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We present D’accord, a generative music system for creating harmonically compatible accompaniments of
symbolic and musical audio inputs with any number of voices, instrumentation, and complexity. The main
novelty of our approach centers on offering multiple ranked solutions between a database of pitch config-
urations and a given musical input based on tonal pitch relatedness and consonance indicators computed
in a perceptually motivated Tonal Interval Space. Furthermore, we detail a method to estimate the key
of symbolic and musical audio inputs based on attributes of the space, which underpins the generation of
key-related pitch configurations. The system is controlled via an adaptive interface implemented for Ableton
Live, MAX, and Pure Data, which facilitates music creation for users regardless of music expertise and
simultaneously serves as a performance, entertainment, and learning tool. We perform a threefold evalu-
ation of D’accord, which assesses the level of accuracy of our key-finding algorithm, the user enjoyment of
generated harmonic accompaniments, and the usability and learnability of the system.
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1. INTRODUCTION
In today’s creative economy, the role of media users is increasingly shifting from passive
consumers to active consumer-producers [Bruns 2007]. This paradigm shift has been
encouraged, among many factors, by the increased access to assistive technologies,
which make it possible for people with little or no expertise in content creation to
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engage in the production and dissemination of media assets. In this article, we seek
to foster user-content creation by exploring assistive technology for music creation, in
particular towards the automatic generation of tonal harmony.

Historically, tonal harmony has been subject to rigorous formalizations specifically
adapted to two problems that are central to our research: the automatic generation
of chord progressions and the automatic harmonization of a given melody. To this end,
several approaches have been successfully applied, which according to Wiggins [1999],
can be split into: (i) grammar-based systems [Steedman 1999], (ii) knowledge-based
systems [Pachet 1994], (iii) genetic algorithms and genetic programming [Phon-
Amnuaisuk et al. 1999], (iv) constraint satisfaction systems [Pachet and Roy 1998]
and (v) neural networks [Gang et al. 1997]. To which we extend Wiggins’ taxonomy
with a new category: statistical learning, which includes systems that generate
harmony based on representations learned from musical examples [Manaris et al.
2013; Eigenfeldt and Pasquier 2010]. Despite the wide range of proposed solutions,
we argue that the problem of harmony generation has been restricted to a subset
of the task, which is the four-voice harmonization of melodies encoded as symbolic
music representations, and current solutions are too restrictive in the sense they offer
users very little control over the generation process and a narrow scope for creative
endeavor and experimentation.

In this article, our aim is towards an intelligent system that encompasses formal
strategies for harmony generation within the tonal Western music syntax. We strive for
a solution that encourages the rapid exploration of different musical results facilitated
by the ability to robustly analyze, interpret, and generate music. By doing so, we
exclude the need to manually select an appropriate set of chords to accompany a given
musical input. Additionally, our approach for the automatic generation of musical
harmony differs from, and extends previous research by: (i) targeting both symbolic
representations and musical audio inputs with any number of voices, instrumentation,
and complexity, (ii) offering more than one solution at a given time to extend the
possibilities for live performance and creative experimentation, and (iii) presenting
an adaptive user interface, which serves the threefold pedagogic, performative, and
entertainment purposes.

A distinctive feature of our approach is the use of a perceptually motivated Tonal
Interval Space [Bernardes et al. 2016], which is a geometric model of tonal pitch that
follows research grounded in both music theory [Lewin 1987; Cohn 1997], cognitive
psychology [Longuet-Higgins 1962; Shepard 1982; Krumhansl 1990] and more directly,
the computational models by Chew [2000] and Harte et al. [2006]. In this article, the
Tonal Interval Space acts as a framework in which we design algorithms for music
analysis and generation. Specifically, we compute indicators of tonal pitch relatedness
and consonance, as well as estimate the key of a melodic and/or harmonic musical
structure following previous studies on this topic by Krumhansl and Schmuckler [1986],
Temperley [1999], and Chew [2000].

Our generative model has been implemented as a piece of software for Ableton
Live,1 MAX,2 and Pure Data.3 The resulting application, D’accord, allows users to
interactively generate m-note harmonically-compatible accompaniments in real-time
based on three attributes computed in our Tonal Interval Space model: perceptual
relatedness, level of consonance, and key. At each beat, the system suggests sev-
eral key-related pitch configurations,4 as well their compatibility to a beat input

1Ableton Live, https://www.ableton.com/en/live/, last access on 20 April 2015.
2MAX, https://cycling74.com/products/max/, last access on 20 April 2015.
3Pure Data, https://puredata.info/, last access on 20 April 2015.
4In this article, we adopt the term “pitch configuration” to denote (vertical) pitch structures with a variable
number of notes.
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Fig. 1. Architecture of D’accord. The system modules are organized horizontally from left to right according
to the information flow along with their input and output data.

by an adaptive interface designed for both novice and expert users alike, with the
long-term goal of boosting the user’s creative abilities through musical metacreation.
The user is then responsible for selecting and triggering pitch configurations via one of
several interaction modes and controllers (e.g., a computer keyboard, mouse, or MIDI
controller). Prior to playback, the selected pitch configurations are further processed
by an algorithm that aims to improve voice leading.

The remainder of this article is structured as follows: In Section 2, we present the
architecture of D’accord, including the basic functioning of its component modules. In
Section 3, we summarize the computation of the Tonal Interval Space and demonstrate
its ability to measure the perceptual relatedness and consonance level of tonal pitch, as
well as the possibility to estimate the key of a musical input. In Section 4, we describe
the creation of a database of pitch configurations used during generation which is
followed in Section 5 by an algorithm for ranking the database configurations. In
Section 6, we present the user interface of D’accord and the interaction design behind
the application. In Section 7, we detail an algorithm for improving the voice leading of
selected database configurations. In Section 8, we present both objective and subjective
evaluation of our system and finally, in Section 9, we draw our conclusions and outline
areas for future work.

2. SYSTEM OVERVIEW AND DESIGN
Figure 1 shows the architecture of D’accord as well as the information flow between its
six fundamental modules. In order to initialize the system, the user must first specify
a MIDI or audio file as an input target. The first module of the system is responsible
for splitting the input stream into beats, which provides the temporal segmentation for
estimating the underlying key of the input. Based on the outputted key and whenever
the key estimate is updated, the second module of the system generates a diatonic set
of seven candidate m-note pitch configurations on the fly, which are available to the
end-user of the system.

The third module of the system is then responsible for ranking the candidate pitch
configurations by assessing how compatible they are with a target beat in terms of
perceptual relatedness and consonance. Up to this stage, all processing depends on the
12-dimensional (12-D) Tonal Interval Space (see Section 3), which forms the backend
of the three first modules of D’accord.

The fourth module of the system is a database that stores the information generated
by the three first modules, in particular the collection of candidate pitch configurations
in several representations. Its flexible structure allows the dynamic allocation of infor-
mation on a beat-by-beat basis, which is accessed at runtime by the remaining modules
of the system.

The fifth module is responsible for providing the end-user the information generated
in the first three modules in an intuitive manner. The interface uses color coding to
indicate the compatibility level between the database candidates and the target beats.
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At each beat, more than one good solution is provided to the user, who can then select
and trigger events (i.e., pitch configurations) using an external controller.

After a pitch configuration has been triggered, the system retrieves its pitch class
components from the database and sends it to the last module of the system, which is
then responsible for organizing the voice leading of the selected configurations. In this
module, the pitch class set of the selected configuration is unfolded into several pitch
spacings and inversions over the user-defined pitch range. Then, a cost function ranks
all generated solutions and outputs the candidate with the minimal cost for playback.

3. TONAL INTERVAL SPACE
The 12-dimensional Tonal Interval Space [Bernardes et al. 2016] is a multi-level tonal
pitch framework, which follows the line of perceptually motivated spaces in the context
of the Tonnetz, such as Chew’s [2000] Spiral Array and Harte et al.’s [2006] Tonal
Centroid Space. The most salient tonal pitch levels, such as pitch classes, intervals,
chords and keys are represented in the space by Tonal Interval Vectors (TIVs), T(k),
which result from aggregating their component pitch class, then converting them to a
12-D chroma vector,5 c(n), and finally computing their (L1 normalized) Discrete Fourier
Transform (DFT), such that:

T (k) = w (k)
c̄

N−1∑

n=0

c (n) e− j2πkn
N , k ∈ Z, (1)

where n is the chroma vector pitch class index up to N = 12, k corresponds to the
particular interval in question, and c̄ is the DC component of T (0) =

∑N−1
n=0 c(n), which

is responsible for normalizing the space. The TIV only includes the coefficients T(k) for
1 ≤ k ≤ 6, thereby excluding the DC component and symmetrical intervals resulting
from the DFT computation.

To enhance tonal pitch relatedness and define a consonance measure in the space,
we adjust the location of pitch classes in the Tonal Interval Space by weighting the
contribution of each complementary interval, T(k). To this end, we use empirical dis-
sonance ratings of dyads derived from three studies [Malmberg 1918; Kameoka and
Kuriyagawa 1969; Hutchinson and Knopoff 1978], whose composite index is detailed
in Huron [1994]. Since the resulting weights, w(k) = {2, 11, 17, 16, 19, 7}, are known a
priori, we incorporate them into the direct calculation of the T(k) in Equation (1).

Following Harte et al. [2006], we visualize the 12-D space as 6 circles, each repre-
senting one complex DFT coefficient (see Figure 2), i.e., circle 1 has the real part of
T(1) on the x axis and the imaginary part of T(1) on the y axis and so on. The weights
assigned to the DFT coefficients correspond to the circles’ radii, represented in Figure 2
as radius vectors.

The Tonal Interval Space is used in this article as a framework on which we de-
sign algorithms for computing indicators of tonal pitch relatedness, consonance, and
for estimating the key of a musical passage (detailed in Sections 3.2, 3.3, and 3.4, re-
spectively). Together these three components drive the selection of chord candidates in
D’accord. However, before providing details about these, we detail the representation
of symbolic and audio inputs in the space.

3.1. Pitch Representations
D’accord can process symbolic representations and audio signals, the strategies for each
we address separately in the two following sections. For both input types, the musical

5Chroma vectors represent the distribution of energy across the chromatic pitch classes in a musical octave.
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Fig. 2. Visualization of the Tonal Interval Space as six circles organized according to complementary in-
tervals. Shaded gray areas denote the regions which TIVs can occupy for each circle. Three plotted TIVs
correspond to the position of the C major chord (square), the pitch B (star), and the combination of both con-
figurations (triangle)—which correspond to the pitch classes set {0, 4, 7}, {11}, and {0, 4, 7, 11}, respectively.
The pitch configuration resulting from the combination lies on a segment line whose boundaries correspond
to the location of first two TIVs. The radii correspond to the weights of each complementary interval, T(k),
which for visualization purposes are all represented by an identical size.

content can be either monophonic or polyphonic, for which D’accord first derives an
appropriate chroma-based representation. Then it generates representations for the
key and its seven related diatonic pitch configurations in the Tonal Interval Space.
The rate at which D’accord updates the databases with new ranked configurations is
linked to the tempo of the input files. Therefore, for both symbolic and audio inputs,
we detail the strategies applied in the segmentation of the input into beats, as well
as their representation as chroma vectors—a required pre-processing step for TIV
computation.

3.1.1. Symbolic Input. The database of pitch configurations and input targets driven
from symbolic music inputs are represented in the Tonal Interval Space by binary
activations in a chroma vector c(n). For example, the C major chord (pitch classes 0, 4,
and 7) gives chroma vector c = {1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0}. In this sense, database
configurations are represented by clean and robust chroma vectors, which assume
equal temperament and enharmonic equivalence and discard chord inversions, the
effect of the relative amplitude between pitch classes, note durations, and doublings.
To generate a beat-synchronous chroma vectors driven from symbolic target input,
we set all active chroma vector bins to 1, i.e., those corresponding to pitch classes
occurring across the duration of each beat. To determine the beat locations, we rely on
the metadata within MIDI files.

To represent keys in the Tonal Interval Space, we defined four different strategies,
each driven by a set of chroma vectors for the major and minor modes. This collection
of chroma vectors was originally presented in the context of key finding algorithms,
where they are commonly referred to as key profiles, a terminology we also adopt. The
C major and C minor vectors for each profile, p, are shown in Table I, and the chromas
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Table I. Chroma Vectors Representing the c Major and c Minor Key Profiles
With the exception of the first theoretically derived profile, which results from the binary activation of the key
diatonic pitch class set, the three remaining profiles were proposed in the context of key finding algorithms
[Krumhansl and Kessler 1982; Temperley 1999; Chew 2000].

C C# D D# E F F# G G# A A# B

M
aj

or

cdiat 1 0 1 0 1 1 0 1 0 1 0 1
ck−k 6.35 2.23 3.48 2.33 4.38 4.09 2.52 5.19 2.39 3.66 2.29 2.88
ctemp 0.748 0.060 0.488 0.082 0.670 0.460 0.096 0.715 0.104 0.366 0.057 0.400
cchew 2 0 1 0 1 1 0 2 0 1 0 1

M
in

or

cdiat 1 0 1 1 0 1 0 1 1 0 0 1
ck−k 6.33 2.68 3.52 5.38 2.6 3.53 2.54 4.75 3.98 2.69 3.34 3.17
ctemp 0.712 0.084 0.474 0.618 0.049 0.460 0.105 0.747 0.404 0.067 0.133 0.330
cchew 2 0 1 0 1 1 0 2 1 1 1 1

of the remaining keys are obtained by rotating the vectors by 12 semitones. To compute
the key TIVs, T p, for each profile, p, we compute the DFT of the chroma vectors using
Equation (1). The resulting TIVs are used to define the location of each of the 24 major
and minor keys in the Tonal Interval Space.

The first key profile, cdiat
, activates the diatonic pitch set of a key in a chroma vector.

The second profile, ck-k, by Krumhansl and Kessler [1982], was derived from the ‘probe
tone’ method. The third key profile, ctemp, by Temperley [1999], resulted from adjusting
the K-K profiles using music theory principles. The last key profile, cchew, by Chew
[2000], is widely used in her Center of Effect Generator algorithm for estimating the
key of a musical passage in the Spiral Array.

3.1.2. Audio Input. Generating chroma vectors from audio poses substantially greater
challenges, and hence demands a different approach than for symbolic inputs because
robust note transcription from polyphonic audio stream remains unsolved [Benetos
et al. 2013]. Furthermore, given that audio chroma representations could affect the
robustness of D’accord, notably the key recognition stage, we examine three different
strategies for audio chroma representation. As in the symbolic input, we first report
the computation of chroma vectors on a regular and short-time interval basis and then
their codification on a beat-by-beat basis (beat-synchronous chromas).

The first and second strategies use the QM chroma [Harte and Sandler 2005] and
NNLS chroma [Mauch and Dixon 2010] plugins within Sonic Annotator [Cannam et al.
2010] with default parameters. While the QM chroma folds all spectral information
into a 12-bin (octave) representation, the NNLS chroma performs an approximate note
transcription, and typically provides a sparser representation of the input signal in
the chroma domain. The third strategy applied to generate audio chroma vectors uses
a more naı̈ve method, referred to as “simple” chromas, and assumes that the most
relevant information in the audio spectrogram is encoded in the most prominent peaks
of its FFT analysis. We adopt this because of an expected need for sparsity in the
chroma vectors to most closely match the symbolic input. Therefore, we encode the
eight most prominent peaks resulting from a sliding window FFT analysis (window
size set to 4096 samples and hop size of 2048 samples at a 44.1 kHz sampling rate).
To extract the eight most prominent peaks of the spectra we use Pure Data’s external
sigmund∼. To minimize the impact of transients, we exclude frequencies above 5 kHz.

To generate beat-synchronous chroma vectors from an audio stream, we compute
beat locations using the QM-VAMP bar and beat tracker [Davies et al. 2009] within
Sonic Annotator [Cannam et al. 2010] and then calculate the median value per chroma
bin for all frames within each beat.
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3.2. Measuring Pitch Relatedness
In earlier work [Bernardes et al. 2016], we showed that the relative location among
multi-level pitch configurations represented in the Tonal Interval Space provides a
strong indicator of the perceptual relatedness of tonal pitches. In the Tonal Interval
Space, tonal pitch relatedness, D, can be computed as the Euclidean distance between
Tonal Interval Vectors, such that:

D(Ti, Tj) =

√√√√
6∑

K=1

(|Ti(k) − Tj(k)|)2, (2)

where Ti and Tj are two different TIVs.
Moreover, the relative location of pitch configurations in the Tonal Interval Space

concurs with theory principles at the three main levels of tonal Western music: pitch
class/intervals, chords and key [Bernardes et al. 2016].

At the pitch class level, it places intervals that play an important role in the tonal
system (e.g., octaves, fifths, and thirds) at smaller distances. Pitch class distances in
the Tonal Interval Space preserve the pitch organization of the Tonnetz, meaning that,
at the chordal level, the TIS favors chord progressions with minimal displacement of
moving voices (known as voice-leading parsimony) by placing chords sharing common
tones near to one another. Furthermore, while preserving the common-tone logic of the
Tonnetz, the Tonal Interval Space expands the range of musical objects beyond triads,
being able to map unique chroma vectors to unique points in the space.

At the key level, the Tonal Interval Space represents our expectancy of proximity
between the 24 major and minor keys by placing the dominant, subdominant and their
relative minor keys at close distances. Additionally, in our topology the degree to which
pitch classes and chords relate to a particular region is dictated by their proximity to
the key TIVs, or, in other words, the neighborhood of all key TIVs are occupied by their
diatonic pitch class sets. Further details on measuring tonal pitch relatedness can be
found in Bernardes et al. [2016].

3.3. Measuring Consonance
In the visualization of the 12-D Tonal Interval Space, pitch configurations occupy a
limited area in each circle (gray shaded areas shown in Figure 2), which range from
the center of the circle to the circumference as a result of the normalization in Equa-
tion (1). Within the restricted space that TIVs can occupy, the location of, and distance
among, pitch class TIVs not only obeys music theory principles but is also determined
by empirical consonance ratings of musical dyads. Therefore, we extrapolate the con-
sonance measure C(T) of the TIV by calculating the Euclidean distance to the center
of the space. We divide the result by the individual pitch class consonance Cmax to
normalize it to the range [0, 1].

C (T ) =

√∑
k
[
T (k)

]2

Cmax
, (3)

where Cmax = 32.86.
To compute the consonance level of composite pitch configurations, we sum the two

chroma vectors to create a new vector that reflects their combined energy, then we
compute the TIV of the resulting chroma vector using Equation (1), and finally apply
Equation (3) to indicate their joint consonance. The location of the resulting TIV will fall
in a line segment bounded by the original two TIV locations (see Figure 2). The exact
location within this line segment is given by the total energy of each pitch configuration,
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i.e., the configuration with lower energy pushes the resulting TIV from its location,
and the configuration with more energy attracts the resulting TIV towards its location.
Given this property of the space, we can save computation time while calculating the
composite consonance level of two configurations by keeping track of their energy and
computing the centroid of the two original TIVs, Ti and Tj, such that:

C(Ti, Tj) = 1
Cmax

.

√∑6
k=1(|Ti.ai − Tj .aj |)2

ai + aj
, (4)

where ai and aj are the total energy of chroma vectors ci and cj. In this article, we
hardcode the energy of both target and database TIV to unity, thus discarding the
effect of the relative amplitude between combined chroma vectors, because the energy
of symbolic and audio signals are not akin for comparison.

3.4. Key Finding
This section details our key-finding algorithm based on the Tonal Interval Space, which
continuously estimates the key of a musical input over time. To estimate the key, our
algorithm relies on two attributes of the Tonal Interval Space: (i) the set of diatonic
pitch classes in a given key occupying a compact neighborhood around its key TIV
and (ii) the 24 major and minor key TIVs being sparsely represented in the space
and within each mode, equally spaced. Based on the assumption that a key-indicating
element is the use of its diatonic pitch set, we estimate a key of a musical passage
in the Tonal Interval Space by finding the nearest neighbor in the high-dimensional
Euclidean space of a query TIV given a database of 24 major and minor key TIVs.

As musical events are sounded in sequence, their resulting TIV locations form a
geometric shape, which becomes increasingly more complex over time. Following Chew
[2000], instead of using this complex shape to compute key estimates, we collapse the
temporal information to a single TIV. At each event, the algorithm only compares a
unique TIV to the 24 major and minor TIV keys. Moreover, to avoid sudden changes
in the estimated key, which is commonly stable over large temporal spans, as well as
incorporating a simple model of a listener’s short-term memory, which has been shown
to play an important role in tonality perception [Farbood et al. 2013], the cumulative
TIV, Tn, is calculated by the weighted average of the cumulative TIV of past events,
Tn-1, and the current TIV, Tn, such that:

Tn =
{

Tn n = 0
αTn + (1 − α) Tn−1 n ≥ 1

, (5)

where:

α = max
(

1
n + 1

, 0.01
)

(6)

To rank the collection of 24 major and minor keys, the system computes the Euclidian
distance between the accumulated TIV, Tn, and all key TIVs. The best key estimate,
M, is the one which minimizes:

M = argminp

√√√√
6∑

k=1

(|Tn (k) − T p (k)|)2, (7)

where T p is a particular set of key TIVs derived from a collection of four different key
profiles proposed in related literature and presented in Section 3.1. After finding the
minimal Euclidian distance of the 24 key TIVs set from the cumulative input TIV, the
system reports the best key estimate by a pitch class, which ranges between 0–11 for
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major keys and 12–23 for minor keys. Both sets of values start by the pitch class C and
follow an ascending chromatic sequence.

4. DATABASE CREATION
D’accord’s database consists of seven diatonic pitch configurations which rely on two
parameters: the number of notes, m, per pitch configuration and the key estimate.
Depending on user input, the number of notes, m, per pitch configuration can range
from 1 to 12 (i.e., the maximum number of notes in a chroma vector representation),
but, in practice, we constrain this variable to a maximum of 4-note chords, since pitch
configurations with 5 or more different notes are less typical in tonal music and require
enhanced treatment of voice leading. Therefore we allow m to take values from [1, 4].
When m = 1, the system generates an accompanying melody, and when m > 1, m-note
chords.

Given m, the system generates a diatonic set of seven pitch configurations at every
key change. To generate the seven pitch configurations, the system first creates a list
with the diatonic pitch class set of the estimated key, using the major scale and the
harmonic minor scale for the major and minor modes, respectively. Then, for each pitch
class it vertically stacks m-number of notes in intervals of thirds using the pitch classes
from the set. For example, if our estimated key is C major and m = 2, the resulting key
set is {0, 2, 4, 5, 7, 9, 11} and the database Z = {0 4, 2 5, 4 7, 5 9, 7 11, 9 0, 11 2}.

The order in which pitch configurations are generated follows a constant pattern
based on the scale degrees of the estimated key. The first generated configuration
always corresponds to the first degree of the scale, the second configuration to the
second degree and so on. This order keeps track of the scale degree of each configuration
or, when m > 1, the root of the chord. Finally, a database stores the generated pitch
configurations as: (i) the set of their pitch class components, (ii) their chroma vector
representations, and (iii) their TIVs, which are later accessed by the remaining modules
of D’accord.

5. RANKING THE PITCH CONFIGURATION CANDIDATES
D’accord’s database is composed of seven pitch configurations generated based on the
target key estimate. Restricting the database candidates to seven pitch configurations
related to the target key immediately discards some poor results. However, even though
this limited set of configurations is assumed to better accompany a target beat than non-
related key configurations, not all seven pitch configurations rank equally according
to a specific target beat. Therefore, we rank the compatibility between the database
configurations and each target beat.

To this end, we adopt two criteria: the degree of perceptual relatedness and level
of consonance between target beat and database configurations. Both indicators have
were already introduced and are computed using Equations (3) and (5). Since the score
aims to minimize the Euclidian distance and maximize consonance between TIVs, we
combine both indicators by inverting the normalized Euclidean distance computation
by subtracting the result from 1. For each database configuration, Zi, we compute a
score, Ri, which indicates their joint perpetual relatedness and consonance level with
an input target beat, Ttarget, such that:

Ri = [1 − D̂(Ttarget, Zi)] + Ĉ(Ttarget, Zi). (8)

where D̂ corresponds to the distances D normalized to occupy the range 0 to 1 for each
specific pitch configuration Zi, and Ĉ the consonance values for the database config-
urations Zi, normalized to the range 0 to 1. The resulting rankings, Ri, indicate how
compatible a target beat is with each database configuration, Zi, in terms of perceptual
relatedness and consonance, e.g., the best database candidate is argmaxi (Ri).
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Fig. 3. D’accord interface developed for the PD programming environment (on the left) and the skeleton of
the interface layers (on the right) showing the scale degree locations, the harmonic category function regions
(dominant, subdominant, and dominant), and the typical motions between these categories (dotted line).

6. USER INTERFACE AND MODES OF INTERACTION
To allow users to interact with D’accord, we have created an interface for Ableton Live,
MAX, and Pure Data – of which a screenshot is shown in Figure 3. Despite minor
cosmetic differences, the interfaces for all environments have identical functionality.

The interface is composed of two main modules arranged vertically. The upper module
contains a heptagon divided into seven equally sized triangles used for displaying the
database rankings and triggering events for playback. At runtime, each triangle is
dynamically mapped to one of seven database pitch configurations. The update rate
of the mappings depends of the input file tempo and occurs at the onset of each beat.
To expose the database configurations rankings we adopt a color code scheme ranging
from continuous shades of white to yellow to red. The mapping between the color
scheme and the database scores is linear. A zero score corresponds to white, a 0.5 score
to yellow and a score of 1 to red. Between these values, the colors are gradually mixed,
but in general, the closer to red, the better the score.

While pitch configurations are dynamically mapped to each of the interface’s trian-
gles, a fixed mapping between scale degrees and the seven triangles exists (see the
rightmost image in Figure 3). The location of the seven scale degrees on the heptagon
place pitch configurations sharing common-tones at close distances. Moreover, configu-
rations sharing function categories (i.e., configurations that can substitute each other
without altering the tonal function) are in adjacent triangles. For example the tonic,
median, and submediant scale degrees, all related to the tonic harmonic function, are
mapped to three adjoining triangles. The common-tone circular organization and har-
monic function clusters places the best rated configurations at close distances and helps
users anticipate typical motions between function categories which are most likely to
run counterclockwise—assuming that Riemann’s [1893] typical motions between cat-
egorical function applies, i.e., from the tonic to the subdominant to the dominant and
back to the tonic.
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Based on the interface, the user can make an informed decision about which pitch
configuration to play by selecting one of the pitch configurations on the interface (i.e.,
one of the seven triangles in the heptagon). The decision of when to play and the
duration is the responsibility of the user, who can trigger and release events by sending
commands from external devices such as the mouse, keyboard or MIDI controllers. The
two commands sent from the external devices to D’accord are then converted to MIDI
note on and note off messages, to trigger and release note events, respectively.

The simplest mode of interaction with D’accord’s interface is via the mouse. To trigger
events with the mouse, the user must click on one of the triangles in the heptagon and
release the mouse click to control the duration.

The second strategy is via the computer keyboard or any external MIDI controller.
This mode eases the interaction between user commands and interface information by
offering indirect control over the database configurations. To this end, while updating
the interface’s information, the system keeps track of the ranking database scores in
decreasing order. Then it establishes a direct mapping between the keyboard keys 1 to
7 or the MIDI note messages 60–67 to the ranked database configurations. In this way,
the best candidate solution is always mapped to the same location on the controllers.
The duration of played events is controlled by a similar strategy as with the mouse
interaction, i.e., by the release command of the keyboard or external MIDI controller.

In sum, D’accord’s interface was designed to provide a simple, intuitive, and flexible
experience for both expert and novice users. The mappings between database config-
urations and interface location provide three concurrent layers of information: (i) the
compatibility score to a given target beat, (ii) categorical function of database config-
urations, and (iii) typical motion between harmonic function categories. Although, to
some extent, the two latter layers may not be apparent to novice users, it can offer
experts user the possibility to make more informed choices during runtime, as well as
being used for the pedagogic purpose of learning tonal music structures in the context
of projects such as McCarthy Music’s Illuminating Piano,6 Griffin and Jacob’s [2013]
adaptive digital music instruments, Dias and Guedes’s [2012] Gimme da Blues, and
Behringer and Elliot’s [2009] and Bigo et al.’s [2012] manually driven generative mu-
sic systems, which adopt the Tonnetz as a representation for designing tonal chord
progressions.

The lower module contains the following control settings for D’accord: (i) open a target
file, (ii) start/stop the playback, (iii) control the amplitude/velocity of the playback
and/or generated material, (iv) define the number of notes per pitch configuration,
and finally, (v) the pitch range which the generated output can occupy (defined on
a range slider whose limits are the standard piano pitch range (i.e., A1 to C7 or the
MIDI range note values 21–108)—which is quantized to multiples of 12 (i.e., musical
octaves). Additionally, the lower module provides volume unit meters for both target
and generated outputs.

7. VOICE-LEADING
Voice leading is an important aspect of harmony, which regulates both horizontal mo-
tion and vertical arrangement of the voices of a chord progression. Together with the
rules of harmonic progression, voice leading establishes the ground rules for effec-
tive musical harmony writing. Its importance is fundamental in the training of the
Western musician, backed by the claim that “good voice leading can take a simple
chord sequence and transform it into a masterpiece” [Schonbrun 2011, 174].

6McCarthy Music’s Illuminating Piano, http://www.mccarthypiano.com/software.aspx, last access on 20 April
2015.
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Table II. Point Assignments for Voice Leading Rule Conditions

Chord spacing Melodic leap Contrary motion Parallel 5th/8th Hidden 5th/8th

C
os

t

5 — — — true true
2 >12 >8 — — —
1 >3 >4 false — —
0 =0 =0 true false false

Despite the large quantity of music theory literature documenting objective voice-
leading rules, we should bear in mind that voice leading depends on several aspects in-
cluding musical style, composer idiosyncrasies, orchestration, and density. Commonly,
rules for voice leading found in music theory textbooks are drawn from, and meant for,
canonic vocal four-part music and may not apply to music outside this category.

Here, we rely on a concise set of voice leading rules framed for vocal four-part music,
which we adopt with relative freedom. It is outside of the scope of this article to
present a comprehensive model for the automatic computation of voice leading, in the
sense it implies many parameters that are either subjective or poorly addressed in the
literature. Additionally, since D’accord is agnostic with respect to music style—the only
constraint is the use of tonal harmony—we deliberately reduce the number of modeled
rules to a smaller set, which conform to more general music contexts.

From the collection of voice-leading rules in Huron [2001], we select the following
set based on a criterion of their adaptability to general music contexts other than vocal
music:

(1) Chord Spacing. Intervals between voices should not exceed one octave, with the
exception of the interval formed by the two lowest notes, in which no restriction is
applied;

(2) Avoid Melodic Leaps. Conjoint chords should minimize the step distance in each
voice, preferably maintaining common tones in the same voice or moving to the
nearest possible pitch;

(3) Avoid Parallel Octaves and Fifths. Intervals of the octave and fifth should not be
consecutive between the same voices;

(4) Avoid Hidden Octaves and Fifths. Intervals of the octave and fifth should not be
consecutive between different voices;

(5) Outer Voices (Contrapunctual) Motion. Contrary motion between outer voices is
encouraged.

The algorithmic strategy developed to improve voice leading is only applied to 3- or
4-note database configurations. It finds the best pitch configuration for playback from
a large set of candidate configurations generated from all possible vertical spacings
and inversions within the user-defined range of the selected pitch configurations. For
example, if our selected chord is a 3-note chord, our database will include the chord
in its fundamental state as well as its two inversions, i.e., with the third and fifth on
the bass. Additionally, for each of the three sets, all possible chord spacings within the
user-defined pitch range are instantiated.

All pitch configurations in the population are evaluated in relation to the previously
played configuration and are ranked using a set of points shown in Table II if they
meet particular conditions. Each pitch configuration is evaluated in terms of the five
rule conditions, and for each condition the algorithm assigns a cost. Then, an overall
cost per configuration is computed by summing the five rule conditions cost. Finally,
the algorithm outputs the configurations with the minimal cost, which corresponds to
the best voice leading.

Some additional voice leading properties can be manually specified by the user, such
as the textural density or number of voices per pitch configuration as well as the
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Fig. 4. Key distribution in the three audio and symbolic datasets (K-P, WTC, Beatles) used for evaluating
our key finding algorithm (please note that for enhanced visualization the y axis scale is broken).

range the pitch configurations can occupy. The Tonal Interval Space and the interface
design explicitly offer control over voice leading by placing configurations that share
common tones at close distances. Retaining tones from one configuration to the next,
commonly referred to as parsimony, improves the voice-leading algorithm to minimize
the database costs.

8. EVALUATION
To evaluate D’accord we address three aspects of the system. First, we demonstrate the
efficacy of the key-induction algorithm, which underpins the generation of an optimal
set of candidate pitch configurations via an objective comparison against ground truth
annotations and previous studies. Then we undertake two subjective experiments:
(1) a listening test to assess the database rankings that support the user selection
process and (2) a pilot user interaction experiment which aims to test the usability and
learnability of the software.

8.1. Objective Analysis
8.1.1. Test Database. Our key finding algorithm was evaluated on three annotated

datasets. Two datasets include both symbolic and audio classical music examples and
correspond to Bach’s 24 fugue subjects from Book I of the Well Tempered Clavier (WTC),
and the Kostka-Payne (K-P) dataset [Temperley 1999]. The third is a large collection of
pop/rock Beatles’ songs assembled by Harte [2010]. Since we aim for a system capable
of generating compelling accompaniments given a wide scope of music, we selected
three datasets that cover distinct styles of music including monophonic/polyphonic and
monotimbral/multitimbral examples. Furthermore, a comparison with existing key-
finding methods can be established for the Beatles dataset [Gómez 2006; Mauch and
Dixon 2010; Lindenbaum et al. 2015].

We excluded 19 musical examples from the K-P dataset, i.e., those in a mode other
than the major or minor, and those containing a modulation in key. The entire Beatles’
dataset was used. This gives a total of 230 musical examples: 27 from the K-P corpus,
24 Bach’s fugue subjects, and 179 Beatles songs. The sources of the first two datasets
provide musical examples in symbolic representation (MIDI file format), which were
used to expand the datasets with audio examples by synthesizing them with piano
samples using Logic.7 We analyzed 51 musical examples in symbolic representation
and 230 audio examples. All audio files were uncompressed single channel (mono) with
16-bit resolution and a sampling rate of 44.1 kHz.

Figure 4 shows the total distribution of musical examples per key, as well as the
overall totals per mode and input type. In the Beatles dataset, there is a bias towards

7Logic, https://www.apple.com/logic-pro/, last access on 25 April 2015.
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Table III. Point Assignments for Key Estimates Used to Evaluate Key-
Finding Algorithms at the 2005 MIREX Competition

Correct Perfect 5th Relative Parallel Others
Points 1 0.5 0.3 0.2 0

Table IV. Performance of Key Finding Algorithm for Symbolic Input

cflat ck-k ctemp cchew
score (%) 57 (49) 80 (72) 86 (79) 78 (70)

K-P aBeats 6.7 5.2 2.5 3.7
cRatio 23/27 27/27 26/27 25/27

score (%) 51 (46) 66 (48) 86 (82) 81 (77)
WTC aBeats 4.0 7.7 2.1 2.2

cRatio 22/24 23/24 24/24 24/24
Score: Percentage of correct key estimates using the points assignments
shown in Table III and (within brackets) the exact number of correct
estimates. aBeats: average number of beats needed to reach a correct
key estimate. cRatio: ratio between the number of correct key estimates
to the total number of examples.

major over minor examples. However, in order to enable a direct comparison with
previous research, we retained all examples.

8.1.2. Performance. For comparison with previous studies, we use a threefold evalu-
ation method. First, we use the scoring strategy from the 2005 MIREX key finding
competition as well as in Gómez [2006] and Izmirli [2006], which measures the per-
centage of correctly or closely related key estimates per beat segment using the score
points shown in Table III. This evaluation method assumes that some incorrect key
estimates are worse than others, because if the keys are related in some harmonic
manner this may still be informative to a musician. Second, we compute the percent-
age of correctly estimated beat segment keys. The third evaluation criterion is the ratio
of correctly estimated keys per musical example to the number of total examples.

Tables IV and V show the performance of our key finding method for symbolic and
audio music input, respectively. The first row presents two values that correspond to the
percentage of correct key estimates using the point assignments shown in Table III,
and the second value (in brackets) gives the percentage of correct key estimates for
the entire datasets. The second row presents a score of the model efficiency, which is
computed as the average number of beat segments needed to reach the first correct
key estimate. The last row presents the ratio of correctly estimated keys per musical
example to the number of total examples.

The scores shown in Tables IV and V express the percentage of correct key estimates
per beat segment for each dataset. The beat segmentation and update rate of key
estimates aims to place D’accord as close as possible to a real-time performance. For
the symbolic datasets, the Temperley key profile results in the best performance for our
key finding method. The scores resulting from applying each of the profiles are shown
in Table IV.

On the K-P dataset 79% of key beat segments were correctly estimated, and this
score rose to 86% using the MIREX point assignments. On average, the algorithm
needs 2.5 beat segments to output a correct key estimate, and overall it was successful
at reaching the correct key in 96% examples of the dataset (26 out of 27). On the WTC
dataset, our method performs equally well, with some minor differences: the score
resulting from applying the MIREX point assignments is slightly higher (82%), and
the convergence to correct key estimate was faster (2.1 beats on average). All examples
in the WTC dataset converged to the correct key.
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Table V. Performance of the Key Finding Algorithm for Audio Input

cflat ck-k
QM chroma NNLS Simple QM chroma NNLS Simple

K-P score (%) 27 (25) 72 (67) 62 (55) 33 (28) 81 (74) 76 (68)
aBeats 13.1 7.1 12.0 4.9 4.1 11.3
cRatio 10/27 24/27 22/27 16/27 25/27 26/27

WTC score (%) 40 (31) 56 (50) 59 (55) 37 (28) 51 (29) 51 (32)
aBeats 12.2 6.4 14.1 3.1 18.2 15.4
cRatio 11/24 22/24 20/24 18/24 24/24 23/24

Beatles score (%) 5.4 (2.1) 58 (42) 56 (36) 10 (7.1) 76 (68) 72 (62)
aBeats 32.2 25.2 26.7 14.9 14.8 29.1
cRatio 23/179 118/179 138/179 48/179 161/179 161/179

ctemp cchew
QM chroma NNLS Simple QM chroma NNLS Simple

K-P score (%) 35 (31) 85 (78) 82 (75) 35 (31) 74 (67) 72 (67)
aBeats 2.9 2.2 9.7 3.2 3.1 12.1
cRatio 10/27 26/27 27/27 10/27 25/27 27/27

WTC score (%) 43 (37) 74 (63) 70 (62) 45 (40) 48 (43) 68 (60)
aBeats 3.4 3.9 3.9 1.5 2.7 4.4
cRatio 16/24 24/24 24/24 12/24 23/24 24/24

Beatles score (%) 9.0 (6.2) 74 (65) 72 (62) 12 (7.8) 51 (46) 65 (62)
aBeats 32.4 15.2 22.9 17.1 16.7 27.4
cRatio 33/179 156/179 165/179 26/179 133/179 160/179

A direct comparison with existing studies for key finding from symbolic inputs cannot
be established because of small differences between the segmentation used in these
studies and our model. While most systems update their estimates on a note-by-note
basis our system processes information on a beat-by-beat basis.

In Table V, we compare the performance of our model using different input chroma
representations and key profiles for three musical audio datasets. The best performance
is achieved using the NNLS chroma for the three datasets. The K-K profiles performed
better for the K-P and WTC datasets and the Temperley key profile on the Beatles
dataset. The results achieved for these datasets and using the aforementioned chromas
and profiles are: 78% (K-P), 63% (WTC), and 68% (Beatles). Applying the MIREX
scoring system we obtain: 85%, (K-P), 74% (WTC), and 76% (Beatles).

Several studies have used the Beatles dataset to test their key finding methods.
From these studies a direct comparison can be established with Gómez [2006], Mauch
and Dixon [2010], and Lindenbaum et al. [2015], which also use the complete Beatles’
dataset. They report 70.4%, 63%, and 66.5% of correct key estimates, respectively.
Gómez and Lindenbaum et al. also report their results using the MIREX evaluation
system obtaining scores of 76.2% and 75.6%.8 A few songs in the dataset are in modes
other than major or minor and therefore not modeled by most key finding methods
including ours. However, we retain them to maintain a fair comparison with existing
studies.9

The evaluation results in Table V also show that the chroma representation has a no-
ticeable impact on the performance of the system with audio inputs, and considerably
deteriorates in the presence of inharmonic spectra as in the Beatles’ dataset examples
resulting from the presence of drums (this being more evident when using the QM

8Please note that we did not run these algorithms ourselves. Instead, we use the results reported in their
publications.
9A comparison to other key finding methods [Rocher et al. 2010; Papadopoulos and Tzanetakis 2012; Noland
and Sandler 2006] using the Beatles dataset for evaluation was not considered because they used a reduced
number of examples from the dataset.
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chroma). The sparser chromas arising from the NNLS and “simple” chroma, obtained
higher scores in comparison with the QM chroma. Additionally, even though the “sim-
ple” chroma is less effective than the NNLS chroma, it is computationally far more
efficient. Therefore, depending on the application and computational power available,
one may consider applying one of these different chroma representations.

As expected, the performance of our key finding method gives better results using
symbolic inputs than audio in the K-P and WTC datasets. However, the results for
both these datasets in the audio domain are still quite high, which we believe is due
to the monotimbral nature of the audio renderings. Multitimbral datasets would likely
lead to a deterioration of results. From audio signals the convergence to a correct key
estimate is also slower than with symbolic inputs.

Based on the evaluation results, we utilize Temperley [1999] key profiles, ctemp, in
Equation (7) to estimate the key of a musical input in our model, as these profiles
generally lead to the best performance. For audio input, the NNLS chroma is used to
create the beat-synchronous chromas.

8.2. Subjective Analysis
8.2.1. Listening Test Design. The aim of the listening experiment was to explore the

relationship between user judgments of the fitness of the generated accompaniment
and the database rankings, with the hypothesis that user judgments would be positively
correlated with database rankings. To maximize the control over the experiment results
we only tested generated accompaniments given a MIDI input melody. In order to retain
as much control as possible over the stimuli, we restrict ourselves to a set of musical
accompaniments driven from MIDI inputs. Therefore, accompaniments driven from
audio were not tested in this experiment.

To create the dataset used in the listening experiment, we randomly selected a set
of ten traditional melodies from the Essen corpus [Schaffrath and Huron 1995] and
created 3-note accompaniments for each melody with different ranking scores. For each
melody we sampled the highest, middle and lowest ranked database configurations (the
first, fourth, and seventh ranked database configurations). In sum, our database com-
prised 30 musical examples based on 10 given melodies, for which three quite disparate
accompaniments in terms of database rankings were generated per melody. Rhythmi-
cally, we automated the triggering of the pitch configuration to occur at each target beat
onset. All generated notes had the same velocity and distinct pitch ranges for melody
and accompaniment were adopted. We synthesized the generated output in Logic us-
ing vibraphone samples for the melody and piano samples for the accompaniment and
perceptually balanced their loudness.

The experiment was run as follows: for each musical excerpt, the participants were
asked to rate on a 7-point scale how well the accompaniment fits the melody within
the context of the tonal music system as well as how much they enjoy the melody
to control if the user enjoyment ratings of the melody had any significant impact
on the accompaniment ratings. To allow the participants to familiarize themselves
with the experiment and clearly identify the sounds used to synthesize the melody
and the accompaniment, each experiment trial had a short preliminary training phase.
In total, 14 participants were recruited to take the listening test. The population of
the study included musicians with 6 years of musical training on average. To prevent
order effects, the musical stimuli were presented in a random order at each experiment
trial. Participants were not paid for taking part in the experiment.

8.2.2. User Interaction Experiment Design. The aim of the pilot user interaction experi-
ment was to make initial observations about the usability and learnability of D’accord.
To this end, we invited participants to experiment with D’accord under constrained
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Fig. 5. Mean user ratings of the accompaniment per listening expert. Black bars correspond to the highest
ranked examples by the system, the dark gray the middle ranked examples and the light gray the lowest
ranked examples.

conditions. We invited participants who were minimally acquainted with technology
and thus we restricted the pool of possible participants to university students or those
with a degree already. Additionally, we used two participant target groups in order
to test if the software could facilitate music creation regardless of the user’s music
expertise. In total, six participants took the experiment, of whom three were musi-
cians and the remaining three non-musicians. All participants volunteered to take the
experiment and were not paid.

The experiment was run individually for each participant as follows: First, we pre-
sented the general purpose of D’accord to the participants as a tool to assist users in
generating musical harmony. Then, we explained the possible controllers they could
use to interact with D’accord were the mouse and the keyboard (using the keys 1–7) as
well as the role of the color coding to indicate the database rankings in the interface.
Next, we asked the participants to listen to the input in order to familiarize themselves
with it and finally we asked each participant to generate an accompaniment to that
input file using D’accord. The last two steps were repeated twice in order to test two
different input types: the first was a slow MIDI melody and the second a relatively fast
polyphonic audio track comprising voice and chorus.

Precise observations and notes concerning the participants’ interaction with D’accord
were taken. The observations aimed to gather data about the participants’ understand-
ing of D’accord’s interface usability and learnability. At the end of the experiment,
participants were asked to describe their overall experience with D’accord in terms of
learnability and usability/operability.

8.2.3. Results. To examine the results of the listening test we now inspect the mean
ratings per stimuli, as displayed in Figure 5 ordered from the highest to the lowest
ranked database configurations per listening excerpt. The overall user ratings across
all excerpts for the highest, middle, and lowest ranked configurations concur with
the order proposed by the system. The only exception is observed in excerpt 6, in
which the highest ranked configuration obtained a lower rating than the middle one.
Listening back to excerpt 6, we can identify that the middle ranked accompaniment is
slightly more dissonant in relation to the highest ranked example, while still providing
a compelling harmonization of the input melody. In fact, consonance or perceptual
relatedness alone does not guarantee good artistic results, but rather a variable degree
of dissonance, complexity, and information flow [Smith and Cuddy 1986].

Performing a paired T-test on the user ratings revealed a highly significant difference
between both highest and middle, and middle and lowest ratings (p < 0.001). This result
endorses the overall effectiveness of D’accord’s ranking of the database configurations.

The scatter plot in Figure 6(a) shows a more general relationship between the
user ratings and chord ranking order (i.e., assuming the values 1, 4, and 7 for the
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Fig. 6. Scatter plots of (a) overall pitch configurations ratings vs. user ratings and (b) the relationship
between the accompaniment user ratings vs. the melody user enjoyment ratings. The best linear fit is shown
for each plot which corresponds to the Pearson correlation coefficients r = 0.84 and r = 0.81, respectively.

lowest- middle- and highest-ranked accompaniments, respectively). A Pearson corre-
lation coefficient of r = 0.84, (p < 0.001), indicates a statistically significant correla-
tion between the variables on this dataset. In the context of D’accord, this ensures
that the ranking order of the system conforms to the judgments of musicians. How-
ever, lower ranked results—meaning more dissonant and less related perceptually
to the target beat—may still be acceptable in a performance context for expressive
purposes.

The scatter plot in Figure 6(b) displays the relationship between the accompaniment
user ratings and the melody user enjoyment ratings. A Pearson correlation coefficient
of r = 0.81, (p < 0.001), indicates a statistically significant correlation which denotes
that, even though the population of the test was entirely composed of trained musi-
cians capable of distinguishing and evaluating the melody and accompaniment inde-
pendently, the accompaniments do have an impact on the user ratings of the melody
enjoyment.

The results of the user interaction experiment showed that the interface is easy to
understand and operate. All participants (including those with and without musical
training) agreed that the interface was appealing and the commands were simple. In
terms of controllers, the majority showed a preference towards the keyboard interac-
tion, which gave a larger degree of control over the generation. However, one of the
participants from the musicians group noted the difficulty of having the same keyboard
key give distinct scale degrees or chords. Surprisingly, a non-musician participant pre-
ferred the mouse interaction mode, reinforcing a possible game-like interaction. Having
fully grasped the interface principles, the participants’ attention was directed to the
input file and how they could create expressive music. We noticed that all participants
start directing their attention to the input file structure rather than the interface prin-
ciples by the end of the experiment, enabling them to generate more compelling results
by triggering events on salient points of the input metrical structure. The control of note
durations was the poorest aspect in all participants’ performance. Finally, two of the
musician participants asked to experiment with their own music collection, and made
some interesting remarks related to the database candidates used. Both noted that
D’accord performed worse under inputs with complex harmonic structures because, in
their opinion, the database candidates were too simple. Overall, the experiment re-
sults provided good indicators that support the ability to create meaningful harmonic
structures regardless of the user’s music expertise.

9. CONCLUSIONS AND FUTURE WORK
In this article, we have presented D’accord, a system for automatic harmonic ac-
companiment generation of a given MIDI or audio input. The primary contributions
of our system are (i) the proposal of multiple ranked solutions for generating an
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accompaniment of a target beat, thus widening the user scope for creative endeavor
and experimentation, (ii) the possibility to dynamically vary the number of generated
voices using the same algorithmic principles, (iii) an innovative adaptive interface com-
posed of a threefold layer of information concerning database rankings, voice-leading
parsimony, and typical motion between harmonic categories, and (iv) the processing of
both MIDI and audio signals by a unique operation chain.

On the backend of our system is a Tonal Interval Space, in which we compute in-
dicators of tonal pitch relatedness and consonance, as well as estimate the key of the
musical input. While the latter underpins the dynamic creation of a database of key-
related pitch configurations, the first two indicators are responsible for ranking the
database configurations. Our ranking method not only excludes the need for a robust
note transcription of the input, but it is also resilient to some errors in the input
represenation without causing severe repercussions in the output.

Through our evaluation, we have shown that the proposed key finding method is
able to reliably estimate the key from symbolic and musical audio to a degree which
outperforms current systems. Additionally, our algorithm is not dependent on any
training data as in Lindenbaum et al. [2015]—whose corpus-driven model presents
many similarities with ours—but rather on a theoretical construct, which improves
the efficiency and adaptability of our system. A subjective evaluation of the output of
D’accord showed that the system rankings were highly correlated with user preferences
for our dataset.

D’accord’s interaction design is multifaceted in the sense it offers various solutions
adapted to live performance or studio contexts and different levels of expertise in
music and technology. When interacting with the interface via a mouse controller, we
noted that the rate of information, which under fast tempos can be quite pronounced,
made controlling the system challenging. To minimize this effect, we adopted two other
strategies using the computer keyboard or an external MIDI device, which improved
the control over the precise selection of the database configurations sorted according to
the rankings. D’accord is available online and several examples generated driven from
both symbolic and audio inputs and using different interaction modes are available at:
https://smc.inescporto.pt/technologies/daccord.

The current implementation of our system is restricted to the generation of ‘general’
tonal music accompaniments. Stylistic instantiations are planned for future work in
terms of generation and voice leading treatment. When restricting the system to a par-
ticular style we may be able to redefine the set of voice-leading rules to an idiosyncratic
set (e.g., dissonance treatment in Baroque music).

We believe that a more robust key finding method based on the Tonal Interval
Space can be developed if a more exhaustive comparison of chroma representations,
key profiles and input segmentation strategies are studied outside of the constraints
defined a priori by the application requirements.

While D’accord can generate interactive harmonic accompaniments in real-time,
it currently relies on offline processing to extract the chroma and beat information
from the musical input. In future work, we intend to pursue a fully real-time version
able to cope with performed musical input through the use of online chroma estima-
tion and beat tracking, as well as developing the interface for handheld devices with
touchscreens.
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