
Semantic Wikis Distributed on Structured
Peer-to-Peer Networks

Charbel Rahhal∗, and Houssam Yactin†

∗Lebanese University, Faculty of Sciences
E-mail: charbelrahhal1@gmail.com

†HASLab-INESC TEC & Minho University
E-mail: hayactin@inesctec.pt

Abstract—P2P Semantic wikis were initially developed as
collaborative editors with two main goals in mind: (1) ensure
a massive collaborative editing in semantic wikis with low
maintenance cost where thousands of users can participate in the
wiki edition and (2) provide fault tolerance for semantic wikis.
Their goals were attained through the adoption of an optimistic
replication of their data (semantic wiki pages and annotations)
on a set of interconnected semantic wiki servers. The edition of
the semantic wiki pages and the execution of semantic queries are
now distributed on different peers. Two Peer-to-Peer Semantic
Wikis were developed, Swooki and DSMW. They are based on
unstructured P2P network where each peer knows its neighbors
without any knowledge about their contents. In spite of their
advantages, Swooki will face scalability problem regarding the
size of data that it is dealing with since it uses a total replication
of the entire wiki pages and the triples store, it will be only
suitable for small wikis, and DSMW semantic queries may return
different and incomplete results since every peer has its own
semantic wiki pages and annotations. In this paper, we propose
to handle the problems of unstructured P2PSW by building
Structured P2P semantic wiki (SP2PSW).The research work
proposes all the possible approaches to build SP2PSW, evaluates
each approach based on many standard evaluation metrics,
derives the optimal one and develops the needed algorithms. At
the end, a comparison with the existing unstructured P2PSW
(Swooki and DSMW) shows the marked improvement of SP2PSW
over Unstructured P2PSW.

Index Terms—Semantic Web, Semantic Wikis, P2P Wikis, P2P
Semantic Wikis, Unstructured P2P, Structured P2P

I. INTRODUCTION

P2P Semantic Wikis (P2PSW) were initially developed as
collaborative editors with two main goals in mind: (1) ensure
a massive collaborative editing in semantic wikis with low
maintenance cost where thousands of users can participate in
the wiki edition and (2) provide fault tolerance for semantic
wikis. The Semantic Web [1] technologies used in P2PSW,
improves the navigation, the search, and the knowledge ex-
traction in the wikis. The semantic annotations in the wiki
pages can be processed automatically by machines and they
are exploited by semantic queries using special languages such
as SPARQL [2]. The queries can insert, update, delete and
search RDF triples [3]. P2PSW goals were attained through
the adoption of an optimistic replication of their data (seman-
tic wiki pages and annotations) on a set of interconnected

semantic wiki servers. The edition of the semantic wiki pages
and the execution of semantic queries are now distributed on
different peers. The failure of a semantic wiki peer will not
affect the P2PSW work since the data will be available on
other peers. Down or disconnected peers can resynchronize
with the other peers after a recovery or a reconnect. P2PSW
were built upon unstructured P2P networks. These wikis do not
impose a particular structure on the overlay network by design,
but rather are formed by semantic wiki peers that randomly
form connections to each other. A peer can join and leave the
network dynamically.

Nowadays, two P2PSW were built: Swooki and DSMW.
Swooki [4] adopts a total replication of data. When a semantic
wiki page is created on a peer, the page will be replicated on
all the other peers of the network. In addition, changes on a
peer are first integrated locally, then propagated through the
network, and eventually received and integrated by the other
peers. However, by employing a total replication i.e. every peer
will host the entire wiki system, Swooki will face scalability
problem regarding the size of data that it is dealing with. It
will be only suitable for small wikis. The scalability limitation
occurs for peers using devices with limited storage capacity
and processing units as shown in Figure 1. In this figure,
the peer (z) represents a smart phone from which the user
is accessing the P2PSW. This peer has a limitation in storing
data and so it is difficult to replicate the entire data in the
P2PSW. On the other, since Swooki adopts a total replication
and frequent changes can occur so there is a huge traffic of
messages representing the changes are exchanged and used in
the synchronization of the peers which reduces the efficiency.

Distributed Semantic MediaWiki (DSMW) [5] adopts a
partial replication of data. In DSMW, the collaborative edition
among the users is based on a publish/subscribe model. A user
can choose with whom to collaborate and a Friend-Of-Friend
network can be build. When a user on a peer creates a semantic
wiki page, he can decide when to publish the page and its
changes in special feeds. Users on other peers can subscribe
to these remote feeds, retrieve their contents and integrate them
locally. Different peers will have different content unless they
integrate same changes. The search for all the Europe countries



Fig. 1. Swooki with Total Replication problem

Fig. 2. DSMW structure with partial Replication

on two different peers through semantic queries will return
two different lists of countries since every peer has its own
semantic wiki pages and annotations. By employing a partial
replication, different semantic pages for the same domain of
interest could be created on different peers without a previous
knowledge about their existence by the wiki users. Duplication
of same data could occur and a waste of time and effort can
take place.

For example in Figure 2, the execution of a query to search
for all countries of Europe, the query will be executed locally
on each peer, which is an advantage (Quick response time), but
different results may occurr. The peer(y) doesnt store the new
page UK inserted by peer(x) while executing the same query
on peer(x) will not return the new page Germany inserted by
peer(y). So incomplete queries results with data incoherency
is the major problem of DSMW even that the data is stored
on different peers of the network. To improve such approach,
a search mechanism is needed that allows peer to search the
P2P network and retrieve the needed data. However, such a
mechanism will have a very low efficiency since DSMW is
based on unstructured P2P network, where a peer does not

know anything about stored data on other peers. All these
problems and more, lead us to search for a solution using a
Structured P2P Semantic Wiki (SP2PSW).

In this paper, we propose another way of building P2PSW
by distributing Semantic Wikis on structured P2P networks.
This architecture will provide a high storage capacity, data
availability through a partial replication and a good perfor-
mance for P2PSW. Building the first SP2PSW raised many
questions:

1) What is the best way to store and replicate semantic wiki
pages in the structured overlay network?

2) How to replicate the semantic stores that contain the
semantic annotations of the pages? Should every peer
has its own semantic store or a special architecture is
required?

3) How to synchronize the changes in the replicated wiki
pages and the annotations? How to ensure their con-
sistency? The replication of the semantic stores in the
structured network is crucial and will affect the result
of semantic queries. For instance, the search for all the
countries in Europe requires the access to all the peers
that replicate pages about those countries which is not an
easy task.

The P2PSW that we build answers most of these questions
in an optimal way. The proposed solution will be evaluated
using different metrics such as storage capacity, performance,
and the accuracy of queries result. The paper is organized as
follows: section 2 presents some major metrics used in the
comparison of P2P networks. Section 3 details the proposal.
Section 4 introduces the algorithms we derived in building
SP2PSW. Section 5 presents an analysis and a validation of our
approach. The last section concludes the paper and discusses
future works.

II. METRICS FOR COMPARING P2P NETWORKS

P2P networks can be classified based on how the nodes
in the overlay network are linked to each other into three
categories: (1) unstructured when the overlay links are es-
tablished arbitrarily, (2) structured that use Distributed Hash
Table (DHT), set and get functions and in which every node
is responsible for a specific part of the network content, and
(3) hybrid between client/server systems and pure networks in
which some peers called super-peers act as dedicated servers
for some other peers.

In [6] they specify that from the perspective of data man-
agement, the main evaluation metrics of a P2P network are
five presented below. The Table I shows the value of each
evaluation metric for every P2P network. We use these metrics
to evaluate our SP2PSW presented in the next section.

i) Autonomy: an autonomous peer should be able to join or
leave the system at any time without restriction. It should
also be able to control the data it stores and which other
peers can store its data, e.g. some other trusted peers.

ii) Query expressiveness: the query language should allow
the user to describe the desired data at the appropriate



TABLE I
COMPARISON BETWEEN P2P NETWORKS

Requirements Unstructured Structured Super-Peer
Autonomy High Low Moderate

Query expressiveness High Low High
Efficiency Low High High

Quality of Service Low High High
Fault tolerance High High Low

level of detail. The simplest form of query is key look-
up which is only appropriate for finding files. Keyword
search with ranking of results is appropriate for searching
documents. But for more structured data, an SQL-like
query language (SPARQL) is necessary to let the user
to execute all the types of queries such as atomic query,
disjunctive or range queries, conjunctive queries, etc.

iii) Efficiency: the efficient use of the P2P network resources
(bandwidth, computing power, storage) should result in
lower cost and thus higher throughput of queries, i.e. a
higher number of queries can be processed by the P2P
system in a given time.

iv) Quality of service: refers to the user-perceived efficiency
of the P2P network, e.g. completeness of query results,
data consistency, data availability, query response time,
etc.

v) Fault-tolerance: efficiency and quality of services should
be provided despite the occurrence of peers failures.
Given the dynamic nature of peers which may leave or fail
at any time, the only solution is to rely on data replication.

III. SEMANTIC WIKIS DISTRIBUTED ON STRUCTURED
P2P NETWORKS

This section describes our proposal and it is structured as
follows. First, we propose main aspects to consider in building
a structured P2PSW. Then, we propose different alternatives to
build a structured P2PSW. An evaluation showing the advan-
tages and disadvantages of every proposed solution concludes
every proposal. For every proposed solution, we emphasis on
the replication of the semantic wiki pages, the replication
of the semantic stores, and the synchronization mechanism.
Finally, we derive and adopt the best approach to build a
structured P2PSW based on the important metrics presented
in the previous section.

A. Main Proposed Aspects to build Structured P2PSW

A SP2PSW should enable end users to search for wiki
pages, view and edit the semantic wiki pages and their
annotations, and execute semantic search queries. Overall, we
propose four main aspects to be taken into consideration while
designing our SP2PSW system:

1) Wiki Pages storage and replication: How peers will store
their wiki pages and where to replicate these pages?

2) RDF triplestores replication: How to replicate the triple-
stores and ensure consistency between these replicas?

3) Query processing: How can we take advantage of P2P
search mechanisms to efficiently query and retrieve RDF

data in large scale settings? Moreover, whenever a query,
composed of a set of sub-queries, can be answered by
several nodes, how to efficiently combine RDF data
residing in different locations before sending the result
back to the user?

4) Network dynamicity: What about the DHT dynamicity of
join and leave of peers?

B. Proposed Alternatives for building a SP2PSW

In order to answer the previous questions, we propose
different approaches for building SP2PSW. We discuss the
strength points and weak points of each proposed approach
taking into consideration the three following criteria: (1) the
data storage capacity for wiki pages and their annotations, (2)
the efficiency and (3) execution accuracy of different types of
queries. These criteria were previously detailed in section 2.
We studied many research works on RDF data storage and
retrieval in structured P2P systems like [12], [10], [7] and
[11], others concerned with the replication of data on P2P
networks like [6], and P2P wikis like [9] before proposing
our approaches.

In the different approaches we aim to build, the storage of
the wiki pages on the peers of the DHT and their replication
will follow the same method. After its creation, the wiki page
URI that we call WikiPageSubject is hashed and it will be
stored on the peer responsible for that key with initial content
using the dht.put(getHash(WikiPageSubject), initialContent)
method. In fact, the initial content is a set of insert line
operations where the first operation is create a wiki page.
As in any DHT, every peer is responsible for a key space to
which the wiki pages are mapped. Like this, every peer will
be responsible for a part of the wiki content. So in the next
proposed approaches, we will focus only on the RDF triple
storage and the replication of the triplestores.

The replication of the semantic wiki pages in all the
approaches will be the same. Different hash functions will be
used to replicate a wiki page on many peers of the DHT. To
handle concurrent updates of the same wiki page by multiple
peers, an optimistic replication algorithm can be used to
integrate these changes in that page. A change in a wiki page
is expressed as two types of operations: an insert or a delete
line. In addition, this replication algorithm will synchronize the
replicas of a wiki page on the peers of the DHT replicating the
same page and ensure the convergence of the page replicas.
Any synchronization algorithm that ensures the CCI model
can be adopted such as WOOT, WOOTO, or Logoot [8], etc.

1) Centralized RDF Triples Store: In this approach, differ-
ent peers will replicate different pages and only one centralized
triplestore is used for storing all the annotations of the entire
wiki. This approach is illustrated in figure 3 (part 1).

In this approach, when a user searches for a semantic
wiki page, there are two possible cases: either the page
does not exist and the user will have to create it or the
page exists and the user will be able to view its content.
Since it is a structured P2PSW, the page is retrieved by its
name which represents the page identifier. Actually, the page



Fig. 3. Different approaches for building SP2PSW

identifier is hashed by some hash functions and the result
is retrieved. When a user edits and saves a semantic wiki
page, the changes generate the operations: delete and insert
lines. These operations will be received and integrated by the
peers replicating this page. On the other hand, the triplestore
will be updated in case of the semantic wiki page contains
annotations. The semantic annotations in the saved page will
be extracted and transformed into RDF triples. The previous
annotations of that page will be deleted and replaced by the
new ones. If the user decides to run a semantic query using
SPARQL in a special semantic wiki page, the search will be
made on the central triplestore and the result of the query will
be complete.

This approach offers a good solution for scalability since
every peer stores only its own semantic wiki pages. It adopts
a partial replication. The modifications on a peer will be
immediate and affects only the peers replicating this page.
This approach provides also a good solution for the semantic
queries processing. Every query will be executed immediately
on the central triplestore independently of the query form such
as queries that contains many subqueries or need to generate
a dynamic web query result. For instance, the execution of
a query that “Find all countries of Europe”, will be executed
directly which will reduce traffic and increase the performance.
In spite of its advantages, this approach has offers a major
problem which is data availability and performance. Only one
central triplestore will handle all the requests for semantic
queries and in case of a failure the semantic annotations will

not be available (single point of failure).
2) Replicated Centralized RDF Triples Store: This ap-

proach is similar to the previous one with only one difference
that the centralized triplestore will be replicated on many peers
as shown in figure 3 (part 2). Consequently, it will solve the
single point of failure problem. In this solution, synchronizing
the replicated triplestores is required which generates high
amount of traffic in the network. On the other hand, more
storage capacity and maintenance of the triplestores is needed.

3) Total Replication of RDF triples store: This approach
as shown in figure 3 (part 3) consists of storing all the RDF
triples of all the wiki pages of the entire wiki locally on each
peer. Similar to the previous solution, when a user edits and
saves a semantic wiki page, these operations will be received
and integrated by the peers replicating this page. On the other
hand, the triplestore will be updated locally in case of the
semantic wiki page contains annotations and a synchronization
mechanism will be fired to update all the triplestores for all
the peers in the network. If the user decides to run a semantic
query using SPARQL in a special semantic wiki page, the
search will be made on its own local triplestore and the result
of the query will be complete.

In this approach, the execution of semantic queries of any
type will be executed locally on the peer triplestore which
returns complete results with high performance in searching
time. Since RDF triplestore is automatically replicated over all
the peers in the network, so there is no single point of failure.
This solution will greatly limit the scalability since all the
triples in the wiki are replicated on every peer which requires
highest storage capacity on every peer. When a change in a
triplestore of a peer occurs, a DHT Broadcast mechanism is
automatically applied; it broadcasts the changes to all the peers
in the network. Since changes in the triplestores are frequent,
the synchronization of the triplestores will occur with high
rate and consequently a high traffic will flood the network.
This solution is similar to Swooki in totally replicating the
triplestores without obtaining benefits from the Structured P2P
network architecture.

4) Partial Replication of RDF triplestore: In this approach,
every peer stores some semantic wiki pages and only their
annotations are stored in the local triplestore. When a user
edits and saves a semantic wiki page, the delete and insert op-
erations will be received and integrated by the peers replicating
this page. On the other hand, the triplestore will be updated
in case of the semantic wiki page contains annotations. The
previous annotations of that page will be deleted and replaced
by the new ones locally on the same peer. In case of a peer
decides to leave the network, its wiki pages and the content of
its triplestore will be replicated to its closest neighbors peers
using two different synchronization mechanisms, one for the
wiki pages and the second for the triplestores.

The execution of a semantic query in an unstructured
P2PSW may lead to pass across all the peers of the network
to return a specific result. For instance, the execution of the
query “Find all the Countries of Europe” will pass through
all the peers of the network which highly increases the traffic



Fig. 4. Incomplete query result case

messages over the network. The traffic comes from the sent
message to all the peers and the returned results which
decreases the performance, responsiveness and increases the
search time. A possible solution to this problem can be made
using an expiry time (TTL) to terminate the execution of a
query if it exceeds the specified TTL. The result will be a less
traffic however incomplete or missing results of queries can
occur even if the triples are available in the Wiki system.

The partial replication of RDF triplestore approach is shown
in figure 3 (part 4). If the user decides to run a semantic
query in a special semantic wiki page, the search will be made
first locally on the requested peer. For example, the search for
“Find the area of Lebanon” can be done locally if the peer
contains the page Lebanon. Otherwise, some hash functions on
the triples are needed and will be used to generate a set of keys.
The DHT method get (Key)→ value will return only one node
id for each used hash function. This will lead to find nodes
that should contained the requested annotations. However, this
peer may not have this annotation since each peer stores only
the annotations of its own pages. For instance, if the peer1
executes a semantic query to find the area of Lebanon, it will
be executed locally and the result will be found. While the
execution of a query to find all countries located in Europe
will use a HashFunction (LocatedIn) and return a value for
a specific peer, then the search will be directed to this peer
(peer2 or peer3), so incomplete query result will be obtained
as shown in the figure 4.

5) Clustering of RDF triplestore: In this proposed solution,
each peer contains some wiki pages and a triplestore. Peers
having the same semantics are arranged into the same semantic
cluster as shown in figure 5. Peers P4, P5, P6, and P7 compose
the semantic cluster1 in which the RDF triples are hashed
based on their <subject> and stored in the corresponding peer.
P1, P2, and P3 compose the semantic cluster2 where hashing
is made on <predicate> and the peers P8, P9, P10, and Pn
compose the third semantic cluster using <object>. In this
approach, when the annotations of a page are updated, only

Fig. 5. SP2PSW Clustering design

the peers of the appropriate semantic clusters concerned with
these annotations will be updated. If the user runs a semantic
query using SPARQL, the appropriate hash function will be
applied based on the form of query whether it is atomic, range,
or conjunctive. For example, when the query searches the
pattern {“Lebanon”, hasArea, ?value}, the hash function on
the subject Lebanon will be used.

In case of conjunctive queries, many peers in the same
semantic cluster can be used at the same time. For example
to execute the query “Find all countries located in Europe
and they have a common border with Asia”, the patterns of
the query look like this: < ?country , LocatedIn , “Europe”>
ˆ<?country , HasBorder , “Asia”>. The query will search for
RDF triples containing two different predicates LocatedIn and
HasBorder which may be found on one or two different peers
using the same hash function on <predicate>.

Other queries may have a more complex form. For example
the query “Find all countries in Europe and having any
relation with Pizza” has the following two patterns: <?country,
LocatedIn , “Europe”>ˆ<?country, ?anyPredicate, “Pizza”>.
The query will use two different hash functions, the first hash
function is based on the predicate LocatedIn and the second
is based on the object “Pizza”. The result will come from two
different peers belonging to two different semantic clusters.
The final result of the query will be a combination of both
results.

The benefits of this approach are many. The RDF triples
are distributed over a limited set of peers, which means that
there is no need for high storage capacity. Consequently, it
ensures a high scalability. The execution time of a semantic
query is low, because only the peers concerned with the used
hashed function will be accessed directly which will reduce
the traffic messages over the entire network and increase
the performance. In addition, the result of the query will be
complete and the benefits of structured P2P network will be
totally reached. This approach has some limitations: (1) in case
of a failure of one or some peers, all their stored RDF triples



Fig. 6. The Optimal approach to build SP2PSW

will be unavailable, and (2) there will be an inconsistency
between the wiki pages on a peer and the triples stored on
this peer.

6) The Optimal Proposed Approach of SP2PSW: In con-
clusion, we proposed all the previous possible solutions for
building the first structured P2P Semantic Wiki, and identified
their advantages and limitations. Based on this, we propose
now the optimal solution of SP2PSW. It will be a combination
between the last two proposed approaches as shown in figure 6.
In this solution, every peer will store a set of wiki pages. As
we said earlier at the beginning of the section, the URI or name
of a page is hashed and based on the result the page will be
stored on the appropriate peer. Every peer has a triplestore
that contains the annotations of these pages. In addition, to
storing the triples locally, these triples will be hashed usually
using three different hash functions based on <subject>,
<predicate>, and <object> and stored in different semantic
clusters. Moreover, to ensure availability of the triples, many
hash functions are used to replicate these triples on additional
peers.

So as a final result, this approach is the best solution since
it offers all the following features:

• High scalability since wiki pages and the RDF triples of
the entire wiki are partially replicated over all the peers
in the network, so a peer needs only to store a subset of
wiki pages with the triples of these pages and a subset of
RDF triples used by the put method of the hash function.

• High Quality of Service in execution of any type of
semantic queries, since all the triples are always available,
so the results of the queries are always complete.

• High Fault tolerance since there is no single point of
failure, all the wiki pages and the triples are replicated
on many different peers by using many different hash
functions for each semantic cluster.

• High efficiency since the usage of DHT storage will

directly route the semantic query to the corresponding
peers, which will reduce the traffic over the network.

We developed the necessary algorithm for this optimal ap-
proach to build the first SP2PSW shown in the next section.

IV. ALGORITHM FOR BUILDING STRUCTURED P2PSW

This section presents the algorithm we developed to build
the first SP2PSW. The algorithm is written in pseudo-code
and can be easily implemented in any programming languages
based on the SP2PSW that we aim to build. For each operation
made on the Wiki, we detail the resulted actions and their
effects. These operations are (1) view/search a page, (2) edit
a page, (3) save a page, and (4) run a semantic query. So any
proposed SP2PSW should offer these services in optimal way.

A. On Wiki Page View

When a user decides to view a wiki page there are two ways
either using a search tab or by clicking on a link on another
wiki page. First, the request for a page is hashed then sent to
the corresponding peer, there are two possible results:

1) Page found
a) Read (no modification)
b) Edit

2) Page does not exist
a) Create a new semantic wiki page
b) Do nothing.

function ONVIEW(WikiPageSubject)
Page← dht.get(getHash(WikiPageSubject))
if Page == NULL then

return ”WikiPageNotFound!
WouldY ouLikeToCreateit!”

else
wikiContent← extractContent(Page)
htmlContent← ShowHTML(wikiContent)
return htmlContent

end if
end function

B. On Wiki Page Edit

When a user wants to edit a page, he clicks on the edit
tab and the plain text content of the page is extracted and
displayed.

function ONEDIT(WikiPageSubject)
Page← dht.get(getHash(WikiPageSubject))
wikiContentText← extractContent(Page)
return WikiContentText

end function

C. On Wiki Page Save

When a user edits a page and saves, the corresponding
operations are generated using a diff algorithm. Then these
operations are sent to the peers replicating the page and
integrated. On the other hand, the annotations of the page
are extracted, transformed into triples and inserted in the
appropriate peers in addition to the peers of the page.

function ONSAVE(WikiPageSubject, newWikiPageContent)
oldPage← dht.get(getHash(WikiPageSubject))
oldWikiContent← extractContent(oldPage)
Ops[]← diff(oldWikiContent, newWikiPageContent) . The

generated operations will be sent to the destination peer



dht.put(getHash(WikiPageSubject), Ops[]) . The received
operations are integrated using any optimistic replication algo

SYNCHRONIZEPAGES()
. Update the triple store if necessary

Annotations[] = extractAnnotations(newWikiPageContent)
if Not (empty(Annotations)) then

oldAnnotations[] = extractAnnotations(extractContent(oldPage))
oldTriples[] = convertTo(oldAnnotations)
Triples[] = convertTo(Annotations)

. Previous triples of Page will be replaced by the new Ones
updateTripleStore(getHash(WikiPageSubject), T riples[])

. Delete old triples from the Semantic Clusters
for each triple in oldTriples[] do

Delete(dht.get(gethashSubject(triple), triple))
Delete(dht.get(gethashPredicate(triple), triple))
Delete(dht.get(gethashObject(triple), triple))

end for
. Insert new triples into the Semantic Clusters using a triple store

synchronization mechanism
for each triple in Triples[] do

Insert(dht.get(gethashSubject(triple), triple))
Insert(dht.get(gethashPredicate(triple), triple))
Insert(dht.get(gethashObject(triple), triple))

end for
end if

end function

The triplestore of a peer and those of the clusters are updated
only if they were changes in the annotations of the wiki
page i.e. Triples[] 6= oldTriples. In order to reduce the traffic
that could be generated from the update of the triples in the
clusters. Instead of deleting all the previous triples in the old
page and adding all the triples found in the new saved page, we
can compute a reduced set of triples to insert IS = Triples[]
− oldTriples[] and a reduced set of triples to delete DS =
oldTriples[] − Triples[]. The triplestores of clusters will be
updated using these two sets IS and DS.

D. On Semantic Query Execute

When a user executes a semantic query two possible cases
can take place:

1) First case, if the user is working offline, the query is
executed locally and searches only in the peer triplestore.

2) Second case, if the user is working online:
a) If the semantic query has the following pattern (?s; ?p;

?o) then call DHT Broadcast to retrieve all RDF triples.
b) Else if the query has a different atomic pattern than the

previous one some hash function(s) are used and gener-
ate the key(s) corresponding to the known <subject>,
<predicate> and <object> of the query pattern. Next,
the DHT GET(Key) method is used and returns the
peer Id for each used hash function, then the query
will be routed to the corresponding peer. In case
of more than one peer having the result, we give
a priority to hashSubject function over hashPredicate
over hashObject to reduce the traffic.

c) Else if the query has the conjunctive form, for each
sub query, the generated key will route the search
to the corresponding peer, get the triples stored on
this destination peer, combine all the retrieved triples.
Finally show the query result on the screen.

function ONQUERY(SPARQLstmnt)
if SPARQLstmnt haspattern(“(?S,?P,?O)”) then

TABLE II
COMPARISON TABLE BETWEEN SP2PW AND P2PSW

Evaluation Metrics

Peer’s
R

D
F

Storage

Scalability

Q
uery

Q
O

S

Fault
Tolerance

C
ontrol

M
essages

Traffic

SWOOKI Low Low V.High V.High V.Low
DSMW High High Low High Low

SP2PSW High V.High V.High V.High High

BRAODCASTDHT(AllRDF)
else

NeededRDF [] = {}
for Each AtomicSubQueryPattern do

DestinationPeer ←
dht.get(getHash(AtomicSubQueryPattern))

NeedeRDF []← NeededRDF []U
LoadTriples(AtomicSubQueryPattern,DestinationPeer)

end for
end if
return showQueryResult(SPARQLstmnt,NeededRDF [])

end function

V. RESULTS ANALYSIS AND VALIDATION

We derived an optimal approach to build a semantic wiki
distributed on structured P2P network (SP2PSW), after a deep
study and evaluation of the previous approaches we proposed.
A comparison between our approach and the existent unstruc-
tured P2PSW (Swooki and DSMW) shows that our approach
offers much enhancements on different levels. The comparison
is made based on the evaluation metrics is presented in the
Table II and in a chart (see figure 7). The measure Low in the
table denotes bad, very low denotes worst, high and very high
denote better and best. In Swooki, there is a total replication
of both wiki pages and the triplestores. This requires a huge
storage for data and generates a lot of traffic to synchronize the
wiki pages and the triplestores on all the peers of the network.
Handling the semantic queries and the failure of some peers
is very high. In SWMW, there is a partial replication of the
pages and the triplestores. A user on a peer can decide to
whom replicate his pages. When the peers replicating the same
page are down. In this case, these pages will be unavailable.
Running queries is always local on a peer and incomplete
results may be obtained. since only few peers replicate, the
exchange of messages among these peers is moderate. In
our approach, there is a partial replication of data. A peer
stores only a set of wiki pages and their annotations, plus the
annotations hashed to it. Newly created data will be distributed
on the DHT. The results of the queries are always complete;
the precise peers storing the annotations are quickly located.
The failure of a peer will not affect the functioning of the
SP2PSW.

VI. CONCLUSION

This section concludes the work by pointing to perspectives
and future works. The research work conducted focused on



Fig. 7. Comparison Chart between SP2PSW and (Swooki and DSMW)

development of the first Semantic Wiki based on Structured
Peer-to-Peer network. Initially, we studied a wide range of
concepts such as the Semantic Web, Semantic Wikis, P2P net-
works (unstructured, structured and hybrid), and P2P Semantic
Wikis. The development of our approach consisted on many
steps: (1) propose all the possible approaches for building
SP2PSW, evaluate each one and select the optimal one of
them, (2) develop the essential algorithms needed for the basic
operations of the SP2PSW i.e. browse and edit wiki pages,
edit annotations and search RDF triples, (3) compare between
our proposed SP2PSW and the existing unstructured P2PSW
(Swooki and DSMW). In Conclusion, the development of the
first SP2PSW solved many existing problems found in the
currently used unstructured P2P semantic wikis (Swooki and
DSMW) such as low scalability with respect to data storage,
needs to high storage capacity and incompleteness of queries
results. As future work, it would be interesting to implement
and build SP2PSW, testing it in a real structured peer to
peer large scale network and make real world evaluations and
measurements based on real data. As future work also, we
will study the dynamicity of the network and how joining or
leaving the network affects the replication of data.

REFERENCES

[1] Tim Berners-Lee, James Hendler, and Ora Lassila, “The Semantic Web”,
Scientific American Magazine, pp. 34-43, May 2001.

[2] Steve Harris, and Andy Seaborne, “SPARQL 1.1 Query Language”,
https://www.w3.org/TR/sparql11-query/ W3C recommendatio, March 21,
2013.

[3] Patrick J. Hayes, and Peter F. Patel-Schneider,“RDF 1.1 Semantics”,
https://www.w3.org/TR/rdf11-mt, W3C Recommendation 25 February,
2014.

[4] Hala Skaf-Molli, Charbel Rahhal, and Pascal Molli, “Peer-to-Peer Se-
mantic Wikis”, In DEXA09: 20th International Conference on Database
and Expert Systems Applications, pp. 196-213, September 2009.

[5] Charbel Rahhal, Hala Skaf-Molli, Pascal Molli, and Stéphane Weiss,
“Multi-synchronous Collaborative Semantic Wikis”, In WISE’09: 10th
International Conference on Web Information System Engineering, pp.
115-129, October 2009.

[6] Vidal Martins, Esther Pacitti, and Patrick Valduriez,“Survey of data
replication in P2P systems”, research report, INRIA, pp. 1-45, 2006.

[7] Min Cai, and Martin R. Frank, “RDFPeers: A Scalable Distributed RDF
Repository based on A Structured Peer-to-Peer Network”, WWW’04:
13th International Conference on World Wide Web, ACM, New York,
USA, pp. 650-657, May, 2004.

[8] Stéphane Weiss, Pascal Urso, and Pascal Molli, “Logoot: A Scalable
Optimistic Replication Algorithm for Collaborative Editing on P2P Net-
works”, 29th IEEE International Conference on Distributed Computing
Systems (ICDCS’09), Monteral, Québec, Canada, pp. 404-412, 22-26
June 2009.

[9] Gérald Oster, Pascal Molli, Sergiu Dumitriu, and Rubén Mondéjar,
“UniWiki: A Collaborative P2P System for Distributed Wiki Applica-
tions”, 18th IEEE International Workshops on Enabling Technologies:
Infrastructures for Collaborative Enterprises, WETICE’09, Groningen,
Netherlands, pp. 87-92, 29 June - 1 July 2009.

[10] Imen Filali, Francesco Bongiovanni, Fabrice Huet, and Françoise Baude,
“A Survey of Structured P2P Systems for RDF Data Storage and
Retrieval”, Trans. Large-Scale Data- and Knowledge-Centered Systems
journal, volume 3, pp. 20-55, 2011.

[11] Laurent Pellegrino, Fabrice Huet, Françoise Baude, and Amjad Al-
shabani, “A Distributed Publish/Subscribe System for RDF Data”, Data
Management in Cloud, Grid and P2P Systems, Prague, Czech Republic,
pp. 39-50, August, 2013.

[12] David C. Faye, Oliver curé, and Guillaume Blin, “A survey of RDF
storage approaches”, revue Africaine de la recherche en Informatique et
Mathématique Appliquées (ARIMA), Vol. 15 pp. 11-35, February, 2012.


