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This paper describes the results of a collaboration with the leading Portuguese food retailer, addressing the shelf-space

planning problem for allocating products to shop floor shelves. Our challenge was to bring analytical methods into the

shelf-space planning process to improve the return on space and automate a process heavily dependent on the space

managers’ experience. This led to the creation of GAP, a decision support system that is today used daily by the space

management team of the company. We developed a modular operations research approach that systematically applies

tailor-made mathematical programming models combined with heuristics to derive the best layout of products on the

shelves. GAP combines its analytical strength with the ability to incorporate different types of merchandising rules, to

balance the trade-off between optimization and customization.
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Sonae MC is one of the biggest Portuguese companies (ranked the 4th largest company in Por-

tugal in 2014, with annual sales of 3.33 billion euros) operating a food retail business in Portugal.

It is one of the core businesses of the Sonae Group, which also operates in other areas such as

specialized retailing (sports goods, fashion, and electronics), shopping centers, and telecommuni-

cations.

Its Continente brand is the country’s leading food retailer, and has been considered one of the

most trusted brands in Portugal for the past 13 years. The company is a benchmark in the Por-

tuguese market, having launched the country’s first hypermarket in 1985. Today it has a network

of 478 stores (with an additional 162 stores under franchising) covering the entire country. Stores

adopt one of three major formats: Continente Bom Dia, convenience stores with an average sales
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area of 800 m

2 (8,611 square feet); Continente Modelo, supermarkets located in medium-sized

population centers, averaging 2,000 m

2 (21,528 square feet); and Continente, hypermarkets located

in prime locations and offering an extensive and varied range of products and services with aver-

age sales areas of 9,000 m

2 (96,875 square feet). In total, Sonae MC has a sales area of 595,000

m

2 (6,404,527 square feet) and its strategy is to grow its convenience channel and to look for

international growth opportunities.

Sonae MC is aware of the impact in-store planning has on customer satisfaction, sales effective-

ness, and operations efficiency. In particular, it believes that a well-planned and innovative product

organization on the shelves leads to higher visibility, consumer awareness, and increased demand

for the products, as well as reduced inventory holding and handling costs. However, the short prod-

uct life cycles, the increasing number of products available and the continually growing number of

stores has led to an ongoing need to review shelf-space planning, making the process increasingly

challenging for the company.

This paper describes the development, implementation and impact of an operations research

(OR)-based approach to planning the allocation of products on the shelves. This is the result of

a collaboration between the Information Systems and Innovation Department (ISI) and the Space

Planning Department (SP) of Sonae MC, and a group of researchers from the Industrial Engineer-

ing and Management Department of the Faculty of Engineering of the University of Porto (FEUP).

Prior to this work, Sonae MC’s shelf-space planning process was very time consuming, rely-

ing on an empirical use of space elasticities, lacking formal performance evaluation criteria and

heavily dependent on the space managers’ experience. The challenge consisted of incorporating

analytical methods into the practice to automate the process, improve the return on space, and re-

duce stockouts and inventory costs, without disrupting (but somehow questioning) the company’s

policies. Guided by these objectives, three axes were defined for the project: Process Automation,

Space Optimization, and Image Standardization.

We labeled the resulting decision support system as Automatic Generation of Planograms and

use the acronym GAP. Space managers are using GAP daily to automatically generate shelf-space

plans. GAP was developed on top of a modular architecture with innovative tailor-made mathe-

matical programming models embedded in matheuristics that ensure its efficiency. In addition to

the analytical advances, GAP offers the possibility of incorporating different types of allocation

rules (also known as merchandising rules), allowing space managers to control the entire process,

with a trade-off between customization with optimization.
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The remainder of this paper is structured as follows. We start by describing how shelf-space is

managed, first in Sonae MC and second from a more generic perspective, both from a practical

and theoretical point of view. GAP is presented next, with a general discussion of its analytical

approach and a description of the decision support system. We also discuss some details of the

project development that were critical for its success. The impact of the project is carefully ana-

lyzed afterwards. We end with some brief concluding remarks, emphasizing that we are presenting

a generic approach that is suitable for other retail companies. Note that this is a practice oriented

paper and many details were omitted for the sake of simplicity. Additional papers will be refer-

enced throughout the text for more technical details.

Shelf-Space Management at Sonae MC
The primary objective of retailing is to bridge the gap between the point of production and the point

of sales, a goal that stresses the role of logistics and operations in this industry. Sonae MC has a

centralized operations management department, responsible for planning all the operations for the

stores nationwide. The space planning department, as its name implies, is responsible for managing

the space available at the stores, an activity split into two main levels: a macro-space planning

level that defines, on a long-term basis, the layout of the stores (divided by categories); and a shelf-

(or micro-) space planning level that defines, for each category, the products’ placement on the

shelves. Shelf-space planning is a mid-term activity that updates shelf-space plans at an average

rate of two to three times a year for more than 300 categories. This activity requires 23 full-time

space managers.

The traditional shelf-space planning tool is a planogram, which is a virtual representation of the

shelves, showing exactly where each product should be physically displayed and the inventory that

it should hold. One planogram includes a variety of information that has to be carefully planned: the

location of the products, the number of facings (visible items), the number of items stacked behind

and above each facing, the packaging style, and the orientations (front, side, back, top), among

others. Besides the most commonly used shelves, stores also have other fixture types such as chests,

pallets and pegboards (bars with steel rods sticking out to hold peggable products like pens and

pencils). Moreover, planograms are physically made of segments that are stacked together to form

an aisle. Each segment has its own shelves: these can be placed vertically, aligned with the shelves

of the other segments, or be placed with a different orientation, forming irregular planograms.

Some examples are present in Figure 1.
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Chests
Pallets

Pegboard

Table

Polygonal 
Shelf

Bins

Shelves

Irregular Shelf Placement

Figure 1 Planograms can have different types of fixtures. Some include more than one fixture type or present irregular

shelf placements, resulting in irregular planograms.

At Sonae MC, planograms follow a complex structure of merchandising rules that try to reflect

the consumer buying behavior and the strategy of the company (and of the suppliers) for the dif-

ferent categories. To this end, the company leverages its superior customer insight which it has

gained from its successful loyalty card program, covering 3 out of 4 Portuguese households and

linked to around 90 percent of sales. Moreover, the company maintains key partnerships with sup-

pliers that have a deep knowledge of their categories, assuming the role of category captains. Space

managers are also committed to developing planograms with a compelling visual look, devoting

a great deal of effort to the task. Nevertheless, the attractiveness of the planogram is a subjective

field and planograms depend on the space manager in charge. Figure 2 presents an example of

a merchandising manual for a category, where we can see that products are usually grouped by

families which are placed in rectangular shapes. Each planogram has a hierarchy of families that

typically range from two to five criteria. For each criterion, the merchandising manual specifies the

family type, the display orientation (either vertical or horizontal), the family precedences and, in

some cases, additional information about preferred locations. Because of the strategic character of

merchandising rules, this figure does not represent a real situation.

The process of updating shelf-space plans involves in-depth interaction with the commercial

department which is responsible for managing categories. The process for a given category is

as follows. The category manager (from the commercial department) triggers the process after

specifying the product portfolio (assortment) for the stores, as well as the key merchandising rules
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Yogurts

Classic Yogurts Drinkable Yogurts

2nd 
Criterion

3rd 
Criterion

Main criteria

Brand – Vertical. .

Brand – Horizontal
Own Brand    Economic Brand

Economic Brand

Leader (eye-level)    Sub-leader   
. .

Flavor – Vertical
Strawberry    Mango    Peach 

Type – Vertical
Classic    Greek    Low Fat     . .

. .Leader   sub-leader   Own Brand

Display Orientation 
(Vertical, Horizontal)

Precedences

Preferred Locations (Eye-level, 
hand-level, bottom, top)

Family Type (Brand, Type, 
Flavor, Package, Size,...)

Hierarchical 
Criteria Levels

Figure 2 Merchandising rules reflect the strategy for implementing a given category (in this Figure the category is

Yogurts). Each manual specifies between two and five hierarchical criteria levels with different types of

information.

for their implementation. Product portfolios are not store-specific but are instead specified for

clusters of stores with similar sales and space patterns to manage complexity and effort. Space

managers start by generating a template planogram (known as a role planogram) for each cluster,

where they carefully check how merchandising rules fit the space. In a collaborative effort between

the space and category managers, the role planogram is then discussed and merchandising rules

are tuned. Once validated by the category manager, it is then replicated for the remaining stores,

by adjusting the product facings to the space of each store, while maintaining the same allocation

rules. Figure 3 summarizes this shelf-space planning process, where the two key processes are

highlighted: the Generation Process and the Replication Process. Note that the company has many

categories to update and, at the beginning of each year, the category space planning processes are

scheduled for the entire year.

During the shelf-space updating processes, space managers generate an average of 60,000

planograms each year. For this purpose, Sonae MC uses space planning software from one of the

world’s top three vendors, the JDA Software Group, Inc. This software has the necessary capa-

bilities for creating and maintaining the planograms, including a space database with all the key

information about the products and store equipment, and a visualization tool that provides realistic

views of the shelves, the ability to easily handle products and powerful reporting tools. Although

automatic tools for planogram generation are available in JDA’s software, they do not accommo-

date all the inherent complexity of the merchandising rules. Therefore, space managers manually
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Replication Process
Planograms for all stores, with the same 

arrangement as the role Planogram

Assortment A

Assortment B

Role Planogram  A

Role Planogram B

Generation Process
Role Planogram for each cluster of stores 
with same assortment and similar sales 

and space patterns

Guidelines
Merchandising 

Rules

Guidelines
Merchandising 

Rules

Store A.1

Store A.2

Store A.3

Store B.1

Store B.2

Commercial Department Space Department with collaboration 
of the Commercial Department Space Department Stores

Figure 3 The micro-space planning process depends heavily on interaction with the commercial department and

comprises two main processes: Generation and Replication.

developed their planograms by dragging and dropping the products onto the shelves, in a time-

consuming activity that lasts on average three hours.

One of the most difficult challenges that we faced at the beginning of the project was the

lack of formal criteria for evaluating planograms. Space managers were creating and evaluating

planograms based on their intuition and personal judgment, as opposed to using analytical meth-

ods. Nevertheless, in most situations, they were empirically considering space elasticities and bal-

ancing the product days-supply values. When analyzing shelf inventory, days-supply is a common

operational metric, measuring the number of demand days covered by the shelf stock. In balancing

days-supply values, space managers were using a software highlighting tool that colored the prod-

ucts according to predefined days-supply intervals, and they sought to fit all the products within one

interval. Moreover, some categories had alternative objectives such as meeting the brand market-

shares.

In 2011, the stores went through a successful lean process that, among other things, changed

their shelf replenishment strategy from a just-in-time policy (shelves were replenished frequently

in small quantities during the day) to a single shelf replenishment operation each day, before the

morning opening. This change of policy, and the fact that products normally have joint delivery
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cycles from the central distribution centers (products delivered at the same days of the week),

explains the reasoning behind balancing the days-supply values across the different products. By

having all products supplied for a similar number of days, the number of shelf replenishment

operations is reduced, the stock level for long-tail (i.e. slow moving) products is better controlled,

stockouts for fast moving products are prevented, and it is also possible to reduce the backroom

inventory (store’s warehouse).

Sonae MC believed that analytics could help to improve shelf-space management, going beyond

a simple planogram automation tool, providing the impetus for this project.

Theory and Practice of Shelf-Space Management
Most shoppers are susceptible to in-store marketing, mainly because of the low level of involve-

ment that consumers have with in-store decisions. Additionally, reduced assortments and stockouts

force them to search for substitute products, highlighting the role of space management. Exper-

imental studies have been addressing the effect of space variables on the demand for products.

These studies point to three main elasticities: space elasticity measures the increasing responsive-

ness of demand, as more space is allocated to a product, experiencing a decline in marginal returns

at some point (Curhan 1972, Chandon et al. 2009); location elasticity highlights key display lo-

cations that help improve exposure, such as eye- or hand-level (Drèze et al. 1994); lastly, cross

elasticity measures the interdependency between adjacent products and is assumed to be positive

for complementary products and negative for substitute products (Corstjens and Doyle 1981). Ad-

ditionally, the arrangement of products on the shelves can also have an important role in gaining

consumers’ attention. Thus, carefully organizing products in families can increase interest, while

disorganization or excessive complexity (i.e. variations in the basic visual content) negatively af-

fects the buying experience (Pieters et al. 2010).

According to a survey of U.S. retailers (Keltz and Sterneckert 2009), the main drivers for space

planning initiatives revolve around two main axes: maximizing selling space effectiveness, pow-

ered by the aforementioned effects, and tighter inventory control. However, the same survey con-

cludes that the results are not meeting the expectations because “conventional assortment analytics

and space tools do not deliver the optimization capabilities needed for success”. Software vendors

mainly tackle the development of large-scale data processing technologies capable of addressing

the complexity of shelf-space in practice, but with limited or no use of mathematical optimiza-

tion, and a complete disregard for consumer demand effects. Therefore, automatically generated
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planograms are still a mirage for most retailers and they often opt for generic planograms that fit

clusters of stores.

Shelf-space management is an active field of research in retail operations management, where

it is known as the Shelf-Space Allocation Problem (SSAP). Despite the practical relevance of the

problem, scientific knowledge has been somehow misaligned with practice because most state-of-

the-art mathematical models have strong limitations (Hübner and Kuhn 2012, Bai 2005).

The literature presents a great variety of models, mostly differing in their demand functions,

which incorporate different estimates of some of consumer demand effects, ranging from complex

multiplicative polynomial forms to simplistic linear profit functions. Nevertheless, most of these

models have the common goal of maximizing demand by determining the product facings on

each shelf, without considering their location within the shelves. The most relevant approaches to

this work are from Corstjens and Doyle (1981), who were the first to present space elasticity in

a polynomial form; Gajjar and Adil (2010), who propose a piecewise linearization to the space

elastic demand function; and Yang and Chen (1999), who use an alternative model in the form of

a linear multiple knapsack problem.

Perhaps the most important practical limitation from the aforementioned literature is that it ne-

glects merchandising rules; more specifically, it disregards the existence of product families that

specify associations between products on the shelves. Russell and Urban (2010) and Geismar et al.

(2014) are the only authors who define the exact location of the products on the shelves and allo-

cate the space to keep product families together, in uniform and rectangular shapes. Despite this,

no model was able to reach an optimal solution for instances with more than 10 products.

Another key point is that the shelf-space allocation literature has given little focus to the cost

side of the problem and most models do not explicitly consider inventory-related decisions. Two

authors stand out in a more inventory-related stream: Baker and Urban (1988) presented the first

model that considered the demand as a function of the instantaneous inventory level of an item,

based on the economic order quantity (EOQ) model, and Urban (1998) proposed the first attempt

to include shelf-space allocation in the inventory decision-making process. Nevertheless, these

models are comprehensive and are only solved to optimality for a reduced number of products. The

models also include practical limitations: they consider continuous shelf replenishment operations

from the backroom and determine individual product replenishment policies. Our approach can

also relate to this stream because we place special emphasis on inventory.
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Finally, the literature regarding category captains is also interesting to this work, and a general

treatment can be found in Kurtulus and Toktay (2009). Category captains are key suppliers that help

retailers manage their categories, for example by consulting on the definition of merchandising

rules. The use of external consultants with in-depth knowledge of the categories and the large

number of factors behind merchandising rules reinforces the usefulness of rules as inputs to the

space planning process.

Automatic Generation of Planograms (GAP): Overview
This section presents an overview of GAP. More precisely, we describe the new operations

research-based process that we developed to help space managers at Sonae MC perform their daily

activities more efficiently and effectively.

GAP’s functionality centers around the generation of planograms that take into account the

intrinsic complexity of the company’s shelf-space planning process. In addition to its analyti-

cal advances, one of its most relevant features is its ability to allow users to control the entire

planogram generation process, an activity that is highly dependent on the market, and so intercon-

nected with the company’s strategy. GAP can incorporate different types of merchandising rules

that can change on the fly, allowing space managers to test different product layout strategies, and

can be tuned to meet different performance evaluation criteria, such as the equilibrium of days-

supply values across the products (the most typical planogram evaluation criteria in the company)

or the maximization of expected demand based on space elasticity effects.

GAP has two major processes: GAP Generation and GAP Replication, responsible for each of

the two processes identified in Figure 3: GAP Generation for generating planograms from scratch,

following a set of merchandising rules, and GAP Replication for replicating a given planogram

layout (possibly including non standard manual adjustments) to a new store. Although one may

not initially see the relevance of GAP Replication, it was crucial to the success of the project

because the large amount of fuzzy rules set by the commercial department makes the acceptance

of fully automated planograms unlikely and inevitably leads to manual adjustments. Therefore,

directly generating store specific planograms would break the validation point in the middle of the

process and would result in the need for more validation and more manual adjustments, for both

the category and space managers.

GAP consists of two main building blocks: (1) GAP Optimizer is the system’s heart and con-

tains all the analytical methods that make up GAP Generation and GAP Replication for generating
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planograms; and (2) GAP User Interface provides all the tools for handling data and for managing

the insertion of merchandising rules. The remainder of the section provides details on the ana-

lytical approach behind GAP Optimizer, the description of the overall decision support system,

and an analysis of the key factors that led to a successful deployment in Sonae MC. Although

GAP considers and integrates many types of fixtures (1), we will focus on the most common type:

shelves.

Analytical Approach

Figure 4 presents the architecture of the GAP Optimizer. Both the GAP Generation and the GAP

Replication processes were developed in a modular fashion, and systematically apply innovative

tailor-made optimization models that were solved using mathematical programming-based heuris-

tics (also known as matheuritics) to ensure fast solutions.

Planogram
Generation

Planogram
Replication

Target Facings Aesthetics

Compatibility
Analysis

Data 
Validation

Infeasibility
Analysis

GAP Generation

GAP Replication

Figure 4 GAP Optimizer has a modular architecture and some modules are common to both GAP Generation and

GAP Replication. The key modules are shaded.

Both the GAP Generation and GAP Replication processes start with a thorough data validation

and compatibility analysis to guarantee that all the data are present and in accordance with the

company’s requirements. Once confirmed, the processes start by calculating the target number of

facings for the products, with regard to one of the possible performance evaluation criteria. These

values are then used as goals while generating the planograms, either in the planogram genera-

tion or planogram replication modules. Finally, because visual attractiveness is important, the last

step is designed to improve the planogram aesthetics. If any of the shaded modules are unable to



Bianchi-Aguiar et al: Using Analytics to Enhance Shelf-Space Management in a Food Retailer

Interfaces 00(0), pp. 000–000, c� 0000 INFORMS 11

generate valid solutions, the processes end with an infeasibility analysis to draw inferences on the

causes.

We will now describe the key modules, with a high-level overview of the modeling and solution

approaches included in the GAP Optimizer.

Target Facings The Target Facings module determines the number of facings that each prod-

uct should have to maximize planogram performance, without considering any merchandising rules

or other allocation constraints other than the shelf-space capacity. The reasons for estimating the

target facings beforehand are twofold: it allows us to consider alternative performance evaluation

criteria, and it reduces the complexity of the subsequent allocation problems. For brevity, this paper

will focus on the company’s most frequent planogram evaluation objective, which aims to balance

the days-supply values across the products while considering space elastic demand.

At the center of the target facings calculation is the space-to-sales curve (Figure 5) which pre-

dicts the demand of a product as a function of the allocated shelf-space. This curve reflects the

experimental findings regarding the space elasticity effect: the more space allocated to a product,

the more consumer awareness the product has, leading to increased demand. Nevertheless, the

marginal returns decrease as the shelf-space reaches a saturation point, resembling an “S” shape.

We included a control parameter in the curve that specifies the maximum demand variation that

can be explained by the shelf-space allocated to products, and consider demand forecasts (given as

inputs) as the maximum value. Having captured the space elastic demand, we address the objective

of balancing days-supply values by defining a set of days-supply intervals, and by limiting all the

products to a unique interval. The possible days-supply intervals are calculated in a preprocessing

phase using a user-defined interval length. These intervals are also depicted in the figure using

dashed lines.

The target facings optimization model is formulated as a mixed-integer program (MIP) and

embeds piecewise-linear approximations of each product’s space-to-sales curve, obtained using the

days-supply intervals. The model determines the target facings for each product that maximizes the

planogram expected demand, subject to the shelf-space capacity, minimum and maximum number

of facings and limited to the selection of a single days-supply interval. Additional details about this

formulation are presented in Appendix A.

GAP Generation The GAP Generation module determines the products’ placement on the

shelves, subject to the user-defined merchandising rules. For each product, it determines the shelf

(or shelves) where the product is to be allocated, its horizontal location within the shelves, and
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Figure 5 The space-to-sales curve is at the center of the target facings calculation and predicts the demand of a

product as a function of its shelf-space, limited to a maximum variation a. The vertical lines represent

days-supply intervals.

the number of facings to be displayed. Therefore, the outcome is a fully defined planogram. This

module aims to meet the target facings specified upstream (Target Facings module), while consid-

ering the location elasticity effects when choosing the products’ placement. For that purpose, we

have defined a set of shelf attractiveness curves that model the attractiveness of the shelves de-

pending on their vertical locations (Figure 6). The shelf attractiveness may vary with the category

and fixture type, which explains the alternative shapes.
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Figure 6 The Shelf attractiveness curves model the attractiveness of the shelves depending on their vertical locations.

We defined six curves (a-f).

Merchandising rules present a hierarchical structure of product families that are a key feature

of every shelf-space plan. The products of each family must be placed together, in adjacent posi-

tions, and if a family spans more than one shelf, products have to maintain a continuous, uniform
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and rectangular shape that can either be vertical (like columns, occupying the full height of the

planogram) or horizontal (like lines, occupying the full length of the planogram). This hierarchical

structure creates complex relationships between the products that highly constrain the solutions.

We capture these relationships using a tree diagram, such as the one presented in Figure 7. The

tree diagram starts with an initial node connecting the families from the first criteria, which define

the first level of the tree. Each family is then connected to its downstream families, leading to a

multilevel tree of product families.

Level 1
A B

B.1

Yogurts

Classic

A.1.1 A.1.2 A.1.3 A.1.4

Leader
Sub-leader

Own
Economic

A.2.1 A.2.2 A.2.3 A.2.4

Leader

A.3.1 A.3.2 A.3.3 A.3.4

Leader

Greek Low Fat

Classic

A.1
Sub-leader

Own
Economic

A.2
Sub-leader

Own
Economic

A.3

B.1.1 B.1.2 B.1.3

Straberry
Mango

Peach

B.2

B.2.1 B.2.2 B.2.3

Straberry
Mango

Peach

B.3

B.3.1 B.3.2 B.3.3

Straberry
Mango

Peach

B.4

B.4.1 B.4.2 B.4.3

Straberry
Mango

Peach

Level 2

Level 3

Drinkable

P4 P5

P1
...

P3P2
Level 4

Own Brand Economic Brand Leader Sub-leader

Figure 7 The tree diagram captures all the product family relations present in the merchandising rules. In this Figure

the diagram reflects the merchandising rules from Yorguts, as present in Figure 2.

We formulated this problem using an innovative network flow MIP model. An intuitive network

approach would associate one node to each product to find the sequence of products on each shelf.

However, such an approach would lead to an extremely complex and intractable model because

the traditional sequencing variables T

i j

, stating whether each product i precedes or succeeds prod-

uct j, would increase exponentially with the number of products. To address this, we explore the

existence of a hierarchy in the product families and consider a set of multi-level family depen-

dent networks. For each shelf, we start by defining a network with the families from the first level

of the tree diagram. Afterwards, for each first-level family, we define a network with the corre-

sponding downstream families and repeat the process until the last level is reached, with a set of

disjoint product networks (see Figure 8 for a partial definition of the network resulting from the

tree diagram in Figure 7). The model determines on the network sequences and then the overall

product sequence is obtained by conveniently joining the product-level sequences. This approach

also guarantees that the products belonging to the same family are consecutively placed on each
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shelf, which is another requirement of the problem. Additional constraints ensure the coordina-

tion of each family between shelves for the rectangular shapes, as well as the display orientations.

The precedence and special location rules, if any, correspond to variables that are fixed during a

preprocessing step.

Shelf k

A.1
A.2

A.3

A.1.1

A.1.2

A.1.3

A.1.4

Network Level 1   Shelf k

s

e
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Shelf k

A.1 A.3 A.2

s

e

Network Level 2 (Family A)   Shelf k

se

Network Level 3 (Family A.1)   Shelf k

Shelf k

A.1.1 A.1.4 A.1.2

. . .

Figure 8 This Figure shows a partial representation of the multi-level family networks resulting from the tree diagram

in Figure 7 (s and e represent the starting and ending node of each network).

One of the most relevant features of this formulation is its flexibility to accommodate any level

of customization. Nevertheless, in less flexible scenarios, with highly detailed merchandising rules,

the formulation will be more constrained, with many variables fixed, and optimization takes place

with a reduced scope. For example, if the user chooses to set high-level family precedences, the

remaining families are still sequenced by the model. In a more extreme case, if all sequences are

defined, the formulation still determines the optimal shelf-space for each product.

When the problem size increases, it becomes intractable, even when resorting to the multi-

level family networks. This limits the straightforward use of a commercial solver on the standard

mathematical programming model. This challenge motivated the development of an approximate

method. A mathematical programming based approach was chosen because it would be difficult

to develop a highly customized heuristic considering all family-related merchandising rules, that

would still be capable of generating high quality feasible solutions within reasonable time limits.

Moreover, a MIP-based approach makes it possible to introduce new features in the problem with

little or no effort. The formulation is then embedded in a matheuristic that successively solves a
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sequence of sub-problems exploring the hierarchy present in the product families. The matheuris-

tic starts by allocating families from the first level and progressively moves down until reaching

the product level. Technically, this approach is based on the relax-and-fix (R&F) framework: we

consider the entire formulation in all iterations but families already considered in previous sub-

problems have their variables fixed; families not yet considered have their variables relaxed to

continuous values; and families from the current subproblem have integer variables. A backtrack-

ing scheme guarantees that whenever a sub-problem is infeasible, the heuristic shifts backward

instead of forward, and solves a larger sub-problem by unfixing previous parts of the solution.

Table 1 presents a comparison of the performance of the matheuristic versus the straightforward

use of a commercial solver on the model formulation for three real-world generation processes

(artificially called CR5, AI3 and BH2), corresponding to a small, medium, and large instance, re-

spectively. Both the solution quality and the running times proved its suitability for use in practice,

especially because high quality solutions are obtained in less than one minute for the small and

medium instances and less than five minutes for the larger one (in this case the commercial solver

fails to delivery a feasible solution whithin one hour).

Table 1 We compared the performance of the matheuristic versus the straightforward use of a commercial solver on

the standard mathematical programming model for planogram generation (time limit of one hour).

Name Details Formulation Matheuristic

#Products #Shelves #Family levels #Families Optimality distance⇤ (%) Exec. Time⇤⇤ Distance⇤⇤ (%) Exec. Time⇤⇤⇤

CR5 22 5 3 14 0.0 (OS) 00 : 00 : 07 0.0 (OS) 00 : 00 : 01
AI3 41 9 5 27 8.5 (FS) 01 : 00 : 00 �0.1 (FS) 00 : 00 : 39
BH2 131 5 4 26 – (IS) 01 : 00 : 00 � (FS)⇤⇤⇤⇤ 00 : 03 : 54
⇤ Optimality distance (gap) - maximum deviation from the best integer solution to the upper bound;
⇤⇤ Distance - deviation from the solutions obtained with the matheuristic and a straighforward use of a commercial solver;
⇤⇤⇤ (hh:mm:ss); ⇤⇤⇤⇤ 1.8% Optimality gap, using the model’s linear relaxation; (OS,FS,IS) - (Optimal, Feasible, Infeasible) Solution.

In summary, GAP Generation is particularly innovative because:

• It generates fully defined planograms which are uncommon in the shelf-space literature. Most

models only tackle the space allocation to products disregarding product families, an essential

feature in practice;

• The mathematical formulation includes modeling aspects that significantly improve its per-

formance. The most important is the combination of commodity flow constraints for subtour elim-

ination with the hierarchical networks of product families to reduce the combinatorial burden of

product sequencing. Despite being introduced in this context, these modeling features can be ex-

plored in other sequencing problems having an hierarchical structure;
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• It integrates many practical aspects of merchandising rules not considered before (multilevel

product families, display orientation, product precedences) leading to more realistic problems in

this area;

• The suggested matheuristic guarantees the generation of optimized planograms in practical-

acceptable times even for large size instances with more than 200 products.

Both the formulation and the matheuristic are formally defined and compared in Bianchi-Aguiar

et al. (2015b). An overview of the mathematical formulation is given in Appendix B.

GAP Replication Given a fully defined planogram (role planogram), the GAP Replication

module reproduces a similar product placement for a new store without the need to provide mer-

chandising rules or other types of reasoning behind the planogram construction. The new space

is usually larger (in width, because planograms usually have the same height) but should have a

similar shelf layout to ensure compatibility between the two planograms. Because the new store

has a different demand pattern, the objective is to meet a new target number of facings, specified

upstream and suitable for this store.

We formulated the replication problem as a MIP model. Although we mainly aim to adjust the

product facings, the model necessarily determines the products’ location, to guarantee that the new

planogram fully complies with the role planogram. In particular, the following product placement

information is considered:

• products are required to keep the same relative position as in the role planogram. In the case

of shelves, this means that products maintain the same shelf level and they are placed following

the same sequence;

• product families are required to keep their uniform rectangular shapes. The family continu-

ity within each shelf is already ensured by keeping the same sequence. The rectangular shape is

obtained by vertically aligning the first and the last products of the shape, which we call the left

and right alignments. This allows us to consider shapes from the role planogram that may not

necessarily be rectangular (resulting from manual adjustments).

One may say that the role planogram suffers a controlled “expansion” to keep all alignments.

Note that during this process, we do not consider location effects on demand, as the relative product

placement constrains such a decision.

Although solving the formulation in a commercial solver allows us to generate solutions within

time limits that are acceptable in practice, we developed a second MIP-based heuristic to ensure
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the scalability of the approach, especially for the planograms with irregular shelf placements (mis-

alignments and interruptions in each shelf level), whose additional constraints greatly impacted the

performance of the formulation.

Generically speaking, this matheuristic has three main steps. The first step generates an initial

solution for the problem with the minimum display quantities for the products. The second step

iteratively adds the remaining product facings to the planogram until no more space is available

(or no more facings can be added). The last step tries to improve the solution by allowing the

removal and insertion of new facings. Technically, this approach is an integration of two well-

known MIP-based improvement heuristics: fix-and-optimize and local branching. Thus, in each

iteration, we solve the model with some variables partially constrained in one of two ways: a subset

of the variables is fixed to the values obtained in the incumbent solution (fix-and-optimize) or there

is a limited number of changes allowed to the values obtained in the incumbent solution (local

branching). One interesting aspect of this matheuristic is that it mimics the process followed by

the space managers when manually replicating planograms.

Table 2 compares the results obtained using our solution approach and a commercial solver on

the the model formulation. We use again three real-world instances ranging from small to large

(E1, J1 and G1), to illustrate the efficiency and scalability of the approach.

Table 2 We compared the performance of the matheuristic versus the straightforward use of a commercial solver on

the standard mathematical programming model for planogram replication (time limit of five minutes).

Name Details Formulation Matheuristic

#Products #Left alignments #Right alignments Optimality distance⇤ (%) Exec. Time Distance⇤⇤ (%) Exec. Time

E1 49 3 4 0.0 (OS) 00 : 00 : 14 �0.1 (FS) 00 : 00 : 03
J1 107 11 10 0.0 (OS) 00 : 01 : 27 �0.2 (FS) 00 : 00 : 02
G1 240 32 35 0.12 (FS) 01 : 05 : 00 �0.2 (FS) 00 : 00 : 24
⇤ Optimality distance (Gap) - maximum deviation from the best integer solution to the upper bound;
⇤⇤ Distance - deviation from the solutions obtained with the matheuristic and a straighforward use of a commercial solver
(OS,FS,IS) - (Optimal, Feasible, Infeasible) Solution.

In summary, GAP Replication is particularly innovative because:

• We introduce the replication problem in the shelf-space literature, presenting a novel practice-

oriented mathematical formulation. The replication process is done by most retailers which are

forced to cluster their stores to manage categories efficiently. Therefore, we believe that this is an

important step toward the use of analytic methods in shelf-space practice;
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• For retailers which have complex merchandising rules, this is a very valuable tool allowing

them to translate these hard to grasp and fuzzy rules in one example which is then the basis to

create the remaining planograms;

• The three-phase mathematical programming based heuristic is able to solve most problems in

less than three minutes guaranteeing the robustness and scalability of the approach. This is done by

combining state-of-the-art programming heuristics such as Fix-and-Optimize and Local Branching

in a single framework.

Both the formulation and the matheuristic are formally defined and compared in Bianchi-Aguiar

et al. (2015a). To improve the comprehension of the current paper an overview of the mathematical

formulation is given in Appendix C.

Aesthetics The formulations for planogram generation and replication focus on ensuring that

the shapes are rectangular and disregard other aesthetic details, resulting in planograms with some

display issues, such as large and irregular gaps between the products. The Aesthetics module is

responsible for improving the attractiveness of the planogram and it considers two key factors for

obtaining attractive displays: the way products are spaced throughout the planogram and whether

the planogram is fully merchandised (i.e. full of facings). For that purpose, the generation or

replication formulation (depending on whether it is a GAP Generation or Replication process) is

executed again with all the decisions fixed to the incumbent solution, with the exception of the

horizontal location of the products. The objective function is changed, first to minimize the empty

space, and second to minimize the maximum spacing between two consecutive products when no

more products fit the planogram. This latter objective distributes the empty space throughout the

products.

Infeasibility Analysis Highly customized and detailed merchandising rules lead to signifi-

cantly constrained generation and replication formulations which can compromise the existence of

a feasible solution for the problems. Moreover, the target facings formulation can also be infeasi-

ble, which results in too many possible causes for the process ending without a valid solution. To

overcome these data-related issues, we developed an Infeasibility Analysis module that searches for

the possible infeasibility causes using a structured and logical procedure. It performs multiple runs

of the infeasible formulation and, for each run, a problem feature or requirement is removed from

the formulation. The process stops after identifying a source for the infeasibility (i.e. whenever the

formulation is able to find a valid solution for the relaxed problem).
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Decision Support System

GAP Optimizer requires the integration of different types of information obtained from multiple

sources. If this information is not handled carefully, it may jeopardize the successful use of the

application. To this end, another important building block is the GAP user interface that manages

the data-handling process, executes the Replication and Generation processes with real-time status

messages, and presents the generated planograms at the end, together with a full execution report.

This report provides all the warnings and errors that occurred during the process and, when ap-

plicable, the infeasibility causes. That is, this interface is present throughout the entire process,

helping in the liaison with the users. Figure 9 depicts the most relevant flows of information as

well as snapshots from two interface forms: the project manager for handling the data and the

generation manual for managing rules and configurations.

Inputs GAP User Interface Output

Generation/Replication Manual

Project Manager

Product 
Assortment

Equipment

Product
Performance

Merchandising
Rules

Configurations

Solution
Report

Planogram(s)

Users

IKB Database (JDA)
IKB Database (JDA)

Users

 GAP
Optimizer

Commercial 
Solver

Figure 9 GAP has two main building blocks: GAP Optimizer and GAP User Interface. It requires the integration of

information obtained from multiple sources.

The generation manual is one of the key parts of the overall system. Inspired by handmade

merchandising manuals (c.f. Figure 2), this form presents a familiar interface (to space managers)
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for the configuration of merchandising rules adopting a intuitive approach. Space managers have

a high degree of flexibility in defining these rules, and in each run they can choose the level of

customization that they require in the generated planograms. For the advanced users, several other

configurations are available, from alternative location-elasticity curves and planogram evaluation

criteria to control parameters and tolerances. Each generation manual can be saved, consulted

and reused in multiple processes. Most importantly, it can evolve as the space managers evaluate

planogram solutions and realize possible changes to the planograms.

The GAP Optimizer is a C++ program with all the models embedded in the code. The com-

pany acquired a commercial solver and the formulations are executed using a C++ library from the

solver. The GAP user interface is developed using Windows Forms, and all the communications

between the two building blocks use XML files. Both the GAP Optimizer and the GAP user inter-

face are executed on a dedicated server and all space managers have access to the interface using

a remote desktop connection in a terminal-server architecture. At the moment, GAP does not have

a direct connection to the space database and the information is manually exported and imported

to the interface. Given the success of the project, Sonae MC is now studying more efficient infras-

tructures, both for communicating with the space planning database and for accessing the server

from the space managers’ terminals.

Project Development

The project was kicked-off in March 2012 and ran until July 2014. The two processes, GAP Gen-

eration and GAP Replication, were developed sequentially and each involved three main phases:

Requirements Definition, Prototype & Proof-of-concept and Testing & Validation. From the orga-

nizational standpoint, it included a team from FEUP, responsible for the development of GAP, and

two Sonae MC teams: a team from the Space Department, responsible for validating requirements

and testing GAP, and a team from ISI (the Information Systems and Innovation Department), re-

sponsible for integrating GAP into the information systems of the company.

We strongly believe that there were some key factors associated with GAP’s design and project

management which were crucial to the project’s success. The decision to divide GAP in two pro-

cesses played a vital role, from the perspective of both the space and commercial department,

because GAP’s development did not disrupt current practices. Starting the implementation with

GAP Replication was also in hindsight a wise decision for two reasons. First, the replication pro-

cess was quicker to implement and provided more consensual solutions, helping to bring the space
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managers on board with GAP at an earlier stage. Second, it allowed us to deepen our knowledge

of the complex structure defining the merchandising rules, which was vital for GAP Generation.

Another key aspect was the close collaboration that occurred between the three space managers

who were part of the project team, whose role was essential from requirements gathering and

problem definition to testing and validation phases. Weekly meetings between FEUP and the space

managers were important milestones for validating new developments. This continuous process

allowed us great flexibility in implementing GAP and led us to develop an application tailored

to Sonae MC’s requirements. Additionally, three space managers tested and validated GAP using

different categories of products, which was also significant for building (and communicating) their

internal confidence in the application.

Nevertheless, we faced some challenges in this collaboration between academic researchers and

industry practitioners who have different objectives, incentives and time horizons. In particular, at

the beginning of the project we found that the space managers were highly resistant to adopting the

new process. This was gradually overcome as we attempted to keep them updated on the evolution

of the project, which improved their commitment to GAP and allowed them to understand the

potential of the application.

Training sessions were also given before the roll-out of each of the two processes and, given

the systems’ complexity, they were crucial to engaging space managers. These sessions included

the analysis of planograms with unexpected characteristics obtained while using GAP and the

development of a check-list for systematically looking for alternative solutions in these situations.

Moreover, the execution report also played a vital role in allaying the concerns of space managers

when GAP produced an unexpected solution and, more importantly, when it did generate one.

Last – and perhaps one of the most important key factors for the success of the GAP implemen-

tation – the space planning and innovation directors showed enormous commitment and provided

their full sponsorship during the whole project.

Impact
Today, GAP is used daily by the entire micro-space team at Sonae MC, both for the generation

and replication of planograms. This section describes how it enhanced shelf-space management for

each of the three axes that were identified for the project: Process Automation, Space Optimization

and Image Standardization.
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Automation: From Planogram Construction to Planogram Evaluation

Perhaps the first and most straightforward impact of the project was on the space management

process, which led to better processing times and a positive change of paradigm.

During the first months after the roll-out, all space managers were encouraged to use GAP in

their daily tasks, and to register the number of planograms that GAP could generate, as well as the

process execution times (including the duration of data handling, creation of the generation and

replication manuals, and handmade adjustments to the final solution). The execution times were

later compared with the legacy process and the results were encouraging: based on an analysis of

over 400 planograms in eight different categories, space managers were able to automatically gen-

erate 8 percent of the planograms and the category space management processes took on average

48 percent less time (46 percent less in the generation processes and 50 percent less in the repli-

cation processes). Moreover, space managers also highlighted that these time reductions could be

more significant in the future, after they become more familiar with the new software and totally,

or partially, reuse the generation manuals that they carefully developed for the first processes.

Additionally, GAP shifted the space managers’ focus from planogram construction to planogram

evaluation, allowing them to concentrate on additional activities, such as market trend studies and

experiments with alternative merchandising rules. Therefore, this change of paradigm brought in-

creased responsibility to space managers, and gave them an analytical tool to support their deci-

sions during the meetings with the commercial department.

Optimization: Targeting Optimality for All Customization Levels

The impact of GAP Generation and GAP Replication on optimization needs to be measured inde-

pendently.

One of the greatest advantages of GAP Generation is its flexibility to generate either highly

customized solutions or more demand driven (and concurrently innovative) solutions, based on

the specifications in the generation manual. Figure 10 depicts this flexibility by showing three

planograms: the first was handmade by a space manager and the remaining two were generated

with GAP, first using a fully defined generation manual (high customization) and then using the

same manual but removing family precedences and display directions (low customization). While

the first generated planogram is largely similar to the handmade planogram, the second presents an

alternative reasoning behind its creation where the intention was to put the most popular families

in the premium vertical and horizontal locations.
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Figure 10 This Figure shows two planograms generated with GAP using two different levels of customization, and

their comparison with a handmade planogram.

Regardless of the customization level, GAP Generation always uses the available degrees of

freedom to optimize the number of product facings and the products’ location. To assess the impact

of GAP Generation on the planograms’ performance, we analyzed 25 generation processes (one

of which was the example described above). These examples were carefully selected during the

proof-of-concept phase to guarantee that all specificities of the categories were covered. The impact

was evaluated by measuring four performance metrics: potential sales increase (estimated using

the location elasticity curves with a maximum impact of 20%); days-supply balance (measured in

terms of the average and the standard deviation reductions); and planogram filling rate (defined by

the ratio of the linear space utilized and the overall available space). Table 3 summarizes the results

when generating these planograms using high and low customization levels. The percentage values

are relative to the handmade version. GAP Generation is able to improve the manual planogram

performance in all four metrics, both in the low and high customization versions. As expected,

reducing the number of rules imposed on the planogram yields additional gains with an average

increase of potential sales from 0.4% to 1.4%. We observed that the gains were more relevant in the

metrics regarding the day-supply values (whose average and standard deviation were reduced by

38% and 61% respectively), which is consistent with our primary objective. Note that days-supply
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values have a major impact on replenishment operations, holding costs and product availability.

The planograms’ filling rate also increases in both versions by 3% compared to the handmade

planograms.

Table 3 To assess the impact of GAP we analyzed 25 Generation and Replication processes. Generation processes

were run with low and high customization settings. Both processes bring benefits to the current practice, both in terms

of potential sales increase and inventory management.

GAP Generation GAP Replication
Low Customization High Customization

Potential sales increase ⇤ 1.4% 0.7% –
Average days-supply reduction⇤ 37.6% 35.3% 34.3%
Standard deviation days-supply reduction⇤ 60.8% 51.4% 56.3%
Space Occupation⇤⇤ 96.5% 96.7% 97.3%
Execution Time (hh:mm:ss) 00:07:12 00:01:50 00:02:10
⇤ with respect to the handmade planogram; ⇤⇤ 94% in handmade planogram

GAP Replication, by definition, has less margin for optimization, with changes being allowed

only to the number of facings that products have in the new planograms, subject to the many

allocation rules that were extracted from the role planogram. Nevertheless, a smarter product facing

allocation can optimize the day-supply values. We used the same 25 examples to assess GAP

Replication performance by replicating the handmade planograms to the same store. The results in

Table 3 prove that we are still able to significantly improve days-supply balancing.

This project also lead to a significant cultural change in the company. The success of the project

motivated the use of OR approaches (and more generically speaking, of analytical approaches) in

other operations planning activities. In particular, it triggered many other projects with the same OR

group from the University of Porto, both in space related problems, such as backroom optimization,

and in other related areas, such as marketing, store operations and logistics.

Standardization: Knowledge Management for a Global Process

Space managers are divided into groups responsible for subsets of categories. The knowledge

associated with each category is kept inside each group, supported by manuals that record the

implementation details (using a template similar to Figure 2). Nevertheless, these manuals are fre-

quently limited to the upper criteria levels, giving only a general idea of the reasoning behind

the planograms. Consequently, most of the category knowledge resides with the space managers,

which is partially lost when organizational changes occur. GAP also had a major impact on stan-

dardizing information and managing knowledge. First, the use of electronic generation manuals
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(and the possibility of reusing them) centralized the categories’ space planning knowledge and

made it possible to systematize the tacit knowledge available into information that can be shared

among peers. Second, it reduced the subjectivity of the process, which is now less dependent on

the managers’ experience.

Concluding Remarks
In the highly competitive retail environment of today, retailers can benefit from analytic tools for

better decision making and many successful examples are reported in the literature. Shelf-space

planning is one area that is still to be explored, mainly because of its complexity and high de-

pendency on merchandising rules. We believe that this work is an important contribution in this

direction, both from a theoretical and practical point of view. On the scientific front, we provide in-

novative mathematical models and efficient algorithms for the shelf-space allocation problem and

bring more realism to the scientific approaches to this problem. From the application perspective,

we give insights on how to tailor analytical approaches to the practice of shelf-space management,

by introducing the replication problem and by allowing users to control the level of customization

from solutions, while still applying optimization at every step of the process. For Sonae MC, this

resulted in an automated process that still took advantage of the space managers’ experience and

knowledge. We also provide project management details that were critical during GAP implemen-

tation in Sonae MC, the major Portuguese retail company that partnered in this project.

Although this paper describes a real application of shelf-space planning, the approach does not

intrinsically depend on any company specific policies, because it is based on rules that are defined

at run-time. Therefore, it is sufficiently generic to be suitable for other retail companies working

in the grocery industry or similar industries. Its modular nature also enables its adaptation and

integration with other IT systems.

Appendix A: Target Facings Model

In this appendix, we provide a mathematical formulation of the Target Facings Model. Consider a specific category

of a store with overall capacity C. The retailer wants to allocate N products, indexed by i 2 N , with length a

i

. Each

product is associated with a space-to-sales curve (Figure 5), which is linearized with piecewise lines, obtained using

the facings associated with the days-supply intervals (Figure 11). There are T days-supply intervals, indexed by n2T .

For each product i, the minimum and maximum facings of each interval n are ds

n

i

and ds

n+1
i

.

This space-to-sales curve represented in Figure 5 is widely used in the literature and is associated with a polynomial

function depending on the space-elasticity parameter as first introduced by Corstjens and Doyle (1981). Other authors
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Figure 11 The space elasticity curve is linearized using piecewise linearization based on the days-supply intervals

represented by the vertical lines.
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such as Gajjar and Adil (2010) have proposed piecewise linear approximations. However, we are the first to consider

the problem with days-supply intervals.

The objective is to maximize the planogram’s expected demand by determining the number of facings for each

product i. The decisions to be made are: g
n

, which specifies whether the days-supply interval n is selected for all

products; and W

n

i

, which indicates the number of facings of product i if the days-supply interval is g
n

.

The formulation is as follows:

Maximize Â
i2N

Â
n2T

f

n

i

(W n

i

) (1)

subject to: Â
i2N

Â
n2T

W

n

i

·a
i

C (shelf-space capacity) (2)

l

i

 Â
n2T

W

n

i

 u

i

, 8 i 2 N (minimum and maximum facings) (3)

ds

n

i

· g
n

W

n

i

 ds

n+1
i

· g
n+1, 8 i 2 N , n 2 T (number of facings) (4)

Â
n2T

g
n

= 1 (single day-supply interval) (5)

W

n

i

2 N0, 8 i 2 N , n 2 T ;g
n

2 {0,1}, 8n 2 T (integrality) (6)

Appendix B: Generation Model

In this appendix, we provide a simplified mathematical formulation of the Generation Model. The notation used in

Appendix A is extended by introducing K shelves, indexed by k 2 K and with length w

k

. The shelf attractiveness of

Figure 6 is modeled by parameter b
k

. Additionally, p

i

is the profit per facing of product i and l

i

and u

i

are the lower

and upper bounds for the number of facings of product i. These bounds are determined by the upstream Target Facings

Model and correspond to the bounds of the selected days-supply interval (l
i

= Â
n

g
n

·ds

n

i

and u

i

= Â
n

g
n

·ds

n+1
i

).

The objective is to maximize the planogram’s expected profit by determining the number of facings for each product

i and its placement on the shelves, while respecting all merchandising rules, translated into a tree diagram. Let W

ik

be
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the integer number of facings of product i on shelf k. The objective function and product allocation constraints can be

defined as follows:

Maximize Z = Â
i2N

Â
k2K

p

i

·b
k

·W
ik

(7)

subject to: l

i

 Â
k2K

W

ik

 u

i

, 8 i 2 N (minimum and maximum number of facings) (8)

Â
i2N

a

i

·W
ik

 w

k

, 8k 2 K (shelf capacity) (9)

To ensure a correct positioning of the products within its product family and on the shelf, let u 2 M denote the

set of product families and N
u

the set of products of family u. To capture the tree diagram of Figure 7 consider that

the set V
u

contains the immediately downstream families of parent family u, which for the final level corresponds to

products. The family sequencing in the planogram is ensured by the multi-level network flow constraints presented

below, where Y

mk

(0/1) defines if family m (or product i) is located on shelf k and T

mnk

(0/1) captures if family m is

displayed immediately after family n on shelf k.

Â
m2V

u

T0mk

= Y

uk

, 8 u 2 M , k 2 K (first family belonging to parent family u displayed in the shelf) (10)

Â
m2V

u

T

m0k

= Y

uk

, 8 u 2 M , k 2 K (last family belonging to parent family u displayed in the shelf) (11)

Â
n2V

u

[{0}
T

nmk

= Y

mk

, 8 u 2 M ,m 2 V
u

, k 2 K (only one family immediately before) (12)

Â
n2V

u

[{0}
T

mnk

= Y

mk

, 8 u 2 M ,m 2 V
u

, k 2 K (only one family immediately after) (13)

Y

mk

 Y

uk

, 8u 2 M , m 2 V
u

, k 2 K (only on the shelf if the parent family is allocated) (14)

W

ik

� Y

ik

, 8 i 2 N , k 2 K (only display facings on the shelf if the product is allocated) (15)

To complete the sequencing decisions and distribute the shelf length among the several product family layers as

depicted in Figure 8 the following single commodity constraints are required:

Â
m2V

u

F0mk

= 0, 8u 2 M , k 2 K (null initial flow in each network) (16)

Â
m2V

u

F

m0k

= Â
i2N

u

L

ik

, 8u 2 M , k 2 K (the end flow is equal to the sum of the family product’s length)(17)

Â
n2V

u

[{0}:
m 6=n

F

nmk

+ Â
i2N

m

L

ik

= Â
n2V

u

[{0}:
m 6=n

F

mnk

, 8u 2 M , m 2 V
u

, k 2 K (flow conservation constraints) (18)

F

mnk

 w

k

·T
mnk

, 8u 2 M , m,n 2 V
u

[{0} : m 6= n, k 2 K (flow can only traverse the selected arcs) (19)

Â
i2N

L

ik

= w

k

, 8k 2 K (all shelf length must be assigned) (20)

a

i

·W
ik

 L

ik

, 8 i 2 N , k 2 K (the shelf length assigned must hold the facings to be displayed) (21)

where L

ik

represents the shelf length assigned to product i on shelf k and F

mnk

is the cumulative assigned shelf length

(commodity flow) when changing from family m to family n on shelf k. This is used to describe the networks of Figure

8. Note that constraints (20) and (21) replace constraints (9).

The final set of constraints guarantee the rectangular shape of product families in the planogram. We impose the

rectangular shapes by determining the left and right coordinate of each family and ensuring that the family’s first and
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last products of each shelf are kept within v units from these coordinates. To complete the rectangular shape, we force

that the family has to be in consecutive shelves. To do so, let X

s

m

(Xe

m

) be the left (right) horizontal coordinate of the

family m and FL

mk

(LL

mk

) be equal to one if k is the first (last) shelf of block m.

X

s

m

� X

s

u

+ Â
n2V

u

[{0}:
n6=m

F

nmk

, 8u 2 M , m 2 V
u

, k 2 K (left alignment) (22)

X

s

m

 X

s

u

+ Â
n2V

u

[{0}:
n6=m

F

nmk

+C · (1�Y

mk

), 8u 2 M , m 2 V
u

, k 2 K (left alignment) (23)

X

e

m

�X

s

m

� Â
i2N

m

L

ik

, 8u 2 M , m 2 V
u

, k 2 K (right alignment) (24)

X

e

m

�X

s

m

� v  Â
i2N

m

L

ik

+C · (1�Y

mk

), 8u 2 M , m 2 V
u

, k 2 K (right alignment) (25)

Â
k2K

FL

mk

= 1, FL

m0 = Y

m0, 8u 2 M , m 2 V
u

(first shelf identification) (26)

Â
k2K

LL

mk

= 1, LL

mK

= Y

mK

, 8u 2 M , m 2 V
u

(last shelf identification) (27)

FL

m,k+1 +Y

mk

= Y

m,k+1 +LL

mk

, 8u 2 M , m 2 V
u

, k 2 K : k 6= K (shelf consecutiveness) (28)

Additional details about the generation model are presented in Bianchi-Aguiar et al. (2015b).

Appendix C: Replication Model

In this appendix, we provide a simplified mathematical formulation of the Replication Model. We will follow the

notation used in Appendices A and B.

The objective is to replicate the product placement of a given planogram to a new store without the need to specify

merchandising rules, while maximizing the new planogram’s expected profit. For that, products should be assigned

by the same sequence to the same shelves and product families should keep their rectangular shapes, which can be

ensured by aligning the family’s first and last product of each shelf (with a tolerance of v units). For that, consider

the sets N
k

containing the products from each shelf k and M

L left-alignments and M

R right-alignments, indexed by

m 2 M R [M L. As products are not able to change between shelves, the shelf attractiveness was incorporated in the

profit: p

i

Let the products be numbered according to their positioning. W

i

is the integer number of facings of the i

th product

and L

i

is the shelf length assigned to the i

thproduct i. Additionally, X

L

m

and X

R

m

capture the horizontal location of left

and right alignments, respectively. The replication model reads:

Maximize Z = Â
i2N

p

i

·W
i

(29)

subject to: l

i

W

i

 u

i

, 8 i 2 N (minimum and maximum number of facings) (30)

L

i

�a

i

W

i

� 0, 8 i 2 N (the shelf length assigned must hold the facings to be displayed) (31)

Â
i2N

k

L

i

= w

k

, 8k 2 K (all shelf length must be assigned) (32)

X

i

= Â
j2N

k

: j<i

L

j

, 8k 2 K , i 2 N
k

(product’s positioning and relationship) (33)

X

L

m

� v  X

s

i

, 8m 2 M L, i 2 N L

m

(product families’ left alignment) (34)



Bianchi-Aguiar et al: Using Analytics to Enhance Shelf-Space Management in a Food Retailer

Interfaces 00(0), pp. 000–000, c� 0000 INFORMS 29

X

L

m

� X

s

i

, 8m 2 M L, i 2 N L

m

(product families’ left alignment) (35)

X

R

m

+ v � X

s

i

+L

i

, 8m 2 M R, i 2 N R

k

(product families’ right alignment) (36)

X

R

m

 X

s

i

+L

i

, 8m 2 M R, i 2 N R

k

(product families’ right alignment) (37)

This formulation requires each product to stay in a single product. If this is not the case, then each products’ position

should be assigned with a diferent index and small changes are needed in the formulation. Additional details about the

replication model are presented in Bianchi-Aguiar et al. (2015a)
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