results attained with our strategy on several
public datasets. Finally, the last section discusses future work
and present conclusions on our work.

II.  STATE OF ART

Feature selection has been widely studied and as result a
large number of algorithms have been proposed. These algo-
rithms can be categorized into three groups: filter, wrapper, and
embedded [4]. Filter algorithms use a classifier independent
metric to evaluate either individual features or subsets. The
idea is to identify which features are more relevant to the
learning task. These methods assume complete independence
between data and the learning algorithm. As a result, the
final solution could be applied to several learning algorithms
without the need to run the filter algorithm more than once.
Usually the metric is fast to compute, therefore filter methods
have low-computational cost. However, in most cases they
fail to produce the optimal subset of features and usually
perform worst than other types of feature selection algorithms.
Examples of filter algorithms in literature are found in [7], [2],

(6], [5].

Wrapper algorithms find the final solution using a learning
algorithm as part of the evaluation criteria. The main idea of
these methods is to use the learning algorithm as a “black-box”
to guide the search for the optimal solution. The learning is
applied to every candidate solution and the goodness of the
subset is given according to the performance of the learning
algorithm. Due to the learning algorithm being directly used
on the process of selecting features, these methods tend to find
better solutions. Nonetheless, the final solution only applies for
the selected learning algorithm, since using a different one will
most likely result on a different final solution. These methods
have higher computational cost as they require training and
classifying data for each candidate solution. Moreover, cross-
validation techniques are commonly used, which further in-
creases the computational cost of the algorithm [8]. Combining
different search strategies with different classification algo-
rithms results in a new wrapper method, and several examples
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can be found in the literature [9], [7], [10].

Embedded methods are inspired by wrapper and filter
algorithms and try to use the best qualities from both types.
These algorithms encapsulate feature selection with classifier
construction. By doing that, the feature selection part interacts
with the learning algorithm. However, it does not require
training the classifier and thus they are usually faster than
wrapper methods. Since these methods do not separate feature
selection from learning, they are very specific to a learning
algorithm. Meaning that an embedded method can only be
applied to a specific learning algorithm. Tang et. al. [11]
categorizes embedded methods into three groups and provides
examples of algorithms for each type.

A. Hybrid Methods

Approaches that combine two categories of feature selec-
tion algorithms are gaining importance in the community. They
are called hybrid methods and combine filter and wrapper
methods in order to further improve the feature selection
process. The idea behind these methods is to use a filter method
to cut the search space into a smaller space, and then use a
wrapper method to select the final solution. As examples of
hybrid algorithms, we have the IFSFF algorithm [12] which
uses a filter method to rank features in order to guide more
efficiently the wrapper search. Another example is the Quick
Branch and Bound algorithm which uses a filter approach to
define subsets as starting points for a wrapper algorithm [7].
More hybrid algorithms are described in [6].

B. Parallel Feature Selection

Selecting the ideal set of features is far from an easy task.
It usually requires many attempts until the desired result is
attained. A conventional methodology is to change parameters
on the algorithms or test different algorithms to compare
results. Moreover, depending on the size of the dataset and
on the algorithm chosen, a feature selection process can
take a large amount of time. This triggered researchers to
exploit parallelism within feature selection algorithms in order
to improve their executions times. For example, Azmandian
et. al. [13] used GPUs to accelerate their feature selection
algorithm. Li et. al. [14] also resorted to parallelism to speed
up a genetic search in the context of feature selection.

III. OVERVIEW OF THE PROPOSED ALGORITHM

In this section, we introduce our proposed hybrid method.
It starts with a filter approach that ranks features individually.
Based on a threshold and on the calculated rank, features are
selected to the next phase. The goal of the filter is to use a
less costly computational method to reduce the search space.
Therefore, removed features are considered irrelevant and are
not used any further in the next stages of the algorithm. We
use Mutual Information (MI) [5] as the metric to individually
rank features. The wrapper phase searches the feature space by
using a novel meta-heuristic in order to find the final subset of
features. Wrapper methods use a learning algorithm to evaluate
the goodness of a subset. In our approach we use Support
Vector Machines (SVM) [15] as our learning algorithm.

The filter and wrapper components represent the main
functions of the algorithm and are responsible for selection
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Fig. 2: Workflow of the proposed method.

features. Because, the wrapper search is the most significant
contribution of this paper, we dedicate a full section to it
(Section IV). Both components require some pre-processing
steps that are executed by two additional algorithms: Uncertain
Class Attribute Interdependency Maximization (UCAIM) [16]
and Grid Search [17]. The first one is used to discretize
data, which is a recommended step when using SVMs, and
it is a mandatory procedure to calculate MI in cases where
variables have continuous values. The Grid Search is a very
popular procedure used to estimate the parameters of learning
algorithms.

The workflow of our proposed method is illustrated in
figure 2. We start by preparing data, then discretize it with
UCAIM algorithm. Then, the feature space is reduced by
eliminating features that are not able to pass the MI filter. The
next step is to estimate the SVM parameters using the grid
search. Finally, the algorithm runs the wrapper search which
is responsible to find the subset of features that is presented as
final solution. All algorithm steps are explained in more detail
in the following sections.

A. Prepare Data

This is the stage where data is read from files and pre-
processed. In most cases, pre-processing data includes tech-
niques to find outliers that may jeopardize the performance of
the learning algorithm. Although there are several techniques
to detect and remove outliers, this process usually requires
some knowledge about the dataset. This procedure is rather
specific to the dataset and thus we do not include it as part of
our method. Instead, we assume that the dataset is already
clean and ready for the algorithm. In any case, this stage
implements normalization of the feature values to a scale from
0 to 1. This is a recommended procedure in order to improve
the performance of learning algorithms [2].

B. UCAIM Algorithm

In order to discretize data, we selected the UCAIM algo-
rithm, which is an evolution of the original CAIM algorithm.
Both methods have the goal to delineate intervals on data
in such a way that the interdependence between features
values and class labels is maximum. Despite the fact that
both algorithms perform well, the evolutionary approach adds
the offset component, which takes into account cases where
data is unbalanced. The UCAIM algorithm has been shown to
outperform the original one [16].

The UCAIM algorithm starts by setting the initial dis-
cretization scheme, D, as a set of two elements: the maximum
and minimum values. Then, it proceeds to define a set of
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possible points. These are all the midpoints between each
adjacent pair in the sorted and non-duplicate set of values.
After that, UCAIM iteratively tries to add possible points
to D. At each round, all possible points are added, one at
the time, to D. Then, formula 1, which tries to maximize
the interdependence between classes, is used to evaluate the
quality of D with the recently added point. At the end of the
round, the point with the best score is definitely appended to
D. The process stops, when no point could improve the score
that D has at the start of the round. By the end of the UCAIM
algorithm, we get a discretization scheme D. Later, for each
feature value, we discover the interval on D where it belongs,
and convert the value to the midpoint of that interval. Thus,
achieving the desired discrete data.

Algorithm 1 illustrates the steps needed to find D for a
given feature F; and its possible values V; on a classification
problem with S label classes.
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Where n is the number of intervals, r iterates through all
intervals, max, is the maximum value inside an interval, M,
is the total number of values on the interval and offset:
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where S represents the classes labels, ¢;, are the number
of values in interval r that belong to class ¢, and maz, is the
maximum number of values in interval r across all classes.
Basically, Of fset, is the average difference of the number of
points in all classes to the number of points in the class that
has the most points in that interval.

Algorithm 1 UCAIM Algorithm

1: procedure UCAIM(V;, S)

2: values < REMOVEDUPLICATES(V;)

3: min, max < FINDLIMITS(values)

4: B < GENERATEPOSSIBLEPOINTS (values)
5 K + 1, D < {min, max},
6
7
8
9

BestS « 0, BestP + {}

while K < S or GlobalUCAIM < BestS do
GlobalUCAIM < BestS
D+ DU BestP

10 for P € B do

11: auxD < DU P

12: auzxS < GETUCAIMSCORE(auzrD)

13: BestS, BestP < UPDATEBEST(P, auxS)
14: K+ K+1

C. Filter Metric

In contrast to some feature selection algorithms, we do
not intend to use a filter approach to find a final subset of
features. Instead, our method uses it as a pre-processing step to
eliminate features and make it practicable for a more intensive



search on the wrapper part. Therefore, our filter should have
the following characteristics:

1) Evaluate single features. Several filter approaches
evaluate subsets of features. However, to keep a low
computational cost, we avoid searching for feature
subsets and evaluate features only individually.

2) Not very restrictive. The percentage of removed

features should not be very large. Although as less
features pass the filter the faster the wrapper ends,
it is difficult to accurately assess the quality of a
feature just by using a filter metric. It has been shown
that features considered irrelevant when individually
evaluated, are in fact important when inserted into
a specific set of features [2]. Hence, to avoid com-
promising the performance of the final solution, it
is important to avoid removing a large number of
features at this stage.

There are several algorithms in the literature that fulfil
the first requirement of our list, these methods are called
univariate [12]. Two of the most commonly used metrics of
this type are Mutual Information (MI) and Pearson Correlation
Coefficients (PCC) [2]. Both metrics measure the dependence
between two variables. Nonetheless, there is a key difference
between them. MI measures the general dependence between
the variables while PCC measures linear dependence. Li et
al. [18] tested this property and concluded that this makes
MI a better metric. Based on that work and on the amount
of other works that use MI [5], we decided to use it as the
selected metric to our filter approach.

Calculating the MI score for every feature does not remove
features by itself, so in the next step we define a strategy
that filters features taking into account the required second
characteristic. The idea is to define a threshold and to remove
features for which the MI score is bellow that threshold.
Since MI scores diverge a lot when changing datasets, it is
not possible to use a fixed threshold. Instead, we define the
threshold as a percentage of the maximum MI score, and leave
out features with MI below the threshold.

D. Grid Search

As previously mentioned, we use the SVM as our learning
algorithm. As we will show in the next sections, SVMs have
some parameters that must be tuned in order to provide better
results. However, it is not uncommon for researchers to not
knowing which parameters to use. On our method, we let
users define the parameters; yet, if they do not specify them,
the algorithm estimates the best parameter set to use. We test
several parameters and select the ones that provide the best
results using a grid search. This method tests parameters in
two ranges. First, a large scale range and then, after choosing
one value for the larger range, a smaller scale range is used.
For example, suppose that for a parameter ¢ the first possible
values are L; = {...,27,2% 21 213 1 Now imagine that
the selected value from the L; is 2°, hence the algorithm
proceeds to search the final parameter in the following range
Si — {7 2&5’ 28.757 297 29.25’ 2957 }

Typically grid search is applied to tune the classifier using
the set of features. However, because we use the classifier to
select a subset of features, we need to choose the parameters
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before knowing the feature set to be used. In addition, it
is impracticable to perform a grid search for every subset
being evaluated during the wrapper search. Thus, we perform
a grid search on n randomly generated feature subsets after
the filter and before starting the wrapper search. The best set
of parameters for each feature subset counts as a vote, and the
parameter set with most votes is selected. In cases where the
highest number of votes is the same for more than one set of
parameters, we generate n new random subsets and the test is
repeated for the tied set of parameters. This process is repeated
until there are no more ties.

IV. WRAPPER SEARCH

Our proposed feature selection algorithm was designed to
make use of existing algorithms for most of the tasks that
must be performed. However, the wrapper search is a new
meta-heuristic which, together with the strategy for its parallel
execution, makes it a main contribution of this work. This
is the most complex part of our algorithm and the functions
used at this stage define its computational cost and its ability to
find good solutions. For the sake of understanding, we further
divided its explanation into three sections: learning algorithm,
search strategy, successor generation. The following section
complements the description with the parallel strategy.

A. Learning Algorithm

We use SVM as the learning algorithm to our method based
on the work [15] in which the authors compare several learning
algorithms in the context of classification problems. They
concluded that SVM in general outperforms other classifiers.
SVMs can have different kernels, and each one defines a
distinct way to map data into higher dimensions. In order to
select an adequate kernel, size and type of data should be taken
into account [17]. The number of parameters to be estimated
also depends on the kernel selection.

The function of the SVM in our approach is to evaluate
the goodness of a subset of features. For each tested subset,
we train the classifier with a part of the data and test it with
the remaining. This process is commonly known as cross-
validation [17] and the number of times it is performed for
a subset depends on the defined number of folds. In the end
of the whole process the algorithm gets a score for the subset.
This score is the average of the accuracy obtained for each
fold. This process is illustrated by figure 3.

B. Search strategy

Although several search strategies exist and have been used
on wrapper approaches, we decided to implement a new meta-
heuristic that explores the search space more thoroughly. The
idea was to create a different strategy to search for solutions,



First Phase

Fig. 4: Example of the implemented wrapper search

while maintaining a structure that could be easily run with
multiple processors. The proposed search organizes subsets as
nodes on a tree whose first level is composed by n starting
subsets, each with a single feature not removed by the filter.
From now on, we use subsets and nodes interchangeably.

The innovative idea of the proposed search is to explore
broadly different regions of the search space, looking for the
areas of higher classification accuracy, and then focus on
searching the local maxima in each region. Thus, the search
strategy doesn’t have an uniform behaviour, but is divided
into two stages. First, we gather as many good solutions as
possible. Then, we improve them up to the best score they
can reach on the second stage. The transition between stages
takes place when subsets reach a certain number of features.
Figure 4 illustrates an example of the implemented wrapper
search.

In the first stage, the decision to expand a node or not is
based on the distance from the obtained score to the global
best. In this step, a threshold is defined and nodes whose
difference of score to the global best is lower than the threshold
are expanded further. During the second stage, nodes are
searched using a depth first strategy and they are expanded
while they still improve the score of their parent. The search
stops when there are no more nodes left to explore. In this
stage, a mechanism cuts subsets with a certain probability to
avoid excessive work. The probability of each subset being cut
is defined based on how distant its score is from the global
best, according to the following table:

% Distance to global Cut probability

d <05 0%

05<d<1.0 25%
1.0<d<15 50%
d>15 5%

The mechanism executes every ¢ seconds, where ¢ is a
value which can be user defined.

The defined threshold in the first stage and the size at
which stages switch have a great impact on the amount of
nodes explored in the search. Thus, it is possible to define how
restrictive the search is by manipulating these parameters.
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C. Successor Generator

Finally, we explain how to generate successors of a subset.
The idea is to add to a subset .S; several features that are not yet
part of it. Each feature can be added with a specific probability,
according to a likelihood of improving the evaluation score,
estimated in a pre-processing step described below. If k&
features are selected to be added, then k& new successors of
S; are generated. Each one represents S; combined with a
new feature. By doing so, our method increases the likelihood
of features with high improvement score being added to new
subsets. Figure 5 illustrates this process.

The likelihood of a certain feature contributing to an
improvement in the evaluation criteria is estimated in a pre-
search phase. The procedure starts by generating n random
subsets, and evaluates each one of them using the subset
evaluation procedure. Then, for every F; we test how the score
of a subset improves when F; is either added or removed. In
the end we count how many times F; improved subsets to
calculate the likelihood of improvement. These values are then
used when the wrapper search decides to expand a node.

It is clear that our successor generator function may gener-
ate repeated subsets. Since the function that evaluates subsets
is deterministic, testing a subset more than once is a waste
of computations. But the search strategy does not handle the
problem. Thus, we added a mechanism to avoid work repetition
to the process of generating successors. The hash value of
every tested subset is added to an hash table. Then, every time
a new subset is generated, a look up in an hash table checks
whether it has been tested before, if the answer is positive,
then the successor is discarded.

D. Overview of the wrapper search

In the previous sections, we discussed the several com-
ponents of the proposed wrapper search. It is also important
to understand how they act together. Algorithm 2 details the
overall wrapper search strategy.

V. PARALLELIZED METHOD

The UCAIM, Filter and Grid Search parts of our proposed
approach are not computationally costly, however, the wrapper
part is. Our search strategy is very intensive in the number of



Algorithm 2 Search Strategy

procedure SEARCH(size, W, data, hashT able, probs )
lastStage < False
while W # empty do
s < REMOVELAST(W)
if S1ZE(s) > size then
lastStage < True
score < SVMCLASSIFICATION(s, data)
if WORTHEXPAND(score, s, lastStage) then
newN < EXPAND(s, hashT able, probs)
UPDATEGLOBAL(Score)
if lastStage then
W +— W UnewN
else
W +— newNUW

1:
2
3
4
5:
6.
7
8
9

10:
11:
12:
13:
14:

explored nodes. Thus, finding a way to realise the search in
parallel will obviously help in reducing the computation time.
Although the first three parts are not very expensive, we have
also parallelized them. On UCAIM and Filter parts, our method
achieves parallelism by dividing features by processors. By
contrast, on the Grid Search the random generated subsets are
divided by the processors. Since in all parts, problems were
divided into smaller tasks and each one of them is independent,
this presented no major difficulty.

On the other hand, the wrapper presents a challenge that
can compromise the performance of the algorithm. The wrap-
per requires some information such as the hash table and best
score to be global accessible and constantly updated. Keeping
such structures always updated when executing with multiple
processes may become computationally costly in terms of
performance.

A. Parallel Scheme

We can visualise the problem of our wrapper search as a
set of tasks. Each task is the process of getting a subset from
a work list, evaluate it, decide to either expand it or not, and
in the case of expanding, generate new subsets, remove those
that have been already been tested and in the end, add all the
remaining ones to the work list.

The idea of our parallel wrapper is to define local work
lists on every process and use them to store subsets that still
have to be processed. Then, iteratively, having each process
computing a task for a subset. The processes would get the
subset from their local work list and add new work there as
well. Additionally, in order to remove new generated subsets
already tested, a global hash table that is accessible by all
process is used. There, the hash value of every tested subset
is stored.

At the beginning of the search, the individual subsets of
features are equally distributed among all processes and each
one starts the computations as previous described. During the
search, some processes will run out of work while there are
others with a lot of work left. In order to provide a good work
balance, a process F; that hasn’t any work, is able to request it
from other process P;. When P; sees the request, it will send
part of its work back to P;.
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The overall workflow for a single process is illustrated by
figure 6, where W represents the local work list.

B. Global information

To achieve the desired parallelism, we decided to use a
shared memory environment where processes have access to
the same memory addresses simultaneously. This paradigm
provides a cheap way of communication between processes
and avoids redundant copies of informations across multiple
processes.

Global information is required to keep an hash table
updated as well as to store the best score found during the
search. To access and update this information we had to use
different strategies. The best score is a single variable defined
in shared memory. The access to it is controlled by a mutual
exclusion mechanism to avoid race conditions.

The hash table required some additional work, using a
unique hash table and have every process constantly updating
it and searching on it for repetitions is not an option. Mainly
because processes would start writing in the same memory
spaces. Thus, the hash table would become incoherent, proba-
bly leading to the loss of entries which would result in lots of
repeated work. On the other hand, using a mutual exclusion
mechanism is not viable because waiting for the access to the
memory would drastically decrease the parallel performance.

In order to make this work we divide the hash table into p
partitions, each one is assigned to a process P;. Only process
P; is allowed to write in the partition assigned to it. However,
any process is free to read from any partition at any given
time. By doing that, each process stores the hash of its tested
subsets in its own partition. Then, when it has to check if a
new generated subset is new, it can read from every partition
without having to wait for permission. Mutual exclusion was
avoided and memory coherence is guaranteed because for
every single memory address, only one process is allowed to
write on it.

VI. PERFORMANCE OF THE PARALLELIZATION

In this section we assess the performance of the imple-
mented parallel search with the increase in the number pro-
cesses used in the computation. It is common to run the same
program several times using a different number of processing
units and then get the execution times of each one of them.
However, in our case, changing the number of processes also
changes the amount of visited nodes. For this reason and to
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perform all tests with the same conditions, we decided to test
the worst case scenario when 20 features reach the wrapper
search. The worst case scenario for our search is defined by
the following properties:

1)  Every subset is expanded

2)  When expanded, each subset is combined with all
possible features

3)  The cutting probability for all subsets is 0%.

More accurately, this results in an exhaustive search with
a very large number of attempts resulting from repeated work.
Also, this means that regardless of the number of processors,
all tests would search the same feature space which is a total
of 220 — 1 = 1048575 subsets. Table I illustrates the results of
our test and figure 8 compares the obtained speedup against
the linear.

TABLE I: 20 Feature Exhaustive Search Data

# Processors | Execution Time (sec) | Speedup | Number of tests
1 133984 1.00 1048575
2 64148 2.09 1048575
4 31427 4.26 1048575
8 16406 8.17 1048575
12 11055 12.12 1048576
16 8457 15.84 1048575
20 6812 19.67 1048575
24 5825 23.00 1048578
28 4948 27.08 1048581
32 4409 30.39 1048579
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The results show an almost linear speedup in performance
of the parallel search when 32 cores are used. In some cases,
the implemented strategy was able to achieve speedups greater
than the ideal values. Moreover, it was able to efficiently avoid
repeated work by having every process keeping track of their
tested subsets in its partitioned hash table and checking all the
partitioned hash to avoid repeating them. In the worst case,
only 6 subsets out of the 1048575 total subsets were tested
more than once.

VII. FEATURE SELECTION RESULTS

In 2003, the NIPS[19] feature selection challenge was
created and its aim was to find which algorithm would preform
better in terms of classification. The contest consists of five
public datasets, each divided into three sets: train, validation,
and test. For the first two, it is possible to access both data
and labels, while on the last one only data is available. The
idea of the challenge is to use feature selection and machine
learning techniques on the train and validation sets in order to
construct a classifier that is able to accurately predict the labels
of the test set. At the end of the process, one can submit the
generated predictions on the website and it provides feedback
about the results. Nowadays the challenge is still open and
it allows researchers to benchmark their systems. Thus, we
decided to use it in order to test the performance of our
approach. The following table presents the characteristics of
the five datasets[19]:

Dataset Type Features | Train Ex- | Validation | Test Ex-
amples Examples amples
Arcene Dense 10000 100 100 700
Dexter Dense 5000 6000 1000 6500
Gisette Sparse integer | 20000 300 300 2000
Dorothea | Sparse binary 100000 | 800 350 800
Madelon Dense 500 2000 600 1800

Regarding user defined parameters, we used 0.5 for the
search threshold, 8 for the size at which the search changes,
and 900 seconds for the cutting mechanism. In addition to that,
we executed each test using 62 cores and RBF as the SVM’s
kernel. These were the fixed values for all tests, however some
parameters such as cross-validation technique and percentage
of the filter had to be adapted to each dataset. The following
table presents the used parameters and the results obtained:

Dataset Filter Features Cross- Size Final Final Time
Thresh- Post- Validation| Subset Score (sec)
old Filter

Arcene 0.50 232 Leave- 14 99.00 | 2156

one-out

Dexter 0.94 364 Leave- 72 98.50 | 32539

one-out

Gisette 0.97 121 5 folds 85 97.32 | 53560

Dorothea | 0.90 450 5 folds 30 97.63 | 32962

Madelon 0.97 255 10 14 87.10 | 33117

folds

After obtaining a final subset for each dataset, we used it
to train a classifier only using data from the train set. Then,
we predicted the labels for every one of the three sets: train,
validation, and test. Later, results were submitted to the NIPS
website and the accuracy of our predictions as well as the
rank among all the submissions are illustrated on the following
table:

The results we obtained ranked among the top 60% for
each dataset. This outcome came at no surprise considering



Dataset Accuracy Accuracy Accuracy Rank

Train Validation Test
Arcene 99.00 82.00 74.56 892/1503
Dexter 98.33 83.67 81.65 819/1007
Gisette 98.97 96.80 96.67 465/932
Dorothea | 95.63 94.29 77.18 475/812
Madelon 93.35 87.50 88.67 344/1059

that the goal of the challenge set used is directed to evaluate the
overall performance of the classification system. Despite being
part of the machine learning workflow, feature selection is not
the whole process and usually several more techniques such
as outlier detection, noisy examples removal and generation of
synthetic data are required [20]. Moreover, knowledge about
the specific problem at hand can improve the generalisation
result by targeting feature choice, or through the use of another
metric for calculating the feature subset score in the search. In
our experiments, we focused on testing the ability of our search
algorithm to find what was defined as a good subset according
to the score, which was the accuracy of the learning algorithm
on the training sets. Although cross-validation strategies were
used to improve generalization, they were not enough, and
in general the classifier was not able to predict well on
unseen data. Nevertheless, we are quite happy with the results
on the NIPS challenge, because we could confirm that our
hybrid approach, without any further analysis of the dataset
nor additional techniques, was able by itself to produce quite
acceptable results.

In terms of feature selection, our approach, in most cases,
was able to produce a final subset of features that was much
smaller than the original set of features and that had very
high accuracy score. Although we cannot guarantee that the
optimal subset was found, it would require to test the whole
search space, our algorithm was able to achieve results near
the perfect score in 4 out of the 5 tests. Moreover, the results
were obtained in a practicable amount of time, considering the
size of the datasets and the cross-validations methods used.

VIII. CONCLUSION

In this paper, we propose a new hybrid feature selection
approach that resorts to a novel parallel search strategy to
speedup execution. It starts by reducing the feature space
using a filter and then uses a wrapper method to find the
final solution. Because of their high-computation cost, wrapper
methods are not commonly used on high dimensional datasets.
In our experimental evaluation, we tested high dimensional
datasets, thus showing how it is possible to take advantage of
parallelism to thoroughly search larger spaces in a practicable
amount of time. Our initial results show an almost linear
speedup up to 32 cores while being able to find solutions with
near perfect score.

We are aware that the accuracy of the classifier can be
improved by employing better generalization methods, but
that was not the goal of the task at hand. We intend to
experiment on more problems and with other filter methods,
namely PCC [2] and Relief [4], as well as with other classifiers
Decision Trees and kNNJ[20], methods that fit well with the
approach we proposed.
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