
FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO

Dynamic Code Coverage with
Progressive Detail Levels

Alexandre Campos Perez

Mestrado Integrado em Engenharia Informática e Computação

Supervisor: Rui Maranhão (PhD)

Co-Supervisor: André Riboira (MSc)

18th June, 2012

ar
X

iv
:1

30
6.

45
46

v1
 [

cs
.S

E
]

 1
9

Ju
n

20
13

c© Alexandre Campos Perez, 2012

Dynamic Code Coverage with Progressive Detail Levels

Alexandre Campos Perez

Mestrado Integrado em Engenharia Informática e Computação

Approved in oral examination by the committee:

Chair: Ademar Manuel Teixeira de Aguiar (PhD)

External Examiner: João Alexandre Baptista Vieira Saraiva (PhD)

Supervisor: Rui Filipe Maranhão de Abreu (PhD)

18th June, 2012

This work is financed by the ERDF – European Regional Development Fund through the COMPETE
Programme (operational programme for competitiveness) and by National Funds through the FCT - Fun-
dação para a Ciência e a Tecnologia (Portuguese Foundation for Science and Technology) within project
PTDC/EIA-CCO/116796/2010.

i

ii

Resumo

Hoje em dia, a localização de componentes de software responsáveis por uma avaria é uma das
tarefas mais dispendiosas e propensas a erros no processo de desenvolvimento de software.

Para melhorar a eficiência do processo de depuração, algum esforço já foi feito para automati-
camente auxiliar a deteção e localização de falhas de software. Isto levou à criação de ferramentas
de depuração estatística como Tarantula, Zoltar e GZoltar. Estas ferramentas utilizam informação
recolhida a partir de dados de cobertura de código e do resultado das execuções dos casos de teste
para retornar uma lista dos locais mais prováveis de conter uma falha.

Estas ferramentas de localização de falhas, apesar de úteis, têm alguns problemas de dimen-
sionamento devido à necessidade de analisar dados de cobertura com granularidade fina. O over-
head de instrumentação, que em alguns casos pode ser tão elevado como 50%, é a principal causa
para a sua ineficiência.

Esta tese propõe uma nova abordagem para este problema, evitando tanto quanto possível o
elevado nível de detalhe de cobertura, mas continuando a utilizar as técnicas comprovadas que as
ferramentas de localização de falhas empregam.

Esta abordagem, chamada Dynamic Code Coverage (DCC), consiste na utilização de uma
instrumentação inicial mais grosseira, obtendo dados de cobertura apenas para componentes de
grandes dimensões (p.e., classes). Em seguida, o detalhe da instrumentação de certos componentes
é progressivamente aumentado, com base nos resultados intermédios fornecidos pelas mesmas
técnicas de localização de falhas utilizadas em ferramentas atuais.

Para avaliar a eficácia da abordagem proposta, foi realizada uma avaliação empírica, injetando
falhas em quatro projetos de software. A avaliação empírica demonstra que a abordagem DCC
reduz o overhead de execução que existe nas técnicas atuais de localização de falhas, e também
apresenta ao utilizador um relatório de diagnóstico de falha mais conciso. Foi observada uma
redução do tempo de execução de 27% em média e uma redução do tamanho do relatório de
diagnóstico de 63% em média.

iii

iv

Abstract

Nowadays, locating software components responsible for observed failures is one of the most
expensive and error-prone tasks in the software development process.

To improve the debugging process efficiency, some effort was already made to automatically
assist the detection and location of software faults. This led to the creation of statistical debugging
tools such as Tarantula, Zoltar and GZoltar. These tools use information gathered from code
coverage data and the result of test executions to return a list of potential faulty locations.

Although helpful, fault localization tools have some scaling problems because of the fine-
grained coverage data they need to perform the fault localization analysis. Instrumentation over-
head, which in some cases can be as high as 50% is the main cause for their inefficiency.

This thesis proposes a new approach to this problem, avoiding as much as possible the high
level of coverage detail, while still using the proven techniques these fault localization tools em-
ploy.

This approach, named Dynamic Code Coverage (DCC), consists of using a coarser initial
instrumentation, obtaining only coverage traces for large components. Then, the instrumentation
detail of certain components is progressively increased, based on the intermediate results provided
by the same techniques employed in current fault localization tools.

To assess the validity of our proposed approach, an empirical evaluation was performed, in-
jecting faults in four real-world software projects. The empirical evaluation demonstrates that the
DCC approach reduces the execution overhead that exists in spectrum-based fault localization,
and even presents a more concise potential fault ranking to the user. We have observed execution
time reductions of 27% on average and diagnostic report size reductions of 63% on average.

v

vi

Acknowledgements

This thesis project would certainly not have been the same without the help of several people and
organizations. I would like to take a moment to acknowledge and thank them.

First, I would like to thank Faculdade de Engenharia da Universidade do Porto for providing
me with the knowledge that I have gained these last few years. I would also like to express my
utmost gratitude to my supervisors, Prof. Dr. Rui Maranhão and André Riboira for their support,
motivation and insight. Their guidance and feedback helped me greatly throughout this project
and I could not imagine having better mentors and advisors for my MSc thesis. It was a pleasure
working with them and I hope to be able to work with them again in the future.

A special thanks goes to João Santos, José Carlos de Campos, Nuno Cardoso and Francisco
Silva for the all the laughs, support and insightful suggestions during my research at the Software
Engineering Laboratory.

I would also like to give my sincere thanks to my all friends and family for being so supportive
and understanding of my absence during stressful periods.

Last, but certainly not least, I would like to thank my parents, Jesus and Maria Filomena, for
their unending support throughout my life.

Porto, 18th June, 2012

Alexandre Perez

vii

viii

Contents

1 Introduction 1
1.1 Context . 2
1.2 Concepts and Definitions . 3
1.3 Motivation . 4
1.4 Research Question . 5
1.5 A Dynamic Code Coverage Approach . 5
1.6 Document Structure . 6

2 State of the art 9
2.1 Traditional Debugging . 9

2.1.1 Assertions . 9
2.1.2 Breakpoints . 9
2.1.3 Profiling . 10
2.1.4 Code Coverage . 10

2.2 Statistical Debugging . 12
2.2.1 Tarantula . 14
2.2.2 Zoltar . 15
2.2.3 EzUnit . 16
2.2.4 GZoltar . 18

2.3 Reasoning Approaches . 18
2.3.1 Model-Based Diagnosis . 18
2.3.2 Model-Based Software Debugging . 19

2.4 Discussion . 19

3 Dynamic Code Coverage 21
3.1 Motivational Example . 21
3.2 Dynamic Code Coverage Algorithm . 22
3.3 Discussion . 26

4 Tooling 29
4.1 GZoltar Toolset . 29
4.2 Modifications and Improvements . 31
4.3 Dynamic Code Coverage Prototype . 32
4.4 Discussion . 33

5 Empirical Evaluation 35
5.1 Experimental Setup . 35
5.2 Experimental Results . 36

ix

CONTENTS

5.3 Threats to Validity . 41

6 Conclusions and Future Work 43
6.1 State of the art of Debugging Tools . 43
6.2 Proposed Solution . 43
6.3 Main Contributions . 44
6.4 Publications . 44
6.5 Future Work . 45

References 47

A Publications 51
A.1 Fault Localization using Dynamic Code Coverage 52
A.2 GZoltar: an Eclipse plug-in for Testing and Debugging 53
A.3 A Dynamic Code Coverage Approach to Maximize Fault Localization Efficiency 61

x

List of Figures

1.1 Software development process. 1
1.2 First actual case of bug being found. 2
1.3 Progressive detail of a component. 6

2.1 Instrumentation Code Insertion [TH02]. 11
2.2 Input to Spectrum-based Fault Localization (SFL) [JAvG09a]. 12
2.3 Tarantula interface. 14
2.4 Zoltar interface [JAvG09a]. 15
2.5 SFL’s similarity coefficients performance comparison [Abr09]. 16
2.6 EzUnit interface. 17
2.7 EzUnit call graph. 17
2.8 GZoltar interface [Rib11]. 18

3.1 SFL output example. 21
3.2 Component filters. 24
3.3 DCC output example. 25

(a) First iteration . 25
(b) Second iteration . 25
(c) Third iteration . 25

4.1 GZoltar’s visualizations: Sunburst and Treemap. 30
4.2 RZoltar’s interface. 30
4.3 Statement failure probability markers. 31

5.1 NanoXML time execution results. 37
(a) Coefficient filter . 37
(b) Percentage filter . 37

5.2 org.jacoco.report time execution results. 38
(a) Coefficient filter . 38
(b) Percentage filter . 38

5.3 XML-Security time execution results. 39
(a) Coefficient filter . 39
(b) Percentage filter . 39

5.4 JMeter time execution results. 40
(a) Coefficient filter . 40
(b) Percentage filter . 40

xi

LIST OF FIGURES

xii

List of Tables

2.1 Code Coverage tools comparison. 11
2.2 Example of SFL technique with Ochiai coefficient. 13

5.1 Experimental Subjects. 36

xiii

LIST OF TABLES

xiv

List of Algorithms

1 Dynamic Code Coverage. 23

xv

LIST OF ALGORITHMS

xvi

Abbreviations

DCC Dynamic Code Coverage

IDE Integrated Development Environment

JVM Java Virtual Machine

LOC Line Of Code

MBD Model-Based Diagnosis

MBSD Model-Based Software Debugging

SDT Statistical Debugging Tool

SFL Spectrum-based Fault Localization

SUT System Under Test

xvii

Chapter 1

Introduction

The software development process generally follows four main phases: a requirements and design

phase, after that an implementation phase, followed by a testing phase, and finally the release. All

these steps can be defined, and estimated, with a high degree of certainty.

However, in most, if not all, software projects, some tests fail. Because of that, cycles are

introduced in the process, in which another task has to be performed – the so-called debugging

phase (see Figure 1.1).

Most of the time, the debugging phase consists of changing the implementation so that faults

are eliminated. However, in some cases, the system design itself can be at fault, and has to be

modified. In this thesis, we will focus on the software implementation debugging.

Requirements/
Design

Implementation

Testing

Release

Debugging

Figure 1.1: Software development process.

The debugging phase consumes a huge amount of a project’s resources [Tas02, HS02]. Fur-

thermore, one cannot estimate with a high degree of certainty the cost of this phase (in terms of

1

Introduction

time and also money). For this reason, it is important to minimize the impact that debugging has

in the development process.

Software debugging tools and methodologies almost always existed, but they were fairly in-

effective and ad-hoc. Currently, there are some tools that automate this process by returning the

most likely locations of containing a fault. However, these tools do not scale because they need to

instrument code at a fine-grained detail level.

This thesis’ main goal is to improve the efficiency of automated debugging techniques so that

developers spend less time locating faults and thus minimizing the cost of this cumbersome phase.

1.1 Context

In 1947, the Harvard Mark II was being tested by Grace Murray Hopper and her associates when

the machine suddenly stopped. Upon inspection, the error was traced to a dead moth that was

trapped in a relay and had shorted out some of the circuits. The insect was removed and taped to

the machine’s logbook (see Figure 1.2) [Kid98]. This incident coined the use of the terms “bug”,

“debug” and “debugging” in the field of computer science.

Figure 1.2: First actual case of bug being found.

2

Introduction

In software development, a large amount of resources is spent in the debugging phase. It is

estimated that testing and debugging activities can easily range from 50 to 75 percent of the total

development cost [HS02]. This is due to the fact that the process of detecting, locating and fixing

faults in the source code, is not trivial and rather error-prone. Even experienced developers are

wrong almost 90% of the time in their initial guess while trying to identify the cause of a behavior

that deviates from the intended one [KM08].

If this debugging task is not thoroughly conducted, even bigger costs may arise. In fact, a

landmark study performed in 2002 indicated that software defects constitute an annual $60 billion

cost to the US economy alone [Tas02].

The first debugging techniques to be used consisted of utilizing prints and stack traces, asser-

tions, breakpoints, coverage information and profiling. These techniques, which sometimes are

called traditional debugging techniques, are quite ineffective by themselves and rather ad-hoc in

nature.

Traditional debugging techniques have several limitations. They rely heavily on the devel-

oper’s intuition and suffer from a considerable execution overhead, since many combinations of

program executions have to be examined. Furthermore, in most cases, developers only use failing

test cases to diagnose a certain defect, disregarding useful information about passing test cases.

Traditional debugging also requires developers to have a comprehensive knowledge of the program

under test.

In order to improve the debugging efficiency, this process needs to be automated. Some effort

was already made to automatically assist the detecting and locating steps of the software debugging

phase. This led to the creation of automatic fault localization tools, namely Zoltar [JAvG09a] and

Tarantula [JHS02]. The tools instrument the source code to obtain code coverage traces for each

execution (also known as program spectra), which are then analyzed to return a list of potential

faulty locations.

To improve the exploration and intuitiveness of that potential faulty locations list, an Eclipse1

plugin was also developed – GZoltar [RA10]. This tool provides fault localization functionality to

an Integrated Development Environment (IDE), with several interactive visualization options, as

well as testing selection and prioritization functionalities.

1.2 Concepts and Definitions

Throughout this thesis, we use the following terminology [ALRL04]:

• A failure is an event that occurs when delivered service deviates from correct service.

• An error is a system state that may cause a failure.

• A fault (defect/bug) is the cause of an error in the system.

1Eclipse integrated development environment – http://www.eclipse.org/

3

http://www.eclipse.org/

Introduction

In this thesis, we apply this terminology to software programs, where faults are bugs in the

program code. Failures and errors are symptoms caused by faults in the program. The purpose of

fault localization is to pinpoint the root cause of observed symptoms.

Definition 1 A software program Π is formed by a sequence of one or more M statements.

Given its dynamic nature, central to the fault localization technique considered in this thesis is

the existence of a test suite.

Definition 2 A test suite T = {t1, . . . , tN} is a collection of test cases that are intended to test

whether the program follows the specified set of requirements. The cardinality of T is the number

of test cases in the set |T |= N.

Definition 3 A test case t is a (i,o) tuple, where i is a collection of input settings or variables for

determining whether a software system works as expected or not, and o is the expected output. If

Π(i) = o the test case passes, otherwise fails.

1.3 Motivation

It is essential to find ways to minimize the software testing and debugging impact on a project’s

resources. However, it is imperative that the software quality (i.e., correctness) is not compro-

mised. While some defects can be tolerated by users (or even not perceived at all), others may

cause severe financial and/or life-threatening consequences. Examples of well-known drastic con-

sequences caused by software defects are:

• The software malfunction of the rocket Ariane 5, which caused it to disintegrate 37 seconds

after its launch [Lio96, Dow97];

• The crash of a British Royal Air Force Chinook due to a software defect in the helicopter’s

engine control computer, killing 29 people [Rog02].

For this reason, automatic debugging tools are essential to aid developers in maintaining their

software project’s quality. Nowadays, automatic fault localization techniques can aid develop-

ers/testers in pinpointing the root cause of software failures, and thereby reducing the debug-

ging effort. Amongst the most diagnostic-effective techniques is Spectrum-based Fault Localiza-

tion (SFL).

SFL is a statistical technique that uses abstraction of program traces (also known as program

spectra) to correlate software component (e.g., statements, methods, classes) activity with program

failures [AZGV09, LFY+06, WWQZ08]. As SFL is typically used to aid developers in identifying

what is the root cause of observed failures, it is used with high level of granularity (i.e., statement

level).

Statistical approaches to debugging are very attractive because of the relatively small overhead

with respect to CPU time and memory requirement [AZGV09, AZvG09]. However, gathering the

4

Introduction

input information, per test case, to yield the diagnostic ranking may still impose a considerable

(CPU time) overhead. This is particularly the case for resource constrained environments, such as

embedded systems.

As said before, typically, SFL is used at development-time at a statement level granularity

(since debugging requires to locate the faulty statement). But not all components need to be

inspected at such fine grain granularity. In fact, components that are unlikely to be faulty may

not need to be inspected. This way, by removing instrumentation from unlikely locations, more

projects will be suitable to be debugged with these fault localization techniques, since the imposed

overhead will be reduced.

1.4 Research Question

The main research question that we are trying to answer with this work is the following:

• How can a fault localization approach that instruments less software components obtain

similar diagnostic results when compared with SFL, while reducing execution overhead?

The main objective of this thesis is to devise a fault localization approach that is comparable

to SFL in terms of diagnostic results, while trying to be more lightweight regarding the instrumen-

tation used to obtain the characterization of the program executions (i.e., the program spectra).

This way, bigger projects will be able to use these debugging methodologies than before (espe-

cially resource constrained projects). It is also expected that due to this instrumentation decrease,

the fault localization process will be shorter in terms of execution time.

1.5 A Dynamic Code Coverage Approach

This thesis proposes a technique, coined Dynamic Code Coverage (DCC).

This technique automatically adjusts the granularity per software component. First, our ap-

proach instruments the source code using a coarse granularity (e.g., package level in Java) and

the fault localization is executed. Then, it is decided which components are expanded based on

the output of the fault localization technique. With expanding we mean changing the granularity

of the instrumentation to the next detail level (e.g., in Java, for instance, instrument classes, then

methods, and finally statements), behaving like the diagram in Figure 1.3. This expansion can be

done in different ways, either selecting the components whose fault coefficient is above a certain

threshold, or selecting the first ranked components, according to a set percentage.

5

Introduction

Module

Module

Module

Figure 1.3: Progressive detail of a component.

1.6 Document Structure

This document will be structured as follows:

Chapter 2 contains the state of the art in this project’s field. Traditional and statistical debug-

ging techniques and tools, and model-based reasoning approaches to debugging are presented in

this chapter.

Chapter 3 details the DCC algorithm. A motivational example is presented to show the inef-

ficiencies of current approaches, followed by the DCC algorithm description and its main advan-

tages and shortcomings.

Chapter 4 presents the tool chosen to host the DCC prototype – GZoltar – as well as some

modifications that have been made to this tool.

Chapter 5 presents our empirical evaluation setup and findings.

Chapter 6 presents some conclusions about the work and describes the main contributions of

this thesis. After that, some future work challenges are presented.

Lastly, Appendix A contains the accepted scientific publications during this work, submitted

to IJUP’122 and ASE’123. A publication currently being prepared for submission into ICST’134

2The 5th Meeting of Young Researchers of University of Porto, 2012
3The 27th IEEE/ACM International Conference on Automated Software Engineering, 2012
4The 6th IEEE International Conference on Software Testing, Verification and Validation, 2013

6

Introduction

is also included.

Note that most of the work presented in this thesis has been submitted for publication at

ICST’13.

7

Introduction

8

Chapter 2

State of the art

In software development, a large amount of resources is spent in debugging [Tas02, HS02]. This

process consists of three major phases:

• Detecting a fault in a program’s behavior.

• Locating said fault in the source code.

• Fixing the code to eliminate the fault.

This not trivial and rather error-prone. For this reason, many tools were created to assist

developers in this process, each tool having its advantages and its disadvantages. This chapter

presents the state of the art of debugging techniques.

2.1 Traditional Debugging

In this section, some traditional debugging techniques and tools will be described, namely asser-

tions, breakpoints, profiling and code coverage.

2.1.1 Assertions

Assertions are formal constraints that the developer can use to specify what the system is supposed

to do (rather than how) [Ros95].

These constructs are generally predefined macros that expand into an if statement that aborts

the execution if the expression inside the assertion evaluates to false.

Assertions can be seen, then, as permanent defense mechanisms for runtime fault detection.

2.1.2 Breakpoints

A breakpoint specifies that the control of a program execution should transfer to the user when

a specified instruction is reached [CLR05]. The execution is stopped and the user can inspect

and manipulate its state (e.g. the user can read and change variable values). It is also possible to

9

State of the art

perform a step-by-step execution after the breakpoint. This is particularly useful to observe a bug

as it develops, and to trace it to its origin.

There are other types of breakpoints, namely data breakpoints and conditional breakpoints.

Data breakpoints (also called watchpoints [SPS06]) transfer control to the user when the value

of a expression changes. This expression may be a value of a variable, or multiple variables

combined by operators (e.g.: a + b). Conditional breakpoints only stop the execution if a certain

user-specified predicate is true, thus reducing the frequency of user-application interaction.

Breakpoints are available in most modern Integrated Development Environments (IDEs).

2.1.3 Profiling

Profiling is a dynamic analysis that gathers some metrics from the execution of a program, such as

memory usage and frequency and duration of function calls. Profiling’s main use is to aid program

optimization, but it is also useful for debugging purposes, such as:

• Knowing if functions are being called more or less often than expected;

• Finding if certain portions of code execute slower than expected or if they contain memory

leaks;

• Investigating the behavior of lazy evaluation strategies.

Known profiling tools include GNU’s gprof [GKM82] and the Eclipse plugin TPTP1.

2.1.4 Code Coverage

Code coverage is an analysis method that determines which parts of the System Under Test (SUT)

have been executed (covered) during a system test run [GvVEB06].

Using code coverage in conjunction with tests, it is possible to see which Lines Of Code

(LOCs), methods or classes were covered in a specific test (depending on the set level of detail).

With this information, it is possible to identify which components were involved in a system

failure, narrowing the search for the faulty component that made the test fail.

Table 2.1 presents a non-exhaustive list of code coverage tools available in the market, with

the languages they support and the detail levels they provide (adapted from [YLW06]). It is worth

to note that we have limited the scope of our research to code coverage tools for imperative and

object oriented languages. This way, a comparison using coverage measurement detail levels can

be established.

1Eclipse Test & Performance Tools Platform Project – http://www.eclipse.org/tptp/

10

http://www.eclipse.org/tptp/

State of the art

Website Language(s) Line Decision Method Class
Agitar http://www.agitar.com/ Java X X X X
Bullseye http://www.bullseye.com/ C/C++ X X
Clover http://www.atlassian.com/software/

clover/
Java, .NET X X X

Cobertura http://cobertura.sourceforge.net/ Java X X
Dynamic http://www.dynamic-memory.com/ C/C++ X X X
EclEmma http://www.eclemma.org/ Java X X X X
gcov http://gcc.gnu.org/onlinedocs/gcc/

Gcov.html
C/C++ X

Insure++ http://www.parasoft.com/jsp/
products/insure.jsp

C/C++ X

JCover http://www.mmsindia.com/JCover.html Java X X X X
JTest http://www.parasoft.com/jsp/

products/jtest.jsp
Java, .NET X X

PurifyPlus http://www.ibm.com/software/
awdtools/purifyplus/

C/C++, Java,
.NET

X X

SD http://www.semdesigns.com/ C/C++, Java,
C#, PHP,
COBOL

X X X X

TCAT http://www.soft.com/Products/
Coverage/

C/C++, Java X X X X

Table 2.1: Code Coverage tools comparison.

In order to obtain information about what components were covered in each run, these Code

Coverage tools have to instrument the system code. This instrumentation will monitor each com-

ponent and register if the they were executed.

Pre

Relocated
Instruction

Post

Program

Base
Trampoline

Save
Registers

Set up
Args

Snippet

Restore
Registers

foo()

Mini
Trampoline

Figure 2.1: Instrumentation Code Insertion [TH02].

Instrumentation code, as seen in Figure 2.1, relies in a series of trampolines to a desired func-

tion foo() before the desired instructions. In the case of Cove Coverage tools, foo() will

11

http://www.agitar.com/
http://www.bullseye.com/
http://www.atlassian.com/software/clover/
http://www.atlassian.com/software/clover/
http://cobertura.sourceforge.net/
http://www.dynamic-memory.com/
http://www.eclemma.org/
http://gcc.gnu.org/onlinedocs/gcc/Gcov.html
http://gcc.gnu.org/onlinedocs/gcc/Gcov.html
http://www.parasoft.com/jsp/products/insure.jsp
http://www.parasoft.com/jsp/products/insure.jsp
http://www.mmsindia.com/JCover.html
http://www.parasoft.com/jsp/products/jtest.jsp
http://www.parasoft.com/jsp/products/jtest.jsp
http://www.ibm.com/software/awdtools/purifyplus/
http://www.ibm.com/software/awdtools/purifyplus/
http://www.semdesigns.com/
http://www.soft.com/Products/Coverage/
http://www.soft.com/Products/Coverage/

State of the art

register that the instruction was touched by the execution.

This instrumentation introduces overhead to the system’s execution during the testing and

debugging phases. According to Yang, et al [YLW06], Code Coverage tools, which have to in-

strument at a LOC level, introduce execution speed overheads of up to 50%.

2.2 Statistical Debugging

Statistical Debugging Tools (SDTs) use statistical techniques to calculate the probability of a cer-

tain software component of the SUT containing faults. The most effective statistical technique is

Spectrum-based Fault Localization (SFL) [Abr09].

SFL exploits information from passed and failed system runs. A passed run is a program

execution that is completed correctly, and a failed run is an execution where an error was de-

tected [JAvG09a]. The criteria for determining if a run has passed or failed can be from a variety

of different sources, namely test case results and program assertions, among others. The informa-

tion gathered from these runs is their code coverage (also called program spectra [AZG06]).

A program spectra is a characterization of a program’s execution on a dataset [RBDL97]. This

collection of data, gathered at runtime, provides a view on the dynamic behavior of a program.

The data consists of counters or flags for each software component. Different program spectra

exist [HRS+00], such as path-hit spectra, data-dependence-hit spectra, and block-hit spectra.

As explained in section 2.1.4, in order to obtain information about which components were

covered in each execution, the program’s source code needs to be instrumented, similarly to code

coverage tools [YLW06]. This instrumentation will monitor each component and register those

that were executed. Components can be of several detail granularities, such as classes, methods,

and lines of code.

The hit spectra of N runs constitutes a binary N×M matrix A, where M corresponds to the

instrumented components of the program. Information of passed and failed runs is gathered in a

N-length vector e, called the error vector. The pair (A,e) serves as input for the SFL technique, as

seen in Figure 2.2.

N spectra

M components


a11 a12 · · · a1M

a21 a22 · · · a2M
...

...
. . .

...
aN1 aN2 · · · aNM




error
detection


e1
e2
...

eN




Figure 2.2: Input to SFL [JAvG09a].

With this input, fault localization consists in identifying what columns of the matrix A resem-

ble the vector e the most. For that, several different similarity coefficients can be used [JD88].

12

State of the art

mid() { Runs
int x,y,z,m; 1 2 3 4 5 6 Coef.

1: read("Enter 3 numbers:",x,y,z); 0.41
2: m = z; 0.41
3: if (y<z) { 0.41
4: if (x<y) 0.50
5: m = y; 0.0
6: else if (x<z) 0.58
7: m = y; //BUG 0.71
8: } else { 0.0
9: if (x>y) 0.0
10: m = y; 0.0
11: else if (x>z) 0.0
12: m = x; 0.0
13: } 0.0
14: print("Middle number is:",m); 0.41

} Pass/fail status: X X X X 7 X

Table 2.2: Example of SFL technique with Ochiai coefficient.

One of them is the Ochiai coefficient [AZvG07], used in the molecular biology domain. Ochiai is

defined as follows:

sO(j) =
n11(j)√

(n11(j)+n01(j))× (n11(j)+n10(j))
(2.1)

where npq(j) is the number of runs in which the component j has been touched during execution

(p = 1) or not touched during execution (p = 0), and where the runs failed (q = 1) or passed

(q = 0). For instance, n11(j) counts the number of times component j has been involved in failed

executions, whereas n10(j) counts the number of times component j has been involved in passed

executions. Formally, npq(j) is defined as

npq(j) = |{i | ai j = p∧ ei = q}| (2.2)

In Table 2.2 it is shown an example of the SFL technique, using the Ochiai coefficient (adapted

from [JH05]). To improve this example’s legibility, the coverage matrix and the error detection

vector were transposed. In this example, the SUT is a function named mid() that reads three

integer numbers and prints the median value. This program contains a fault on line 7 – it should

read m = x;.

Six test cases were run, and their coverage information for each LOC can be seen to the

right. At the bottom there is also the pass/fail status for each run – which corresponds to the error

detection vector e. Then, the similarity coefficient was calculated for each line using the Ochiai

coefficient (2.1). These results represent the likelihood of a certain line containing a fault. The

bigger the coefficient, the more likely it is of a line containing a fault. Therefore, these coefficients

13

State of the art

can be ranked to form an ordered list of the probable faulty locations.

In this specific example, the highest coefficient is in line 7 – the faulty LOC. The SFL tech-

nique has successfully performed the fault localization.

2.2.1 Tarantula

Tarantula2 [JHS02] is a visual debugging system that is used to debug projects written in the C

language. This tool is being developed at Georgia Tech and uses SFL for the fault localization.

Tarantula runs test suites against the SUT and displays the calculated probability of each LOC

by highlighting them accordingly – varying from red (maximum failure probability) to green (min-

imum failure probability). In Figure 2.3 it is shown the tool’s interface. Tarantula has the ability

to analyze the whole system at once, which is convenient for debugging large projects, as well as

gathering management metrics about the project.

Figure 2.3: Tarantula interface.

2Tarantula - Fault Localization via Visualization – http://pleuma.cc.gatech.edu/aristotle/Tools/
tarantula/

14

http://pleuma.cc.gatech.edu/aristotle/Tools/tarantula/
http://pleuma.cc.gatech.edu/aristotle/Tools/tarantula/

State of the art

For the similarity coefficient, Tarantula uses the following coefficient [AZvG07, JH05]:

sT (j) =
n11(j)

n11(j)+n01(j)
n11(j)

n11(j)+n01(j) +
n10(j)

n10(j)+n00(j)

(2.3)

However, studies [AZvG07] have shown that this coefficient under-performs Ochiai (2.1).

Furthermore, Tarantula is currently not available for download.

2.2.2 Zoltar

Zoltar [JAvG09a] is a tool that implements fault localization in C/C++ projects (see Figure 2.4).

This tool currently presents superior performance compared with similar tools, and has imple-

mented several algorithms, namely Barinel, Ochiai and Tarantula [Abr09]. Figure 2.5 shows the

comparison between several Zoltar algorithms.

Zoltar was developed at Delft University of Technology (TUDelft), and was the base of

Rui Abreu’s PhD thesis [Abr09]. This tool had substantial academic recognition, and won the

Best Demo Award prize at The 24th IEEE/ACM International Conference on Automated Soft-

ware Engineering (ASE’09) with the publication Zoltar: A Toolset for Automatic Fault Local-

ization [JAvG09b].

Zoltar has already proven to be effective in real world uses, from the development of embedded

devices, such as TV sets, to sizable internal software projects.

Figure 2.4: Zoltar interface [JAvG09a].

15

State of the art

Figure 2.5: SFL’s similarity coefficients performance comparison [Abr09].

2.2.3 EzUnit

EzUnit3 is a statistical debugging tool under development at University of Hagen. This tool is

integrated into the Eclipse IDE as a plugin, and is used to debug Java projects that use JUnit test

cases.

After performing the fault localization, EzUnit displays a list of the code blocks ranked by

their failure probability in a separate view in the Eclipse IDE (see Figure 2.6). Each line of the list

is highlighted with a color representing the failure probability, ranging from red (corresponding

to the code blocks that are most likely to contain a failure) to green (least likely). EzUnit also

provides a call-graph view of a certain test (see Figure 2.7). Each node in the graph corresponds

to a code block, and has the same coloring scheme as the failure probability list view.

3EzUnit – Easing the Debugging of Unit Test Failures – http://www.fernuni-hagen.de/ps/prjs/
EzUnit4/

16

http://www.fernuni-hagen.de/ps/prjs/EzUnit4/
http://www.fernuni-hagen.de/ps/prjs/EzUnit4/

State of the art

Figure 2.6: EzUnit interface.

Figure 2.7: EzUnit call graph.

17

State of the art

2.2.4 GZoltar

GZoltar4 [RA10, RAR11] is a framework for automating testing and debugging projects written

in Java. It is an Eclipse-based, Java implementation of Zoltar that integrates with frameworks such

as JUnit. It also provides powerful hierarchical visualization and interaction options to developers

(such as a sunburst view, see Figure 2.8).

The GZoltar tool was the base of André Riboira’s MSc thesis [Rib11] and is under active

development at Faculdade de Engenharia da Universidade do Porto. The work detailed in this

thesis is aimed at improving this tool. Further information about the GZoltar project is available

in Section 4.1.

Figure 2.8: GZoltar interface [Rib11].

2.3 Reasoning Approaches

Reasoning approaches to fault localization use prior knowledge of the system, such as required

component behavior and interconnection, to build a model of the system behavior. An example of

a reasoning technique is Model-Based Diagnosis (MBD) (see, e.g., [dKW87]).

2.3.1 Model-Based Diagnosis

In MBD, a diagnosis is obtained by logical inference from the static model of the system, com-

bined with a set of run-time observations. Traditional MBD systems require the model to be

supplied by the system’s designer, whereas the description of the observed behavior is gathered

through direct measurements. The difference between the behavior described by the model and the

4The GZoltar Project – http://www.gzoltar.com/

18

http://www.gzoltar.com/

State of the art

observed behavior can then be used to identify components that may explain possible deviations

from normal behavior [MS07].

In practice, as a formal description of the program is required, the task of using MBD can

be difficult. This is particularly due to (1) the large scope of current software projects, where

formal models are rarely made available, and (2) the maintenance problems that arise throughout

development, since changes in functionality are likely to happen. Furthermore, formal models

usually do not describe a system’s complete behavior, being restricted to a particular component

of the system.

2.3.2 Model-Based Software Debugging

In order to address some of the issues that traditional MBD has, Model-Based Software Debugging

(MBSD) exchanges the roles of the model and the observations. In this technique, instead of

requiring the designer to formally specify the intended behavior, a model is automatically inferred

from the actual program. This means that the model reflects all the faults that exist in the program.

The correct behavior specification in this technique is described in the system’s test cases, which

specify the expected output for a certain input.

Well-known approaches to MBSD include the approaches of Friedrich, Stumptner, and Wotawa

[FSW99, FSW96], Nica and Wotawa [NW08], Wotawa, Stumptner, and Mayer [WSM02], and

Mayer and Stumpter [MS07]. However, MBSD has problems concerning scalability – the com-

putational effort required to create a model of a large program forbids its use in real-life applica-

tions [MS08].

2.4 Discussion

Currently, the most effective debugging tools are the SDTs. These tools, with minimal effort from

the user, return a ranked list of potential faulty locations. By comparison, traditional debugging

tools require more user effort for locating faults, and are fairly ad-hoc.

SDTs not only require less effort, but they also help improve the debugging process by au-

tomating it. This is particularly useful for regression testing.

However, SDTs have some flaws regarding performance, as the SUT has to be instrumented.

Studies have shown that instrumentation can hit execution time by as much as 50% [YLW06], so

this approach of fault localization is particularly inefficient for large, real systems, that contain

hundreds of thousands of LOCs. Also, while parallelization can help minimize the impact of

instrumentation, we may not be able to use it in every situation (and particularly while dealing

with resource constrained projects).

Other debugging techniques, use reasoning approaches to debugging, such as MBSD. How-

ever, the computational effort required to create a model of a large application is very high.

19

State of the art

20

Chapter 3

Dynamic Code Coverage

In this chapter, we present a motivational example showing why traditional SFL approaches can be

inefficient, mainly due to the overhead caused by instrumenting every line of code. Afterwards, we

propose and algorithm, coined Dynamic Code Coverage (DCC), that mitigates those inefficiencies

by gradually adjusting the instrumentation granularity of each software component of the SUT.

3.1 Motivational Example

Suppose a program responsible for controlling a television set is being debugged. Consider that

such program has three main high-level modules:

1. Audio and video processing;

2. Teletext decoding and navigation;

3. Remote-control input.

If one is to use SFL to pinpoint the root cause of observed failures, hit spectra for the entire

application have to be gathered. Furthermore, the hit spectra have to be of a fine granularity, such

as LOC level, so that the fault is more easily located.

Audio/Video Teletext Remote

High

Medium

Low

Probability of
being faulty:

Figure 3.1: SFL output example.

21

Dynamic Code Coverage

An output of the SFL technique applied to this specific example can be seen in Figure 3.1. The

smaller squares represent each LOC of the program, which are grouped into methods, and then

into the three main modules of the program under test.

As seen in Figure 3.1, every LOC in the program has an associated fault coefficient that repre-

sents the probability of that component being faulty. In this example, the bottom-left function of

the teletext decoding and navigation module has two LOCs with high probability of being faulty,

and other two with medium probability. The upper-right function of the teletext module also con-

tains two medium probability LOCs.

There are, however, many LOCs with low probability of containing a fault. In fact, in some

methods, and even entire modules, such as the audio/video processing module and the remote-

control module, all components have low probability of being at fault. Such low probability is

an indication that the fault might be located elsewhere, and thus these components need not to be

inspected first.

As SFL needs to have information about the entire program spectra to perform an analysis on

the most probable fault locations, this can lead to scalability problems, as every LOC has to be

instrumented. As previously stated in Section 2.1.4, instrumentation can hit execution time by as

much as 50% in code coverage tools that use similar instrumentation techniques [YLW06]. As

such, fault localization that uses hit spectra is acceptable for debugging software applications, but

may be impractical for large, real-world, and resource-constrained projects that contain hundreds

of thousands of LOCs.

In order to make SFL amenable to large, real, and resource-constrained applications, a way to

avoid instrumenting the entire program must be devised, while still having a fine granularity for

the most probable locations in the fault localization results.

3.2 Dynamic Code Coverage Algorithm

In order to solve the scaling problems that automated fault localization tools have, it is proposed

a DCC approach. This method uses, at first, a coarser granularity level of instrumentation and

progressively increases the instrumentation detail of potential faulty components.

DCC is shown in Algorithm 1. It takes as parameters System, TestSuite, InitialGranularity

and FinalGranularity. These parameters correspond to the SUT, its test case set, and the initial

and final instrumentation detail levels, respectively.

22

Dynamic Code Coverage

Algorithm 1 Dynamic Code Coverage.
1: procedure DCC(System,TestSuite, InitialGranularity,FinalGranularity)
2: R←∅
3: F ← System
4: T ← TestSuite
5: G ← InitialGranularity
6: repeat
7: INSTRUMENT(F ,G)
8: (A,e)← RUNTESTS(T)
9: C ← SFL(A,e)

10: F ← FILTER(C)
11: R← UPDATE(R,F)
12: T ← NEXTTESTS(TestSuite,A,F)
13: G ← NEXTGRANULARITY(F)
14: until ISFINALGRANULARITY(F ,FinalGranularity)
15: returnR
16: end procedure

First, an empty report R is created. After that, a list of the components to instrument F is

initialized with all System components. Similarly, the list of test cases to run in each iteration T
is initialized with all test cases in TestSuite. An initial granularity G is also initialized with the

desired initial exploration granularity InitialGranularity, which can be set from a class level to a

LOC level.

After the initial assignments, the algorithm will start its iteration phase in line 6. At the start

of each iteration, every component in the list F is instrumented with the granularity G with the

method INSTRUMENT. What this method does is to alter these components so that their execution

is registered in the program spectra.

Afterwards, the test cases T are run with the method RUNTESTS. Its output is a hit spectra

matrix A for all the previously instrumented components, and the error vector e, that states what

tests passed and what tests failed. As explained in Section 2.2, these are the necessary inputs

for spectrum-based fault localization, performed in line 9. This SFL method calculates, for each

instrumented component, its failure coefficient using the Ochiai coefficient, previously shown in

equation 2.1.

Following the fault localization step, the components are passed through a FILTER that elim-

inates the low probability ones according to a set threshold, and the list F is updated, as well as

the fault localization reportR.

In line 12, the test case set is updated to run only the tests that touch the current components

F . Such tests can be retrieved by analyzing the coverage matrix A.

The last step in the iteration is to update the instrumentation granularity for next iterations.

Method NEXTGRANULARITY finds the coarser granularity in all the components of list F , and

updates that granularity to the next level of detail.

Every iteration is tested for recursion with ISFINALGRANULARITY, that returns true if every

component in the list F is at the desired final granularity defined in FinalGranularity. This final

23

Dynamic Code Coverage

granularity can be of different detail levels, such as method level or LOC level, according to the

needs of the software project being tested. If the ISFINALGRANULARITY condition is not met, a

new iteration is performed.

Lastly, the DCC algorithm returns the fault localization reportR. R contains diagnosis candi-

dates of different granularity, typically with the top ones at the statement-level granularity.

0.9 0.8 0.8 0.7 0.5 0.1

0.7 0.2 0.2 0.1 0.0 0.0

Coefficient Filter (> 0.6)

Percentage Filter (50%)

0.9 0.8 0.8 0.7 0.5 0.1

0.7 0.2 0.2 0.1 0.0 0.0

Figure 3.2: Component filters.

DCC’s performance is very dependent on the FILTER function, which is responsible to decide

whether or not it is required to zoom-in1 in a given component. Although many filters may be

plugged into the algorithm, in this thesis we study the impact of two filters (see Figure 3.2 for an

illustration):

• Coefficient filter C f – components above the SFL coefficient threshold C f are expanded.

• Percentage filter Pf – the first Pf % components are expanded.

To illustrate the overhead reduction, let us revisit the motivational example given in Sec-

tion 3.1. If use the DCC approach to debug this program, we get the output of each iteration

of the algorithm as shown in Figure 3.3. In this example, a filter responsible for not exploring

components with low probability of containing faults is being used. In particular, the algorithm

executes as follows:

1. The three modules – Audio/Video, Teletext, and Remote – are instrumented at the module

level. Upon running the tests and SFL, the only component with high probability of being

faulty is the Teletext module. See Figure 3.3a.

1In this context, zooming-in is to explore the inner components of a given component.

24

Dynamic Code Coverage

2. The Teletext module is instrumented at a method level. After that, the tests that touch the

Teletext module are run. Fault localization states that the upper-right (UR) and the bottom-

left (BL) functions have medium and high probability of being faulty, respectively. See

Figure 3.3b.

3. The UR and BL functions are instrumented at the LOC level. After the tests that touch those

functions are run and fault localization is performed, every LOC in those functions has an

associated fault coefficient. As all the non-filtered components are of LOC granularity, the

execution is terminated. See Figure 3.3c.

Audio/Video Teletext Remote

High
Medium
Low

Probability of
being faulty:

(a) First iteration

Audio/Video Teletext Remote

High
Medium
Low

Probability of
being faulty:

(b) Second iteration

Audio/Video Teletext Remote

High
Medium
Low

Probability of
being faulty:

(c) Third iteration

Figure 3.3: DCC output example.

This approach, besides only reporting LOCs which are more likely to contain a fault, also

needs to instrument less software components – 13 in total. Compared to the pure SFL approach

25

Dynamic Code Coverage

of Section 3.1, where 40 components were instrumented, DCC has reduced instrumentation (thus,

its overhead) by 67.5%, while producing the same good results.

3.3 Discussion

DCC is a fault localization algorithm that instruments software components at a low level of detail,

and progressively increases the instrumentation detail of software components likely to be at fault.

The main advantages of our DCC algorithm are twofold.

1. The instrumentation overhead in the program execution decreases. This is due to the fact

that not every LOC is instrumented – only the LOCs most likely to contain a fault will be

instrumented at that level of detail.

2. In every iteration, the generated program spectra matrices, seen in line 8 of Algorithm 1,

will be shorter in size when compared to traditional SFL. That way, the fault coefficient

calculation, described in Section 2.2, will be inherently faster, as there are fewer components

to calculate.

The iterative nature of the DCC algorithm also provides some benefits. In each iteration, the

algorithm is walking towards a solution, narrowing down the list of components which are likely

to contain a fault. As such some information about those components can be made available,

directing the developer to the fault location even before the algorithm is finished. Also, as low

probability components are being filtered, the final report will be shorter, providing the developer

with a more concise fault localization report.

The ability that DCC has to stop at any desired granularity level of detail can also provide

benefits. For instance, some defects may be successfully diagnosed upon inspecting the list of

faulty methods in a project, so an instrumentation at a LOC may not be always necessary. A more

important use case of this cutoff ability, though, is to combine complementary fault localization

methods. For example, DCC can be used to obtain the top ranked methods in a program, and then

employ the MBSD technique, detailed in Section 2.3.2, only on these software components. This

way, we are obtaining more accurate fault hypotheses due to the use of MBSD, with significantly

less computation required.

However, this algorithm still poses a couple of shortcomings. As DCC relies on program

hierarchy to devise different detail levels of instrumentation, some projects may not be suited to

be debugged with this technique. In fact, while object-oriented programming languages, which

have at least three clearly defined detail levels (i.e., class, method and LOC), perform well with

DCC, other programming languages with different paradigms may not produce the same results

in terms of instrumentation overhead reduction.

An additional shortcoming is that, for smaller projects, DCC may produce worse time execu-

tion results when compared with SFL. This is due to the fact that these projects tend to produce

denser program spectra matrices, because each test covers a considerable portion of the source

26

Dynamic Code Coverage

code. Thus, the filtering operations will be ineffective as many components will have similar fault

coefficients and the overhead of re-executing the majority of a project’s test suite will be greater

than instrumenting the project at a high level of detail.

27

Dynamic Code Coverage

28

Chapter 4

Tooling

In this chapter, the chosen tool to host the DCC prototype – GZoltar – will be presented. After-

wards, some modifications and improvements made to the GZoltar tool will be detailed, as well as

some of the most relevant implementation details of the DCC prototype.

4.1 GZoltar Toolset

GZoltar1, also mentioned in Section 2.2.4, is an Eclipse plugin that performs fault localization

tasks using state-of-the-art fault localization algorithms.

The GZoltar toolset implements SFL with the Ochiai similarity coefficient (see Equation 2.1),

one of the best coefficients for this purpose. GZoltar also creates powerful and navigable diagnos-

tic report visualizations, such as Treemap and Sunburst [Rib11] (see Figure 4.1).

GZoltar is aimed at testing Java projects that use JUnit as their testing framework. Being an

Eclipse (one of the most popular IDEs) plugin means that GZoltar can use many of the IDE’s func-

tionalities, such as detection of open projects in the workspace and improved interaction between

the diagnostic report visualizations and the code editor (e.g., when a user clicks a certain line of

code in the visualization, the corresponding file is opened in the editor, and the cursor is positioned

in the desired line).

Besides fault localization, GZoltar also provides a test suit reduction and prioritization tool,

coined RZoltar (see Figure 4.2). This tool minimizes the size of the original test suite using

constraint-based approaches [YH10], while still guaranteeing the same code coverage. Also,

RZoltar allows the user to prioritize the minimized test suites by cardinality or by execution time.

1The GZoltar toolset can be found online at http://gzoltar.com/

29

http://gzoltar.com/

Tooling

Figure 4.1: GZoltar’s visualizations: Sunburst and Treemap.

Figure 4.2: RZoltar’s interface.

30

Tooling

4.2 Modifications and Improvements

In order to implement the DCC prototype on top of GZoltar, some improvements and modifications

had to be made to the underlying tool.

The first considerable change in GZoltar’s architecture was the test case execution. Originally,

test cases were run in the same Java Virtual Machine (JVM) that hosted Eclipse and all its plugins.

This has several disadvantages. Firstly, every class in the project had to be explicitly loaded before

running any test, because the classes were not visible in the JVM’s classpath. Secondly, since the

JVM was already running, some parameters could not be customized (e.g., the maximum heap

size that can be allocated). Lastly, as the JVM’s working directory is not the same as the system

being tested, file operations with relative path names would not work correctly.

These issues were resolved by creating an external process that would spawn a new JVM in

the SUT’s working directory, with its corresponding classpath. After running the test cases, the

test results and coverage are sent to GZoltar via a socketed connection.

Another issue with the original version of GZoltar is the way how the code instrumentation

is handled. GZoltar used the code coverage library JaCoCo2 to obtain the coverage traces (i.e.,

hit spectra) needed to perform the fault localization analysis. However, JaCoCo uses a LOC level

of instrumentation, and is unable to gather coverage information without this fine-grained level

of detail. To prevent this, we discarded JaCoCo and created a coverage tool able to gather traces

from three different granularities: (1) class level, (2) method level and (3) LOC level.

This coverage tool makes use of the java.lang.instrument framework that was incorporated

into the version 1.5 of the JVM. This framework allows the user to attach an agent that is able

to intercept and modify a class’ bytecode before it is loaded by the Java ClassLoader. This way,

the instrumentation code, written with the aid of ASM3, a Java bytecode manipulation framework,

can be inserted at each class load time.

High Probability

Medium Probability

Low Probability

Figure 4.3: Statement failure probability markers.

Finally, as an accessibility improvement, GZoltar can now generate a list of markers that are

placed on the code editor’s vertical ruler, indicating the respective line of code’s probability of

being faulty when hovering the mouse. These markers, as we can see in Figure 4.3, can be of three

different types: (1) red for the top third statements most likely to contain a fault, (2) yellow for the

middle third statements, and (3) green for the bottom third statements. Every marker also has an

2JaCoCo – http://www.eclemma.org/jacoco/index.html
3ASM – http://asm.ow2.org/

31

http://www.eclemma.org/jacoco/index.html
http://asm.ow2.org/

Tooling

embedded ColorADD4 symbol, in order to help colorblind people distinguish between markers.

These annotation markers are also displayed on the Eclipse “Problems” view.

4.3 Dynamic Code Coverage Prototype

In this section, some of the most relevant implementation details of the DCC prototype are pre-

sented.

The instrumentation for coverage gathering for each granularity level works as follows:

• Class level – an INVOKESTATIC instruction is inserted at the beginning of the class initial-

ization method (also known as <clinit>), every constructor method, and every public static

method. The inserted instruction will call a publicly available method called logClass with

the class details as parameters (i.e., name and package). This method will register that the

class was touched by the execution.

• Method level – every method of a certain class will be inserted with an INVOKESTATIC

instruction that calls logMethod. This function takes as parameters the method information,

namely its class, package and signature, and registers that the corresponding method was

executed.

• LOC level – similarly to the granularities detailed previously, an invoke instruction is also

inserted. In this granularity level, the instrumented instructions are placed at the beginning

of each line of code, and call logLine (that registers a hit whenever the line is executed).

One thing to note is, similarly to other code coverage tools, line coverage information can

only be gathered if the classes are compiled with debug information enabled, so that source

line tables that map each line to their corresponding bytecode instructions are available.

Some constructs, regardless of the set granularity level, are ignored while performing the

instrumentation. Such is the case of synthetic constructs, which are introduced by the compiler and

do not have a corresponding construct in the source code [GJSB05, p. 338]. Synthetic methods

are generated for various purposes, e.g., to create bridge methods to ensure that type erasures and

covariant return types are handled correctly.

Another key implementation detail worth mentioning is how the component filtering is han-

dled. Filtering is one of the most important steps to ensure that the DCC algorithm performs

well. Because DCC is a new concept, new filters should be easy to create and to replace, so that

we can analyze their impact and quickly make adjustments in order to fine tune the algorithm’s

performance. As such, filters use a strategy pattern [GHJV95, pp. 315-323], and can easily be

interchanged.

4ColorADD color identification system – http://coloradd.net/

32

http://coloradd.net/

Tooling

4.4 Discussion

Some improvements and modifications were made to the GZoltar toolset, namely to provide more

control over the testing and instrumentation tasks. It is worth to note that all improvements pre-

sented in Section 4.2 have already been deployed to the development branch of GZoltar. In fact,

the newest version of the tool (version 3.2.0, as of this writing) already contains all these modifi-

cations.

With these improvements, the creation of a DCC prototype was made possible. In the next

chapter, the validity of the DCC approach will be evaluated using the implementation detailed in

the previous sections.

33

Tooling

34

Chapter 5

Empirical Evaluation

In this chapter, we evaluate the validity and performance of the DCC approach for real projects.

First, we introduce the programs under analysis and the evaluation metrics. Then, we discuss the

empirical results and finish this section with a threats to validity discussion.

5.1 Experimental Setup

For our empirical study, four subjects written in Java were considered:

• NanoXML1 – a small XML parser.

• org.jacoco.report – report generation module for the JaCoCo2 code coverage library.

• XML-Security – a component library implementing XML signature and encryption stan-

dards. This library is part of the Apache Santuario3 project.

• JMeter4 – a desktop application designed to load test functional behavior and measure

performance of web applications.

The project details of each subject are in Table 5.1. The LOC count information was gathered

using the metrics calculation and dependency analyzer plugin for Eclipse Metrics5. Test count

and coverage percentage were collected with the Java code coverage plugin for Eclipse EclEmma6.

To assess the efficiency and effectiveness of DCC the following experiments were performed,

using fifteen faulty versions per subject program. We injected one fault in each of the 15 versions:

• SFL without DCC. This is the reference baseline.

• DCC with constant value coefficient filters from 0 to 0.95, with intervals of 0.05.

1NanoXML – http://devkix.com/nanoxml.php
2JaCoCo – http://www.eclemma.org/jacoco/index.html
3Apache Santuario – http://santuario.apache.org/
4JMeter – http://jmeter.apache.org/
5Metrics – http://metrics.sourceforge.net/
6EclEmma – http://www.eclemma.org/

35

http://devkix.com/nanoxml.php
http://www.eclemma.org/jacoco/index.html
http://santuario.apache.org/
http://jmeter.apache.org/
http://metrics.sourceforge.net/
http://www.eclemma.org/

Empirical Evaluation

Subject Version LOCs (M) Test Cases Coverage
NanoXML 2.2.6 5393 8 53.2%

org.jacoco.report 0.5.5 5979 225 97.2%
XML-Security 1.5.0 60946 461 59.8%

JMeter 2.6 127359 593 34.2%
Table 5.1: Experimental Subjects.

• DCC with percentage filters from 100% to 5%, with intervals of 5%.

The metrics gathered were execution time, the size of the fault localization report, and the

average LOCs needed to be inspected until the fault is located. The latter metric can be calculated

by sorting the fault localization report by the value of the coefficient, and finding the injected

fault’s position. In this metric, we are assuming that the developer performs the inspection in an

ordered manner, starting from the highest fault coefficient LOCs.

As spectrum-based fault localization creates a ranking of components in order of likelihood to

be at fault, we can retrieve how many components we still need to inspect until we hit the faulty

one. Let d ∈ {1, . . . ,K}, where K is the number of ranked components and K ≤M, be the index

of the statement that we know to contain the fault. For all j ∈ {1, . . . ,M}, let s j. Then the ranking

position of the faulty statement is given by

τ =
|{ j|s j > sd}|+ |{ j|s j ≥ sd}|−1

2
(5.1)

|{ j|s j > sd}| counts the number of components that outrank the faulty one, and |{ j|s j ≥ sd}| counts

the number of components that rank with the same probability as the faulty one plus the ones that

outrank it.

We define quality of diagnosis as the effectiveness to pinpoint the faulty component. As said

before, this metric represents the percentage of components that need not be considered when

searching for the fault by traversing the ranking. It is defined as

(1− τ

KSFL
) ·100% (5.2)

where KSFL is the number of ranked components of SFL without DCC – the reference baseline.

The experiments were run on a 2.7 GHz Intel Core i7 MacBook Pro with 4 GB of RAM,

running OSX Lion.

5.2 Experimental Results

Figures 5.1, 5.2, 5.3 and 5.4 summarize the overall execution time outcomes for all the experimen-

tal subjects.

Each figure contains two plots, detailing the fault localization execution of each injected fault

with DCC using constant coefficient value filters and with DCC using percentage filters, respec-

tively. These filtering methods were previously detailed in Section 3.2.

36

Empirical Evaluation

��

����

�����

�����

�����

�����

�����

�����

�����

�����

�� �� �� �� �� �� �	 �
 �� �� �� �� �� �� ��

�

�
�
�
��
�
�
��
��
�
��
�
�
�

���������������

���
����
���

 ��!""

(a) Coefficient filter

��

����

�����

�����

�����

�����

�����

�����

�����

�����

�� �� �� �� �� �� �	 �
 �� �� �� �� �� �� ��

�

�
�
�
��
�
�
��
��
�
��
�
�
�

���������������

���
���
���

 ��!""

(b) Percentage filter

Figure 5.1: NanoXML time execution results.

Due to space constraints, only three thresholds are shown for both filters: 0.0, 0.25 and 0.5

thresholds for the constant coefficient value filters (C f) and 50%, 30% and 10% thresholds for the

percentage filters (Pf). To obtain a better understanding of the performance of each experiment,

we also added, for every injected fault, the fault localization execution time of the SFL without

DCC approach, labeled “No DCC” in the aforementioned figures. This way, DCC approaches

can be easily compared with the SFL approach. Unless stated otherwise, every fault localization

execution is able to find the injected fault (i.e., the resulting report contains the injected fault).

The first experimental subject to be analyzed was the NanoXML project, whose experiment re-

sults can be seen in Figure 5.1. Note that experiments 01, 11 and 13 for C f = 0.5 (see Figure 5.1a)

and the experiments 01, 04, 11, 12, 13, 14, 15 for Pf = 10% (see Figure 5.1b) were not able to

find the injected faults.

As we can see from the experiment results, the DCC approach underperforms the current SFL

method based in the execution time. Such results can be explained if we analyze the NanoXML

37

Empirical Evaluation

��

�����

�����

�����

�����

�����

�����

�	���

�
���

�����

������

������

������

������

������

������

�� �� �� �� �� �� �	 �
 �� �� �� �� �� �� ��

�

�
�
�
��
�
�
��
��
�
��
�
�
�

���������������

���
����
���

 ��!""

(a) Coefficient filter

��

�����

�����

�����

�����

�����

�����

�	���

�
���

�����

������

������

������

������

������

������

�� �� �� �� �� �� �	 �
 �� �� �� �� �� �� ��

�

�
�
�
��
�
�
��
��
�
��
�
�
�

���������������

���
���
���

 ��!""

(b) Percentage filter

Figure 5.2: org.jacoco.report time execution results.

project information in Table 5.1. This project, not only is rather small in size, but also has very

few test cases. At the same time, it has a coverage of over 50%. What this means is that some

test cases, if not all, touch many different statements. As such, the generated program spectra

matrices, detailed in Section 2.2 will be rather dense. Because of this, many components will have

similar coefficients, rendering the filtering operation ineffective: either discarding many different

components, or keeping a lot of components to be re-instrumented and re-tested.

The next analyzed subject was org.jacoco.report, part of the JaCoCo project. The

filters C f = 0.5 (see Figure 5.2a) and Pf = 10% (see Figure 5.2b) were both not able to find the

injected faults in experiments 09 and 15. Also, the injected fault in experiment 02 was not found

in Pf = 10%.

This subject, despite having many more test cases than the previous project, still has some

performance drops in some of the experiments. Upon investigating the fault localization reports of

the lower performance experiments, we realized that their length can be as high as 950 statements

38

Empirical Evaluation

��

������

������

������

������

������

������

�	����

�
����

������

�������

�������

�������

�� �� �� �� �� �� �	 �
 �� �� �� �� �� �� ��

�

�
�
�
��
�
�
��
��
�
��
�
�
�

���������������

���
����
���

 ��!""

(a) Coefficient filter

��

������

������

������

������

������

������

�	����

�
����

������

�������

�������

�������

�� �� �� �� �� �� �	 �
 �� �� �� �� �� �� ��

�

�
�
�
��
�
�
��
��
�
��
�
�
�

���������������

���
���
���

 ��!""

(b) Percentage filter

Figure 5.3: XML-Security time execution results.

in some experiments. This means that the set of test cases that touch the injected faulty statements

can cover roughly 15% of the entire project. Because of this, the same thing as the previous project

happens: many components will have similar coefficients, rendering the expansions ineffective.

The following subject was the XML-Security project. Injected faults in experiments 03 and

08 were not found by C f = 0.5 (see Figure 5.3a). Experiment 08 also did not have its injected fault

in Pf = 10% (see Figure 5.3b).

The last subject was the JMeter project. Injected faults were not found by C f = 0.5 (see

Figure 5.4a) in experiments 01 and 11. Every fault was found with the percentage filters.

Both XML-Security and JMeter have better results when utilizing DCC. There are mainly

two reasons for these results. The first is the fact that the program spectra matrix is sparser. The

other important reason is, as programs grow in size, the overhead of a fine-grained instrumentation,

used in methodologies such as SFL, is much more noticeable. In this kind of sizable projects (see

project informations in Table 5.1), and if the matrix is sparse enough, it is preferable to re-run

39

Empirical Evaluation

��

������

������

������

������

������

������

�	����

�
����

������

�� �� �� �� �� �� �	 �
 �� �� �� �� �� �� ��

�

�
�
�
��
�
�
��
��
�
��
�
�
�

���������������

���
����
���

 ��!""

(a) Coefficient filter

��

������

������

������

������

������

������

�	����

�
����

������

�� �� �� �� �� �� �	 �
 �� �� �� �� �� �� ��

�

�
�
�
��
�
�
��
��
�
��
�
�
�

���������������

���
���
���

 ��!""

(b) Percentage filter

Figure 5.4: JMeter time execution results.

some of the tests, than to instrument every LOC at the start of the fault localization process.

These time execution results confirm our assumptions that DCC can over-perform SFL for

larger projects, where the instrumentation overhead is heavily noticeable. In contrast, for smaller

projects, DCC does suffer in performance, mainly due to the fact that the overhead of re-running

tests produces a bigger performance hit than the instrumentation granularity overhead. In fact, if

we take into account all experiments for all four projects, there actually is an increase of execution

time of 8% (σ = 0.48)7. However, if we only consider the larger projects where instrumentation is

a more prevalent issue (i.e. XML-Security and JMeter), the dynamic code coverage approach can

reduce execution time by 27% on average (σ = 0.28).

The other gathered metrics in this empirical evaluation, unlike execution time, show a consis-

tent improvement over SFL in every project. In average, the DCC approach reduced 63% (σ =

7We have chosen to use the metrics gathered by the Pf = 30% filter since it is the best performing filter of those
considered in this section that is able to find the injected faults for every experiment.

40

Empirical Evaluation

0.30) the generated fault localization ranking, providing a more concise report when compared to

SFL. The quality of diagnosis, described in equation 5.2, also suffered a slight improvement, from

85% (σ = 0.20) without DCC to 87% (σ = 0.19) with DCC.

5.3 Threats to Validity

The main threat to external validity of these empirical results is the fact that only four test sub-

jects were considered. Although the subjects were all real, open source software projects, it is

plausible to assume that a different set of subjects, having inherently different characteristics, may

yield different results. Other threat to external validity is related to the injected faults used in the

experiments. These injected faults, despite being fifteen in total for each experimental subject,

may not represent the entire conceivable software fault spectrum. We are also assuming that the

experimental subjects do not have any faults besides those that are injected by us, and that their

test cases were correctly formulated and implemented.

Threats to internal validity are related to some fault in the DCC implementation, or any un-

derlying implementation, such as SFL or even the instrumentation for gathering program spectra.

To minimize this risk, some testing and individual result checking were performed before the

experimental phase.

41

Empirical Evaluation

42

Chapter 6

Conclusions and Future Work

Currently, the most effective debugging tools are Statistical Debugging Tools (SDTs). During

the state of the art study, some flaws regarding efficiency were presented. Afterwards, a solution

was proposed to minimize these flaws – the Dynamic Code Coverage (DCC) approach and an

empirical evaluation was performed to assess the validity of the proposed solution.

6.1 State of the art of Debugging Tools

After studying the currently available debugging methodologies, SDTs stand out as the most ef-

fective tools to address fault localization. Other tools required more effort by the user and a more

in-depth knowledge of the System Under Test (SUT) in order to debug it. In fact, with SDTs,

minimal knowledge of the SUT is required to locate faults.

SDTs also help to improve the software development process by automating fault localization

and thus enabling regression testing.

Some inefficiencies were found in current SDT implementations, mainly because of the in-

strumentation overhead required to address fault localization. This would particularly affect large

scale projects, because of their high quantity of Lines Of Code (LOCs) that need to be instru-

mented.

Other debugging techniques were also studied, namely model-based reasoning techniques,

such as Model-Based Software Debugging (MBSD). MBSD can produce more accurate diag-

nostic hypotheses when compared with statistical approaches. However, the computational effort

required to create a formal model of a large, real world software application remains highly pro-

hibitive.

6.2 Proposed Solution

The solution proposed in this thesis tries to avoid the LOC level of instrumentation detail in fault

localization, while still using statistical debugging techniques.

43

Conclusions and Future Work

This approach, named DCC, would start by using a coarser granularity of instrumentation and

progressively increasing the instrumentation detail of certain components, based on intermediate

results provided by the Spectrum-based Fault Localization (SFL) technique.

In order to assess the validity of our approach, we have conducted an empirical evaluation

on four real world open-source software projects. In each project, we have injected 15 different

faults, and performed the fault localization task with SFL and DCC. With the empirical evaluation

results we have demonstrated that, for large projects, our approach not only reduces the execution

time by 27% on average, but also reduces the number of components reported to the user by 63%

on average.

Let us revisit the research question presented in Section 1.4:

• How can a fault localization approach that instruments less software components obtain

similar diagnostic results when compared with SFL, while reducing execution overhead?

We can conclude that our approach meets the requirements of our research question. DCC

is a fault localization methodology that, by employing a dynamic, iterative approach, is able to

instrument less software components when compared to other statistical fault localization tech-

niques. Furthermore, the fault localization diagnostic reports generated by this methodology are

often times shorter than SFL and the execution time is also significantly reduced when DCC is

employed.

6.3 Main Contributions

This thesis makes the following main contributions:

1. DCC, a technique that automatically decides the instrumentation granularity for each mod-

ule in the system, has been proposed; and

2. An empirical study to validate the proposed technique, demonstrating its efficiency using

real-world, large programs. The empirical results shows that DCC can indeed decrease the

overhead imposed in the software under test, while still maintaining the same diagnostic

accuracy as current approaches to fault localization. DCC also decreases the diagnostic

report size when compared to traditional SFL.

To the best of our knowledge, our dynamic code coverage approach has not been described

before.

6.4 Publications

The DCC algorithm and the GZoltar tool have also had some exposure in academia. With the

work done in this thesis, we were able to submit to the following conferences:

44

Conclusions and Future Work

• Alexandre Perez, André Riboira and Rui Abreu. Fault Localization using Dynamic Code
Coverage – submitted and accepted into The 5th Meeting of Young Researchers of University

of Porto (IJUP’12), 2012. This paper outlines the idea of using multiple levels of detail to

mitigate instrumentation overhead in fault localization tools that use SFL.

• José Campos, Alexandre Perez, André Riboira and Rui Abreu. GZoltar: an Eclipse plug-
in for Testing and Debugging – submitted and accepted into The 27th IEEE/ACM Inter-

national Conference on Automated Software Engineering (ASE’12) – Tool Demonstration,

2012. This tool demonstration aims to present the GZoltar toolset, as well as its underlying

architecture.

As of this writing, another paper is being prepared for submission to The 6th IEEE Inter-

national Conference on Software Testing, Verification and Validation (ICST’13). This paper is

authored by Alexandte Perez, André Riboira and Rui Abreu. The publication will describe the

DCC algorithm, and present an empirical evaluation of its performance compared to traditional

SFL. All of the publications mentioned above are compiled in Appendix A.

6.5 Future Work

Although the initial goals of this work were achieved, there are various subjects worth researching

in order to further improve the DCC fault localization methodology. Some aspects of the dynamic

code coverage technique that still require further investigation are presented in the following para-

graphs.

One subject worth investigating is the way of how the initial system granularity is established.

Currently, this value is set manually and is the same across the entire system under test. A way

to change this would be by using static analysis to assess program information and to adjust the

system’s initial granularity accordingly. Another approach would be to learn what were the most

frequently expanded components from previous executions, and change these components’ initial

granularity independently.

Other issue that requires further investigation pertains to the filtering methods. It is possible

that there are better filtering methods than the ones presented in this paper, namely methods that

employ dynamic strategies, that change the cutting threshold based on program spectra analysis.

Our empirical evaluation results were gathered by injecting single faults. While good results

have been observed, they may not represent the real world software development environment,

where multiple faults may arise. Further investigation is needed, then, to evaluate DCC perfor-

mance when tackling multiple simultaneous software faults.

One may also explore the ability that DCC has at stopping exploration at any desired granu-

larity level. This methodology could be combined, then, with complementary fault localization

methodologies, such as model-based reasoning approaches to debugging. As an example, DCC

can be employed to obtain the top ranked methods in a program, and then the MBSD technique

can be used only on these software components. DCC would be acting as a pruning mechanism,

45

Conclusions and Future Work

restricting the exploration performed by MBSD, and significantly reducing the amount of compu-

tation required by this model-based technique.

46

References

[Abr09] Rui Abreu. Spectrum-based Fault Localization in Embedded Software. PhD thesis,
Delft University of Technology, 2009.

[ALRL04] Algirdas Avižienis, Jean-Claude Laprie, Brian Randell, and Carl E. Landwehr. Basic
concepts and taxonomy of dependable and secure computing. IEEE Transactions on
Dependable Secure Computing, 1(1):11–33, 2004.

[AZG06] Rui Abreu, Peter Zoeteweij, and Arjan J. C. van Gemund. An evaluation of simi-
larity coefficients for software fault localization. In Proceedings of the 12th Pacific
Rim International Symposium on Dependable Computing, PRDC ’06, pages 39–46,
Washington, DC, USA, 2006. IEEE Computer Society.

[AZGV09] Rui Abreu, Peter Zoeteweij, Rob Golsteijn, and Arjan J C Van Gemund. A practical
evaluation of spectrum-based fault localization. Journal of Systems and Software,
82(11):1780–1792, 2009.

[AZvG07] Rui Abreu, Peter Zoeteweij, and Arjan J. C. van Gemund. On the accuracy of
spectrum-based fault localization. In Proceedings of the Testing: Academic and In-
dustrial Conference Practice and Research Techniques - MUTATION, pages 89–98,
Washington, DC, USA, 2007. IEEE Computer Society.

[AZvG09] Rui Abreu, Peter Zoeteweij, and Arjan J. C. van Gemund. Spectrum-based multi-
ple fault localization. In Gabriele Taentzer and Mats Heimdahl, editors, Proceed-
ings of the IEEE/ACM International Conference on Automated Software Engineer-
ing (ASE’09), Auckland, New Zealand, 16 – 20 November 2009. IEEE Computer
Society, to appear.

[CLR05] M L Corliss, E C Lewis, and A Roth. Low-Overhead Interactive Debugging via
Dynamic Instrumentation with DISE. 11th International Symposium on High-
Performance Computer Architecture, pages 303–314, 2005.

[dKW87] Johan de Kleer and Brian C. Williams. Diagnosing multiple faults. Artificial Intelli-
gence, 32(1):97–130, 1987.

[Dow97] Mark Dowson. The Ariane 5 software failure. SIGSOFT Software Engineering
Notes, 22(2):84–, March 1997.

[FSW96] Gerhard Friedrich, Markus Stumptner, and Franz Wotawa. Model-based diagnosis of
hardware designs. In Wolfgang Wahlster, editor, Proceedings of the 12th European
Conference on Artificial Intelligence (ECAI’96), pages 491–495, Budapest, Hungary,
11–16 August 1996. John Wiley and Sons, Chichester.

47

REFERENCES

[FSW99] Gerhard Friedrich, Markus Stumptner, and Franz Wotawa. Model-based diagnosis
of hardware designs. Artificial Intelligence, 111(1-2):3–39, 1999.

[GHJV95] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design patterns:
elements of reusable object-oriented software. Addison-Wesley, 1995.

[GJSB05] James Gosling, Bill Joy, Guy Steele, and Gilad Bracha. The Java Language Specifi-
cation, Third Edition. Addison-Wesley, 2005.

[GKM82] Susan L. Graham, Peter B. Kessler, and Marshall K. Mckusick. Gprof: A call graph
execution profiler. SIGPLAN Not., 17:120–126, June 1982.

[GvVEB06] D. Graham, E. van Veenendaal, I. Evans, and R. Black. Foundations of Software
Testing: ISTQB Certification. Cengage Learning Business Press, 1st edition, 2006.

[HRS+00] Mary Jean Harrold, Gregg Rothermel, Kent Sayre, Rui Wu, and Lui Yi. An empirical
investigation of the relationship between fault-revealing test behavior and differences
in program spectra. STVR Journal of Software Testing, Verification, and Reliability,
(3):171–194, September 2000.

[HS02] B Hailpern and P Santhanam. Software debugging, testing, and verification. IBM
Systems Journal, 41(1):4–12, 2002.

[JAvG09a] Tom Janssen, Rui Abreu, and Arjan J.C. van Gemund. Zoltar: A spectrum-based
fault localization tool. In Proceedings of the 2009 ESEC/FSE workshop on Software
integration and evolution @ runtime, SINTER ’09, pages 23–30, New York, NY,
USA, 2009. ACM.

[JAvG09b] Tom Janssen, Rui Abreu, and Arjan J.C. van Gemund. Zoltar: A Toolset for Au-
tomatic Fault Localization. In 2009 IEEE/ACM International Conference on Auto-
mated Software Engineering, pages 662–664. IEEE, November 2009.

[JD88] Anil K. Jain and Richard C. Dubes. Algorithms for clustering data. Prentice-Hall,
Inc., Upper Saddle River, NJ, USA, 1988.

[JH05] James A. Jones and Mary Jean Harrold. Empirical evaluation of the tarantula au-
tomatic fault-localization technique. In Proceedings of the 20th IEEE/ACM inter-
national Conference on Automated software engineering, ASE ’05, pages 273–282,
New York, NY, USA, 2005. ACM.

[JHS02] James A. Jones, Mary Jean Harrold, and John Stasko. Visualization of test informa-
tion to assist fault localization. In Proceedings of the 24th International Conference
on Software Engineering, ICSE ’02, pages 467–477, New York, NY, USA, 2002.
ACM.

[Kid98] P.A. Kidwell. Stalking the elusive computer bug. Annals of the History of Comput-
ing, IEEE, 20(4):5 –9, oct-dec 1998.

[KM08] Andrew J. Ko and Brad A. Myers. Debugging reinvented: asking and answering
why and why not questions about program behavior. In Proceedings of the 30th
international conference on Software engineering, ICSE ’08, pages 301–310, New
York, NY, USA, 2008. ACM.

48

REFERENCES

[LFY+06] C. Liu, L. Fei, X. Yan, J. Han, and S.P. Midkiff. Statistical debugging: A hypoth-
esis testing-based approach. IEEE Transactions on Software Engineering (TSE),
32(10):831–848, 2006.

[Lio96] J. L. Lions. Ariane 5: Flight 501 failure. Technical report, ESA: Ariane 501 Inquiry
Board, 1996.

[MS07] W Mayer and M Stumptner. Model-Based Debugging – State of the Art And Future
Challenges. Electronic Notes in Theoretical Computer Science, 174(4):61–82, 2007.

[MS08] W. Mayer and M. Stumptner. Evaluating Models for Model-Based Debugging. In
Proceedings of the 2008 23rd IEEE/ACM International Conference on Automated
Software Engineering, ASE ’08, pages 128–137, Washington, DC, USA, 2008. IEEE
Computer Society.

[NW08] Mihai Nica and Franz Wotawa. From constraint representations of sequential code
and program annotations to their use in debugging. In Malik Ghallab, Constantine D.
Spyropoulos, Nikos Fakotakis, and Nikolaos M. Avouris, editors, Proceedings of
the 18th European Conference on Artificial Intelligence (ECAI’08), volume 178 of
Frontiers in Artificial Intelligence and Applications, pages 797–798, Patras, Greece,
21–26 July 2008. IOS Press.

[RA10] André Riboira and Rui Abreu. The gzoltar project: a graphical debugger interface. In
Proceedings of the 5th international academic and industrial conference on Testing
- practice and research techniques, TAIC PART’10, pages 215–218, Berlin, Heidel-
berg, 2010. Springer-Verlag.

[RAR11] André Riboira, Rui Abreu, and Rui Rodrigues. An OpenGL-based eclipse plug-in
for visual debugging. In Proceedings of the 1st Workshop on Developing Tools as
Plug-ins, TOPI ’11, pages 60–60, New York, NY, USA, 2011. ACM.

[RBDL97] Thomas Reps, Thomas Ball, Manuvir Das, and James Larus. The use of program
profiling for software maintenance with applications to the year 2000 problem. In
Proceedings of the 6th European Software Engineering conference held jointly with
the 5th ACM SIGSOFT international symposium on Foundations of software engi-
neering, ESEC ’97/FSE-5, pages 432–449, New York, NY, USA, 1997. Springer-
Verlag New York, Inc.

[Rib11] André Riboira. GZoltar: A Graphical Debugger Interface. MSc Thesis, Faculdade
de Engenharia da Universidade do Porto, 2011.

[Rog02] S Rogerson. The chinook helicopter disaster. The Institute for the Management of
Information Systems (IMIS), 12(2), 2002.

[Ros95] D.S. Rosenblum. A practical approach to programming with assertions. IEEE Trans-
actions on Software Engineering, 21(1):19–31, Jan 1995.

[SPS06] Richard Stallman, Roland Pesch, and Stan Shebs. Debugging with gdb. Free Soft-
ware Foundation, 2006.

[Tas02] G Tassey. The Economic Impacts of Inadequate Infrastructure for Software Testing,
2002.

49

REFERENCES

[TH02] Mustafa M. Tikir and Jeffrey K. Hollingsworth. Efficient instrumentation for code
coverage testing. In Proceedings of the 2002 ACM SIGSOFT international sympo-
sium on Software testing and analysis, ISSTA ’02, pages 86–96, New York, NY,
USA, 2002. ACM.

[WSM02] Franz Wotawa, Markus Stumptner, and Wolfgang Mayer. Model-based debugging
or how to diagnose programs automatically. In T. Hendtlass and M. Ali, editors, Pro-
ceedings of IAE/AIE 2002, volume 2358 of LNCS, pages 746–757, Cairns, Australia,
17 – 20 June 2002. Springer-Verlag.

[WWQZ08] Eric Wong, Tingting Wei, Yu Qi, and Lei Zhao. A crosstab-based statistical method
for effective fault localization. In Rob Hierons and Aditya Mathur, editors, Pro-
ceedings of the 1st International Conference on Software Testing, Verification, and
Validation (ICST’08), pages 42–51, Lillehammer, Norway, 9 – 11 April 2008. IEEE
Computer Society.

[YH10] S. Yoo and M. Harman. Regression testing minimization, selection and prioritiza-
tion: A survey. Software Testing, Verification and Reliability, 2010.

[YLW06] Qian Yang, J. Jenny Li, and David Weiss. A survey of coverage based testing tools.
In Proceedings of the 2006 international workshop on Automation of software test,
AST ’06, pages 99–103, New York, NY, USA, 2006. ACM.

50

Appendix A

Publications

51

Fault Localization using Dynamic Code Coverage
A. Perez1, A. Riboira1, R. Abreu1

1Department of Informatics Engineering, Faculty of Engineering, University of Porto, Portugal.

In software development, a large amount of resources is spent in the debugging phase [1].
This process of detecting, locating and fixing faults in the source code is not trivial and
rather error-prone. In fact, even experienced developers are wrong almost 90% of the time
in their initial guess while trying to identify the cause of a behavior that deviates from the
intended one [2].

In order to improve the debugging efficiency, this process needs to be automated. Some
effort was already made to automatically assist the detecting and locating phases. This led
to the creation of automatic fault localization tools, namely Zoltar [3] and Tarantula [4].
The tools instrument the source code to obtain code coverage traces for each test, which
are then analyzed to return a list of potential faulty locations. To improve the exploration
and intuitiveness of that list, an Eclipse [5] plugin was also developed – GZoltar [6] –
that adds fault localization functionality to an integrated development environment, with
several visualization options.

Although these tools can be helpful, they do not scale. These tools need to instrument a
large portion of the project at the line of code level so that an analysis can be performed.
This is acceptable for small software applications, but impractical for large, real-world
projects that contain hundreds of thousands of lines of code.

A new approach to this problem would be to avoid as much as possible the line of code
level of instrumentation detail, while still using the proven techniques [3] that these fault
localization tools implement, using dynamic code coverage.

The dynamic code coverage method consists of coarsening the granularity of the instru-
mentation, obtaining only coverage traces for large components, and running the same
fault localization analysis detailed previously. This would return a list of potential faulty
components. After that, the components most likely to contain a fault would be re-
instrumented, with a finer-grained detail. The process will then loop until a list of the
lines of code most likely to contain a fault was reached.

The objective of this work is to implement a working prototype of this dynamic code cov-
erage approach in GZoltar, and evaluate its performance improvement. Another important
goal is to minimize the impact of the debugging phase in the software project’s resources.
References:
[1] G. Tassey. The economic impacts of inadequate infrastructure for software testing. National

Institute of Standards and Technology RTI Project, 2002.

[2] Andrew J. Ko and Brad A. Myers. Debugging Reinvented : Asking and Answering Why and
Why Not Questions about Program Behavior. ICSE ’08.

[3] Tom Janssen, Rui Abreu, and Arjan J. C. van Gemund. Zoltar: A toolset for automatic fault
localization. ASE ’09.

[4] James A. Jones, Mary Jean Harrold, and John Stasko. Visualization of test information to
assist fault localization. ICSE ’02.

[5] Eclipse Integrated Development Environment. http://www.eclipse.org/.

[6] André Riboira and Rui Abreu. The gzoltar project: a graphical debugger interface. TAIC
PART’10.

GZoltar: an Eclipse plug-in for Testing and Debugging

José Campos
Department of Informatics Engineering

Faculty of Engineering of University of Porto
Portugal

jose.carlos.campos@fe.up.pt

André Riboira
Department of Informatics Engineering

Faculty of Engineering of University of Porto
Portugal

andre.riboira@fe.up.pt
Alexandre Perez

Department of Informatics Engineering
Faculty of Engineering of University of Porto

Portugal
alexandre.perez@fe.up.pt

Rui Abreu
Department of Informatics Engineering

Faculty of Engineering of University of Porto
Portugal

rui@computer.org

ABSTRACT
Testing and debugging is the most expensive, error-prone
phase in the software development life cycle. Automated
testing and diagnosis of software faults can drastically
improve the efficiency of this phase, this way improving
the overall quality of the software. In this paper we
present a toolset for automatic testing and fault localiza-
tion, dubbed GZoltar, which hosts techniques for (regres-
sion) test suite minimization and automatic fault diagno-
sis (namely, spectrum-based fault localization). The toolset
provides the infrastructure to automatically instrument the
source code of software programs to produce runtime data,
which is subsequently analyzed to both minimize the test
suite and return a ranked list of diagnosis candidates. The
toolset is a plug-and-play plug-in for the Eclipse IDE to ease
world-wide adoption.

Categories and Subject Descriptors
D.2.5 [Software engineering]: Testing and Debugging

General Terms
Reliability, Experimentation

Keywords
Eclipse plug-in, Automatic Testing, Automatic Debugging,
GZoltar, RZoltar

1. TESTING & DEBUGGING
Testing and Debugging is an important, yet the most ex-

pensive and tedious phase of the software development life-
cycle. Although there are already off-the-shelf frameworks
to ease this tasks, they still do not offer enough capabili-
ties to fully automate this phase. Well known (unit) testing

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ASE 2012 Essen, Germany
Copyright 2008 ACM XXX-X-XXXXX-XXX-X/XX/XX ...$10.00.

frameworks include JUnit, TestNG, and JTest, which au-
tomated the test execution but do not offer capabilities for,
e.g., test suite minimization based on some criteria (such as
coverage). Several debugging tools exist which are based on
stepping through the execution of the program (e.g., GDB
and DDD). These traditional, manual fault localization ap-
proaches have a number of important limitations. The place-
ment of print statements as well as the inspection of their
output are unstructured and ad-hoc, and are typically based
on the developer’s intuition. In addition, developers tend to
use only test cases that reveal the failure, and therefore do
not use valuable information from (the typically available)
passing test cases.

Aimed at drastic cost reduction, much research has been
performed in developing automatic testing and fault local-
ization techniques and tools. As far as testing is concerned,
several techniques have been proposed minimize and priori-
tize test cases in order to reduce execution time and failure
detection, while maintaining similar code coverage [14]. This
paper presents a toolset, coined GZoltar, that provides a
technique for test suite reduction and prioritization. The
technique minimizes the original test suite using a novel
constraint-based approach [4], while still guaranteeing the
same code coverage. Furthermore, the technique allows the
user to prioritize the minimized test suites by cardinality
and execution time of the computed test suites.

As for debugging, one of the predominant techniques are
those based on a black box statistics-based method which
takes a program and available test cases and returns the
most probable location (component) that explains the ob-
served failed test cases. The GZoltar toolset implements a
technique called spectrum-based fault localization (SFL [1];
in particular, the tool provides the Ochiai [1] incarnation
of SFL, which is amongst the best for fault localization).
SFL is based on instrumenting a program to keep track of
executed parts. This log, run-time data is then analyzed to
yield a list of source code locations ordered by the likelihood
of it containing the fault. Furthermore, the toolset enables a
program to be trained with expected behavior and to auto-
matically detect an error if unexpected behavior is observed.
The fact that no knowledge is needed of the program to ac-
quire possible fault locations makes this set of tools a useful
extension to currently applied methods of testing and de-
bugging.

The GZoltar toolset, being developed at the University
of Porto, aims at providing state-of-the-art techniques for
(regression) test suite minimization and fault localization.
The tool is available for download at http://www.gzoltar.
com.

2. GZOLTAR TOOLSET
GZoltar is an Eclipse plug-in which produces accurate

fault localization data using state-of-the-art spectrum-based
fault localization algorithms, and provide the last studies
in the field of regression testing. It also creates power-
ful and navigable diagnostic reports’ visualizations, such as
Treemap and Sunburst (see Fig. 3).

The integration on Eclipse (one of the most popular IDEs)
is extremely useful as the Eclipse functionalities, such as
detection of open projects in the workspace and their classes,
interact with the (visual) diagnostic reports to dynamically
open the code editor in a potential faulty statement, can be
used by the toolset.

GZoltar aids developers find faults faster, thus spending
less time and resources in testing and debugging. This in
turn leads to a higher software reliability level and/or to a
decrease of its test period, thus reducing costs significantly.

2.1 GZoltar Architecture
The GZoltar is mainly written in Java and also uses

third-party open source programs. The Eclipse’s Workspace
component is used to gather information it needs, such as
open projects, their classes, and JUnit tests. ASM [3], a Java
bytecode engineering library, is used to instrument the Sys-
tem Under Test (SUT) in order to obtain coverage traces
when executing the unit tests with JUnit. The Eclipse’s
Workbench component is used for generating the Eclipse
User Interface (UI) tasks. This component has Standard
Widget Toolkit (SWT) to create the GZoltar view, and
provides a bridge to Abstract Windows Toolkit (required
by the Java OpenGL (JOGL), the component that provides
OpenGL bindings to Java). JOGL generates the OpenGL-
based visualizations displayed on the GZoltar view. Inte-
grated in the GZoltar plug-in, but written in C is the
MINION constraint solver1. Finally, the TRIE [7] struc-
ture has a interface written in Java and implemented in C
for efficiency. For a schematic view of these technological
layers and their interactions, see Fig. 1.

MINION

TRIE JNI

TRIE

ASM

JUnit

Workspace

JOGL

AWT

SWT

Workbench

Operating System

Figure 1: GZoltar Layers. Integration between
GZoltar and other technologies.

1MINION Homepage, http://minion.sourceforge.net/,
2012.

2.2 GZoltar Flow
The GZoltar processing flow can be divided into eight

main stages such Fig. 2 show.

Detect all Open Projects

Detect Test Classes

Execute Test and obtain its Result

Instrument all Classes

Obtain Coverage Result

Create Coverage Matrix Line

Create Constraints

Execute the MINION Constraint Solver

Obtain all solutions

Filter solutions

fo
r

ea
ch

 t
es

t
cl

a
ss

fo
r

ea
ch

 o
p

en
 p

ro
je

ct

fo
r

ea
ch

 li
ne

Show solutions and Code Editor Integration

Execute the Ochiai Algorithm

Obtain Relations between Lines of Code

Create Hierarchical Structure Tree

OpenGL View and Navigation

Warning Generation and Code Editor Integration

Figure 2: Information flow.

Initial Eclipse Integration: Eclipse makes it possible to
automatically detect all open projects in the IDE. Once the
set of the open projects is known, GZoltar search indexes
all their classes and JUnit test classes (those who have test
methods written in JUnit syntax, to be executed later). To
avoid differences between source files and compiled classes,
at this stage, GZoltar forces Eclipse to build the open
projects, to guarantee that it is working with the latest
version of the code.

JUnit and ASM: For each project there is a list of all
test classes. For each class in the project all code is instru-

mented to allow the code coverage process. That process
aims at detecting if a given line of code was executed or not.
GZoltar uses ASM to instrument all open projects, thus
being capable of debugging projects that call methods from
other projects. Subsequently, test classes, implemented in
the JUnit syntax, are executed automatically.

The information whether a test case has passed or failed is
also stored to be used later by both the RZoltar (namely,
to display if test fails) and GZoltar (namely, to compute
the diagnostic report) views. The results are saved into a
coverage matrix [4], a N ×M binary matrix A, where N is
the execution of a test case, M correspond to different com-
ponents of a software program, and aij is the coverage for
component j when test i is executed. Once the code cover-
age matrix is gathered, RZoltar analyzes them to minimize
the suite.

Gathering code coverage information of the SUT for each
test case consists of three steps: (1) the code is instrumented
to register what statements where touched by an execution,
(2) the test case is executed, and (3) a coverage trace of
what statements were executed is computed, and appended
to the coverage matrix.

In summary, at this stage, all code from open projects
are instrumented and built, test classes are executed, and
code coverage matrix (plus any other relevant information)
is stored.

MINION: After collecting the coverage of the SUT,
into the coverage matrix explained before, the coverage
information is passed to the constraint solver and it returns
at least one minimum set that cover the entire software
program such as original set.

Filtering out Solutions: The results provided by
constraint solver are then filtered out using a TRIE
data structure. Essentially, this stage is to discard non-
minimal test suites from the collection presented to the user.

Show Solutions: At this stage the user can select on
minimum subset to re-execute, or sorted all subsets by their
cardinality or execution time of each subset.

Run Ochiai: At this stage, GZoltar executes the SFL
algorithm Ochiai, known to be amongst the best performing
techniques for fault localization [1]. Based on every JUnit
test result, the Ochiai similarity coefficient is calculated for
every element of the system.

Graphical Visualization: To perform powerful and
efficient visualizations of SUT, GZoltar use OpenGL
technology in order to take advantage of the Graphics
Processing Unit (GPU).

Warning Generation and Final Eclipse Integration:
The GZoltar plug-in also generates warnings that inte-
grates with the code editor, marking the lines that have a
high probability of being faulty.

After all this stages, the user can inspect the fail unit tests
and faulty lines (if they exist). This is a recursive process,
so until all faults are not fixed, user can select a minimum
set to re-execute (testing and saving time at the same time),
fix and re-execute again.

2.3 Eclipse Views
By default, GZoltar offers two Eclipse views integrated

into the IDE: GZoltar (Fig. 3) and RZoltar (Fig. 5).
While analyzing the SUT, the user can click on the visual

representation of a line of code on the GZoltar view, and
jump directly to that line in the Eclipse’s code editor. An
Eclipse code editor is opened with the text cursor placed
on the line selected in the GZoltar view. Furthermore,
GZoltar also generates a list of markers placed on the code
editor’s vertical ruler, indicating the respective line of code’s
probability of being faulty when hovering the mouse. These
markers, as we can see in Fig. 4, can be of three different
types: (1) red for the top third statements most likely to
contain a fault, (2) yellow for the middle third statements,
and (3) green for the bottom third statements. Every marker
also has an embedded ColorADD2 symbol, in order to help
colorblind people distinguish between markers. These anno-
tation markers are also displayed on the Eclipse “Problems”
view.

GZoltar view also provides two visualizations [13]
Treemap and Sunburst, such as illustrated at Fig. 3. With
this seamless integration, the user can easily analyze the
SUT structure and localize the root cause of observed fail-
ures. Thus, GZoltar provides a easy way to access directly
to the source code in order to fix faults.

Figure 3: GZoltar’s visualizations: Treemap and
Sunburst [13].

High Probability

Medium Probability

Low Probability

Figure 4: GZoltar’s statement failure probability
markers.

The RZoltar view (Fig. 5) is divided in two layers. On
the left layer, the user can access the list of minimum set cov-

2ColorADD color identification system, http://coloradd.
net/, 2012.

Figure 5: RZoltar interface.

erage (including the set with all test cases, just in case the
user decides to re-execute the original test suite) and check
the result of test cases (pass, fail, or error) by the color of
icon. If test fail or return an error, the error message is dis-
played in “Trace” window. In all layers, the user can always
double-click on a test case and jump to the test case file, or
at failure trace, double-click goes to line (presents in that
layer). This is similar to the functionalities offered by JU-
nit. The RZoltar view offers to criteria to prioritize test
suites: Cardinality of Set and Runtime. The latter prioriti-
zation orders the minimum sets found (test suites of reduced
size) using the take it takes to re-execute the suite, whereas
the former orders the sets by the number of tests cases (set
cardinality).

All in all, GZoltar provides an excellent ecosystem for
regression testing and automatic debugging. This toolset
is also straightforward to understand because we use famil-
iar interface features (e.g., icons similar to the ones used in
JUnit).

3. RELATED WORK
Nowadays most of the IDEs in market only offer a limited

and manual debugging tool, such as breakpoints, conditional
breakpoints, or the possibility to execute the software in a
step-by-step. To the best of our knowledge, the most well
known automatic debugging tools is Tarantula [12]. This in-
dependent tool is based on the the code coverage of multiple
test executions of a given system. Although, Tarantula has
not integration with any IDE, and do not support unit tests.
Zoltar [11] is another available automatic debugging tool. It
uses similarity coefficients to predict the failure probability
of each line of code. Currently Zoltar runs only on Linux
systems and is only works only with projects written in C
language. Other relevant tools for automatic debugging are:
Vida [8] an Eclipse plug-in based in Tarantula approach;
EzUnit4 [2] is also an Eclipse plug-in that uses statistical
analysis to determine the failure probability of every tested
method.

Regression testing has been the field of several research
studies in last years. Similar to RZoltar, the following tools
are the best known tools for regression testing: MINTS [10]
which uses an Integer Linear Programming (ILP) solver with
multi-criteria test minimization; TestTube [5] partitions the
SUT in several program entities, and follow the execution
of test cases to analyze the relation between tests and pro-

gram entities. Other techniques for regression testing in-
clude Greedy heuristic [6] and Program Slicing [9].

4. CONCLUSIONS
Testing and debugging is tedious and cumbersome phase

in the software development life-cycle. Aimed at aiding the
developer to test the software application and, if needed,
pinpoint the source of observed failures, this paper describes
GZoltar, an Eclipse plug-in which has a GZoltar view to
deal with tasks about debugging, and RZoltar view for
regression testing purpose. The toolset as well as a tutorial
can be obtained from http://www.gzoltar.com.

Future work include the following. We plan to provide
more techniques for minimizing test suites (e.g., greedy,
MINTS), add more visualizations of the diagnostic reports.
Furthermore, there are plans to add the capability of dy-
namically instrumenting the source code, this way reducing
the overhead imposed to collect information.

5. REFERENCES
[1] R. Abreu, P. Zoeteweij, R. Golsteijn, and A. Gemund. A

practical evaluation of spectrum-based fault localization.
Journal of Systems and Software, 82(11):1780–1792, Nov.
2009.

[2] P. Bouillon, J. Krinke, N. Meyer, and F. Steimann. EzUnit:
A Framework for Associating Failed Unit Tests with
Potential Programming Errors. In G. Concas, E. Damiani,
M. Scotto, and G. Succi, editors, Agile Processes in
Software Engineering and Extreme Programming, volume
4536 of Lecture Notes in Computer Science, pages 101–104.
Springer Berlin / Heidelberg, 2007.

[3] E. Bruneton, R. Lenglet, and T. Coupaye. ASM: A code
manipulation tool to implement adaptable systems. In
Adaptable and extensible component systems, 2002.

[4] J. Campos. Regression testing with GZoltar: Techniques
for test suite minimization, selection, and prioritization.
MSc Thesis, University of Porto, 2012.

[5] Y.-F. Chen, D. S. Rosenblum, and K.-P. Vo. TestTube: a
system for selective regression testing. In Proc. ICSE’94,
ICSE ’94, pages 211–220, Los Alamitos, CA, USA, 1994.
IEEE Computer Society Press.

[6] V. Chvatal. A Greedy Heuristic for the Set-Covering
Problem. Mathematics of Operations Research,
4(3):233–235, 1979.

[7] E. Fredkin. Trie memory. Commun. ACM, 3:490–499,
September 1960.

[8] D. Hao, L. Zhang, L. Zhang, J. Sun, and H. Mei. VIDA:
Visual interactive debugging. In Proc. of ICSE’09, ICSE
’09, pages 583–586, Washington, DC, USA, 2009. IEEE
Computer Society.

[9] M. J. Harrold, R. Gupta, and M. L. Soffa. A methodology
for controlling the size of a test suite. ACM Trans. Softw.
Eng. Methodol., 2:270–285, July 1993.

[10] H.-Y. Hsu and A. Orso. MINTS: A general framework and
tool for supporting test-suite minimization, volume 0, pages
419–429. IEEE Computer Society, 2009.

[11] T. Janssen, R. Abreu, and A. J. C. v. Gemund. Zoltar: A
toolset for automatic fault localization. In Proc. of ASE
’09, pages 662–664, Washington, DC, USA, 2009. IEEE CS.

[12] J. A. Jones, M. J. Harrold, and J. T. Stasko. Visualization
for Fault Localization. In Proc. of ICSE’01, pages 71–75.
IEEE Computer Society Press, 2001.

[13] A. Riboira. GZoltar: A graphical debugger interface. MSc
Thesis, University of Porto, 2011.

[14] S. Yoo and M. Harman. Regression testing minimization,
selection and prioritization: A survey. Software Testing,
Verification and Reliability, 2010.

APPENDIX
A. TOOL PRESENTATION

To demonstrate how can we quickly test and debug a
program using GZoltar toolset, we consider a Java pro-
gram, coined NanoXML3. First we introduced a fault on
NanoXML program. After that we use RZoltar view to
determine a minimum set which we can test the program,
and in an attempt to try to quickly find the failure pre-
viously introduced, we use GZoltar view to debug the
program. The following demonstration can also be seen at
http://www.gzoltar.com/.

A.1 NanoXML
NanoXML is a small XML parser developed in Java. This

is an open source program of medium size, with 4660 lines
of code and a suite of JUnit tests.

Originally all the unit tests present in the program return
success. To validate if the ecosystem for testing e debugging
GZoltar is in fact practical and helpful for developers, a
fault was injected in the program with the objective of some
tests now returns error. The failure results of a change in
Line number 109 of the method skipTag at XMLUtil class, at
package net.n3.nanoxml, from“case ’>’:”to“case ’]’:”.

To start, first we open the two views: GZoltar view and
RZoltar view on Eclipse IDE, such as Fig. 6 show.

Figure 6: GZoltar and RZoltar in Eclipse’s View
selection.

After this step, the GZoltar and RZoltar view are lo-
cated at the bottom of Eclipse (see Fig. 7).

Now, to test all NanoXML program we need to deal with
RZoltar view. This view is responsible for all actions about
regression testing. It is divided in two layers, on the left user
can access to the list of minimum set coverage (including
the set with all test cases); on the right user can see “Failure
Trace” of every faulty test, such as Fig. 8 show.

At RZoltar view there are also two implicit prioritiza-
tion: Cardinality of Set and Runtime. First prioritization
can order the minimum sets through the number of tests in
every sets. Second prioritization can sort the minimum sets
by the total of time which set needed to re-run.

Every time you change your project code, RZoltar have
to update its information. This is not made automatically
because of performance reasons. To do so, click on “Refresh”

3NanoXML Homepage, http://devkix.com/nanoxml.php,
2012.

Figure 7: Default visualization of Eclipse with
GZoltar plug-in installed.

Figure 8: RZoltar view.

button (CTRL + F5) or if you already do this, you can only
select a set of tests and click on Re-Run button, to run again
the selected set. You will then see a view with the updated
data. If you are working with big projects, it is normal if you
have a delay between the time you press “Refresh” button
and have the view ready to navigate. User can always clear,
expand and collapse results, with respectively buttons (see
Fig. 9).

Figure 9: RZoltar toolbar.

From the left to the right, in Figure 9 appears: “Re-run
the selected set”, “How long are you willing to wait for the re-
sults?”, “Refresh”, “Clear Results”, “Expand”and“Collapse”.
“Re-run the selected set”allows the re-execution of a selected
set. “How long are you willing to wait for the results?” pro-
vides some options to user, related with time to calculate the
minimum set coverage, for example, “I want to wait 30sec
(max limit) for a minimum solution”, or “I want the first 100
minimum solutions”. “Refresh”, runs all unit tests presented
in Java project, and calculate the minimum set coverage.
“Clear Results”, erase the results showed by GZoltar and
RZoltar view. “Expand” and “Collapse”, show/hide the
sets in RZoltar view.

Wherefore, to start testing NanoXML program we need to
click on “Refresh” button and after that the result of every
unit test is show at RZoltar view (on right at Fig. 10).

Figure 10: Result for the first execution of all unit
tests.

As we can see in Fig. 10, there are some tests that fail, and
on the right at “Failure Trace”, we can also investigate the
returned failure of every test. On the two layers of RZoltar
view, user can always double-click on a test case and jump
to the file with test case, or at failure trace, double-click goes
to line (presents in that layer).

Now, we have some test which can not return success, so
we need to inspect the code or use interactive GZoltar view
to do that.

GZoltar view begin with the default visualization, Sun-
burst (on left at Fig. 12) but pressing the key 2 we can
change to TreeMap visualization (on right at Fig. 12). Sun-
burst gives a view that privileges more the hierarchical lo-
cation, and Treemap, on its turn, presents a view that priv-
ileges more the tree leafs.

It is possible to see if a project has faults by analyzing
its components colors. If a project does not fail in any test,
all components will be rendered in green, otherwise, a color
that varies from green to red will represent the component
failure probability. It is possible to place the mouse over
any project component, at any level, and see its name and
failure probability value (see Fig. 12). The information rep-
resent on two visualization corresponds to the real project
file structure (see Fig. 11).

We can also navigate through displayed data by clicking
on the component he wants to expand. Expanded compo-
nents shows their sub-components (see Fig. 12).

If the user click on an open component, it will be collapsed.
This way, user can choose what is the group of components
he wants to see. When the user presses “space” key, all tree
components will be displayed, the system tree visualization
will be totally expanded (see Fig. 13). On complex systems
(a big project with several files and lines of code) it is better
to navigate in a step-by-step approach (by expanding only
the desired sub-components) than by starting to see all the
project components at once.

When we deal with complex systems it is difficult to have
a quick notion about the tested system structure. So, when
zooming into a specific area of the visualization, we lost our
sense of location. By zooming in, it is not possible to see all
leafs (see Fig. 14).

1

2

3

4

5

6

7

1 2

project.packageroot.package.file.class.method.line

3

4

5

6

7

{ { { {

{ { {

Figure 11: Levels in Sunburst and indications.

Figure 12: Navigation in GZoltar visualizations.
User can expand just the needed SUT components.

Figure 13: Expanding all components in GZoltar
visualizations. User can expand all SUT components
at once by pressing space key.

Root change can be seen as a “smart zoom”, because the
viewing area gets limited to increase visualization detail, but
maintaining the same visual structure concept. We place
the mouse cursor at any element on any visualization, and
click with right-click. Thus all the elements that are not
related directly with the descendants or ascendants of the
selected element, will be hidden from the visualization (see
Fig. 15). This can be verified in both visualizations, Sun-
burst and Treemap.

Figure 14: Zoom and Pan on NanoXML program.
Detail of a program area using zoom and pan feature
(right image). Left image highlights zoomed area.

Figure 15: Root Change on NanoXML program.
Detail of a program area using root change feature
(right image). Left image highlights affected area.

GZoltar view, such RZoltar integrates very well with
Eclipse features. GZoltar can open directly the standard
Eclipse code editor, and position the text cursor on the
wanted line (see Fig. 16). It also generates standard Eclipse
warning markers that can be seen in the vertical ruler, imme-
diately before each line of code (see Fig. 17). These mark-
ers are color-coded according to the respective line’s failure
probability (see Fig. 4), ranging from red (high probability
of being faulty) to green (low failure probability). These
markers also show tooltips with the failure probability value
when the mouse is hovering them. The warning markers are
also available at standard Eclipse’s “Problems” View (see
Fig. 18), and user can also jump to the respective class and
line of code by double clicking on the warning message he
wants.

After we found the line with the highest fault probability
(see Fig. 19), we found the bug previously injected. We
correct the bug, in other words, change the Line number
109 at XMLUtil.java file from “case ’]’:” to “case ’>’:”
(see Fig. 20).

Selecting and Re-running one of the several minimum sets
provided by RZoltar view, we can check that everything
is ok now. No warnings and no faults detected by GZoltar
plug-in (see Fig. 21).

Figure 16: Code Editor Integration. When user
clicks on a line of code representation, the corre-
sponded code editor is automatically opened.

Figure 17: Warning markers next to line of code.
Immediately before the line of code, the user finds
markers that reveal if that line has or not any fail-
ure probability. Those signs have tooltips with the
failure probability value.

Figure 18: Problems View. Because GZoltar uses
standard Eclipse warnings (but with other icon),
they are also shown on Eclipse “Problems” View.

Figure 19: Line with bug.

Figure 20: Line without bug.

Figure 21: Everything is ok. NanoXML program
without any fault.

A.2 Tool availability
Currently, the GZoltar plug-in is available under a re-

quest license at http://www.gzoltar.com. Being an Eclipse
plug-in, GZoltar is installed just like any other plug-in, but
have the particularity of requiring the selection of the sys-
tem architecture during installation. It is compatible with
Microsoft Windows, Mac OS X and also Linux Systems, and

it is also compatible with 32 and 64 bit Central Processing
Unit (CPU) architectures.

A Dynamic Code Coverage Approach to Maximize Fault Localization Efficiency

Alexandre Perez, André Riboira, Rui Abreu
Department of Informatics Engineering

Faculty of Engineering, University of Porto
Porto, Portugal

{alexandre.perez, andre.riboira}@fe.up.pt, rui@computer.org

Abstract—Spectrum-based fault localization is amongst the
most effective techniques for automatic fault localization.
However, abstraction of program execution traces (also known
as program spectra), one of the required inputs for this
technique, require instrumentation of the software under test
at a statement level of granularity in order to compute
a list of the potential faulty statements. This introduces a
considerable overhead in the fault localization process, which
can even become prohibitive in, e.g., resource constrained
environments. To counter this problem, we propose a new
approach, coined Dynamic Code Coverage (DCC), aimed at
reducing this instrumentation overhead. This technique, by
means of using coarser instrumentation, starts by analyzing
coverage traces for large components of the system under test.
It then progressively increases the instrumentation detail for
faulty components, until the statement level of detail is reached.
To assess the validity of our proposed approach, an empirical
evaluation was performed, injecting faults in four real-world
software projects. The empirical evaluation demonstrates that
the dynamic code coverage approach reduces the execution
overhead that exists in spectrum-based fault localization, and
even presents a more concise potential fault ranking to the user.
We have observed execution time reductions of 27% on average
and diagnostic report size reductions of 63% on average.

Keywords-Debugging; dynamic code coverage; software in-
strumentation; spectrum-based fault localization.

I. INTRODUCTION

Automatic fault localization techniques aid develop-
ers/testers to pinpoint the root cause of software failures,
thereby reducing the debugging effort. Amongst the most
diagnostic effective techniques is spectrum-based fault lo-
calization (SFL). SFL is a statistical technique that uses ab-
straction of program traces (also known as program spectra)
to correlate software component (e.g., statements, methods,
classes) activity with program failures [1], [2], [3]. As SFL is
typically used to aid developers in identifying the root cause
of observed failures, it is used with low-level of granularity
(i.e., statement level).

Statistical approaches are very attractive because of the
relatively small overhead with respect to CPU time and
memory requirement [1], [4]. However, gathering the input
information, per test case, to yield the diagnostic ranking
may still impose a considerable (CPU time) overhead. This
is particularly the case for resource constrained environment,
such as embedded systems.

As said before, typically, SFL is used at development-time
at a statement level granularity (since debugging requires
to locate the faulty statement). But not all components
need to be inspected at such fine grain granularity. In fact,
components that are unlikely to be faulty do not need to
be inspected. With this reasoning in mind, we propose
a technique, coined Dynamic Code Coverage (DCC), that
automatically adjusts the granularity per component. First,
our approach instruments the source code using a coarse
granularity (e.g., package level in Java), and then decides
which components to expand based on the output of the fault
localization technique. With expanding we mean changing
the granularity of the instrumentation (e.g., in Java, for
instance, instrument classes, then methods, and finally state-
ments). This expansion can be done in different ways, either
selecting the components whose fault coefficient is above a
certain threshold, or selecting the first ranked components,
according to a set percentage.

Our empirical evaluation demonstrates that DCC has the
potential to reduce drastically the execution overhead, while
still maintaining the diagnostic effectiveness of statement-
based spectrum-based fault localization. In our experiments,
we have observed a time reduction of 27% on average.
Furthermore, the rankings are easier to understand because
less components are presented to the user, as low probability
components are not expanded. A 63% reduction of the diag-
nostic report size was observed in our empirical evaluation.

In particular, this paper makes the following main contri-
butions:

• DCC, a technique that automatically decides the instru-
mentation granularity for each module in the system,
has been proposed; and

• An empirical study to validate the proposed technique,
demonstrating its efficiency using real-world, large
programs. The empirical results shows that DCC can
indeed decrease the overhead imposed in the software
under test, while still maintaining the same diagnostic
accuracy as current approaches to fault localization.
DCC also decreases the diagnostic report size when
compared to traditional SFL.

To the best of our knowledge, our dynamic code coverage
approach has not been described before. The remainder of

this paper is organized as follows. In the next section we
present concepts relevant to this paper as well as a moti-
vational example for our work. In Section III the dynamic
code coverage approach, DCC, is described. In Section IV
the findings of our empirical evaluation are presented. We
compare DCC with related work in Section V. In Section VI
we conclude and discuss future work.

II. CONCEPTS & MOTIVATIONAL EXAMPLE

In this section, we introduce the concept of program
spectra, and its use in fault localization. Throughout this
paper, we use the following terminology [5]:

• A failure is an event that occurs when delivered service
deviates from correct service.

• An error is a system state that may cause a failure.
• A fault (defect/bug) is the cause of an error in the

system.
In this paper, we apply this terminology to software pro-

grams, where faults are bugs in the program code. Failures
and errors are symptoms caused by faults in the program.
The purpose of fault localization is to pinpoint the root cause
of observed symptoms.

Definition 1 A software program Π is formed by a sequence
of one or more M statements.

Given its dynamic nature, central to the fault localization
technique considered in this paper is the existence of a test
suite.

Definition 2 A test suite T = {t1, . . . , tN} is a collection
of test cases that are intended to test whether the program
follows the specified set of requirements. The cardinality of
T is the number of test cases in the set |T | = N .

Definition 3 A test case t is a (i, o) tuple, where i is a
collection of input settings or variables for determining
whether a software system works as expected or not, and
o is the expected output. If Π(i) = o the test case passes,
otherwise fails.

A. Program Spectra
A program spectra is a characterization of a program’s

execution on a dataset [6]. This collection of data, gathered
at runtime, provides a view on the dynamic behavior of a
program. The data consists of counters or flags for each
software component. Various different program spectra ex-
ist [7], such as path-hit spectra, data-dependence-hit spectra,
and block-hit spectra.

In order to obtain information about which components
were covered in each execution, the program’s source
code needs to be instrumented, similarly to code coverage
tools [8]. This instrumentation will monitor each component
and register those that were executed. Components can be
of several detail granularities, such as classes, methods, and
lines of code.

B. Fault Localization

A fault localization technique that uses program spectra,
called Spectrum-based Fault Localization (SFL), exploits
information from passed and failed system runs. A passed
run is a program execution that is completed correctly, and
a failed run is an execution where an error was detected [1].
The criteria for determining if a run has passed or failed
can be from a variety of different sources, namely test
case results and program assertions, among others. The
information gathered from these runs is their hit spectra [9].

The hit spectra of N runs constitutes a binary N ×M
matrix A, where M corresponds to the instrumented compo-
nents of the program. Information of passed and failed runs
is gathered in a N -length vector e, called the error vector.
The pair (A, e) serves as input for the SFL technique, as
seen in Figure 1.

N spectra

M components


a11 a12 · · · a1M
a21 a22 · · · a2M

...
...

. . .
...

aN1 aN2 · · · aNM




error
detection


e1
e2
...
eN




Figure 1: Input to SFL.

With this input, fault localization consists in identifying
what columns of the matrix A resemble the vector e the
most. For that, several different similarity coefficients can
be used [10]. One of the most effective is the Ochiai
coefficient [11], used in the molecular biology domain:

sO(j) =
n11(j)√

(n11(j) + n01(j))× (n11(j) + n10(j))
(1)

where npq(j) is the number of runs in which the component
j has been touched during execution (p = 1) or not touched
during execution (p = 0), and where the runs failed (q = 1)
or passed (q = 0). For instance, n11(j) counts the number of
times component j has been involved in failed executions,
whereas n10(j) counts the number of times component j
has been involved in passed executions. Formally, npq(j) is
defined as

npq(j) = |{i | aij = p ∧ ei = q}| (2)

SFL can be used with program spectra of several different
granularities. However, it is most commonly used ad the
line of code (LOC) level and at the basic block level. Using
coarser granularities would be difficult for programmers to
investigate if a given fault hypothesis generated by SFL was,
in fact, faulty. Throughout this work, we will be using a
LOC level as the instrumentation granularity for the fault
localization diagnosis report.

Audio/Video Teletext Remote

High

Medium

Low

Probability of
being faulty:

Figure 2: SFL output example.

C. Motivational Example

Suppose a program responsible for controlling a television
set is being debugged. Consider that such program has three
main high-level modules:

1) Audio and video processing;
2) Teletext decoding and navigation;
3) Remote-control input.

If one is to use SFL to pinpoint the root cause of observed
failures, hit spectra for the entire application have to be
gathered. Furthermore, the hit spectra have to be of a fine
granularity, such as LOC level, so that the fault is more
easily located.

An output of the SFL technique applied to this specific
example can be seen in Figure 2. The smaller squares
represent each LOC of the program, which are grouped
into methods, and then into the three main modules of the
program under test.

As seen in Figure 2, every LOC in the program has an
associated fault coefficient that represents the probability of
that component being faulty. In this example, the bottom-left
function of the teletext decoding and navigation module has
two LOCs with high probability of being faulty, and other
two with medium probability. The upper-right function of the
teletext module also contains two medium probability LOCs.
There are, however, many LOCs with low probability of
containing a fault. In fact, in some methods, and even entire
modules, such as the audio/video processing and remote-
control modules, all components have low probability. Such
low probability is an indication that the fault might be
located elsewhere, and thus these components need not to
be inspected first.

As SFL needs to have information about the entire pro-
gram spectra to perform an analysis on the most probable
fault locations, this can lead to scalability problems, as
every LOC has to be instrumented. Instrumentation can
hit execution time by as much as 50% in code coverage
tools that use similar instrumentation techniques [8]. As
such, fault localization that uses hit spectra is acceptable
for debugging software applications, but may be impractical
for large, real-world, and resource-constrained projects that
contain hundreds of thousands of LOCs.

In order to make SFL amenable to large, real, and
resource-constrained applications, a way to avoid instru-
menting the entire program must be devised, while still
having a fine granularity for the most probable locations
in the fault localization results.

III. DYNAMIC CODE COVERAGE

In order to solve the potential scaling problem that auto-
mated fault localization tools have, we propose a dynamic
approach, called DCC. This method uses, at first, a coarser
granularity level of instrumentation for the initial program
spectra gathering. After that, it progressively increases the
instrumentation detail of potential faulty components.

In Algorithm 1 it is shown the Dynamic Code Coverage
algorithm. It takes as parameters System and TestSuite,
corresponding to the System Under Test (SUT) and its test
suite, respectively.

Algorithm 1 Dynamic Code Coverage.
1: procedure DCC(System, TestSuite)
2: R ← ∅
3: F ← System
4: T ← TestSuite
5: G ← INITIALGRANULARITY
6: repeat
7: INSTRUMENT(F ,G)
8: (A, e)← RUNTESTS(T)
9: C ← SFL(A, e)

10: F ← FILTER(C)
11: R ← UPDATE(R,F)
12: T ← NEXTTESTS(TestSuite, A,F)
13: G ← NEXTGRANULARITY(F)
14: until ISFINALGRANULARITY(F)
15: return R
16: end procedure

First, an empty report R is created. After that, a list of the
components to instrument F is initialized with all System
components. Similarly, the list of test cases to run in each
iteration T is initialized with all test cases in TestSuite.
An initial granularity G is also calculated with the method

INITIALGRANULARITY, which can be set from a class level
to a LOC level.

After the initial assignments, the algorithm will start its
iteration phase in line 6. At the start of each iteration, every
component in the list F is instrumented with the granularity
G with the method INSTRUMENT. What this method does is
to alter these components so that their execution is registered
in the program spectra.

Afterwards, the test cases T are run with the method
RUNTESTS. Its output is a hit spectra matrix A for all the
previously instrumented components, and the error vector
e, that states what tests passed and what tests failed. As
explained in Section II-B, these are the necessary inputs for
spectrum-based fault localization, performed in line 9. This
SFL method calculates, for each instrumented component,
its failure coefficient using the Ochiai coefficient, shown in
equation 1.

Following the fault localization step, the components are
passed through a FILTER that eliminates the low probability
ones according to a set threshold, and the list F is updated,
as well as the fault localization report R.

In line 12, the test case set is updated to run only the
tests that touch the current components F . Such tests can
be retrieved by analyzing the coverage matrix A.

The last step in the iteration is to update the in-
strumentation granularity for next iterations. Method
NEXTGRANULARITY finds the coarser granularity in all the
components of list F , and updates that granularity to the next
level of detail.

Every iteration is tested for recursion with
ISFINALGRANULARITY, that returns true if every
component in the list F is at the desired final granularity,
such as LOC or basic bloc granularities. Lastly, the DCC
algorithm returns the fault localization report R.

DCC’s performance is very dependent on the FILTER
function, which is responsible to decide whether or not it
is required to zoom-in1 in a given component. Although
many filters may be plugged into the algorithm, in this paper
we study the impact of two filters (see Figure 3 for an
illustration):

• Coefficient filter Cf – components above the SFL
coefficient threshold Cf are expanded.

• Percentage filter Pf – the first Pf% components are
expanded.

The main advantages of our dynamic code coverage
algorithm, DCC, are twofold. The first one is the decrease
of instrumentation overhead in the program execution (as
demonstrated by the empirical results). This is due to the
fact that not every LOC is instrumented – only the LOCs
most likely to contain a fault will be instrumented at that
level of detail.

1In this context, zooming-in is to explore the inner components of a
given component.

0.9 0.8 0.8 0.7 0.5 0.1

0.7 0.2 0.2 0.1 0.0 0.0

Coefficient Filter (> 0.6)

Percentage Filter (50%)

0.9 0.8 0.8 0.7 0.5 0.1

0.7 0.2 0.2 0.1 0.0 0.0

Figure 3: Component filters.

The second advantage is the fact that, in every iteration,
the generated program spectra matrices, seen in line 8 of
Algorithm 1, will be shorter in size when compared to
traditional SFL. That way, the fault coefficient calculation,
described in Section II-B, will be inherently faster, as there
are fewer components to calculate.

The iterative nature of the DCC algorithm also provides
some benefits. In each iteration, the algorithm is walking
towards a solution, narrowing down the list of components
which are likely to contain a fault. As such some information
about those components can be made available, directing the
developer to the fault location even before the algorithm is
finished. Secondly, as low probability components are being
filtered, the final report will also be shorter, providing the
developer with a more concise fault localization report.

To illustrate the overhead reduction, let us revisit the
motivational example given in Section II-C. If use the DCC
approach to debug this program, we get the output shown
in Figure 4. In this example, a filter responsible for not
exploring components with low probability of containing
faults is being used. In particular, the algorithm executes
as follows:

1) The three modules – Audio/Video, Teletext, and Re-
mote – are instrumented at the module level. Upon
running the tests and SFL, the only component with
high probability of being faulty is the Teletext module.

2) The Teletext module is instrumented at a method level.
After that, the tests that touch the Teletext module are
run. Fault localization states that the upper-right (UR)
and the bottom-left (BL) functions have medium and
high probability of being faulty, respectively.

3) The UR and BL functions are instrumented at the LOC
level. After the tests that touch those functions are run
and fault localization is performed, every LOC in those
functions has an associated fault coefficient. As all the
non-filtered components are of LOC granularity, the
execution is terminated.

This approach, besides only reporting LOCs which are
more likely to contain a fault, also needed to instrument
less software components – 13 in total. Compared to the

Audio/Video Teletext Remote

High

Medium

Low

Probability of
being faulty:

Figure 4: DCC output example.

pure SFL approach of Section II-C, where 40 components
were instrumented, DCC has reduced instrumentation (thus,
overhead) by 67.5%.

IV. EMPIRICAL EVALUATION

In this section, we evaluate the validity and performance
of the DCC approach for real projects. First, we introduce
the programs under analysis and the evaluation metrics.
Then, we discuss the empirical results and finish this section
with a threats to validity discussion.

A. Experimental Setup

For our empirical study, four subjects written in Java were
considered:

• NanoXML2 – a small XML parser.
• org.jacoco.report – report generation module

for the JaCoCo3 code coverage library.
• XML-Security – a component library implementing

XML signature and encryption standards. This library
is part of the Apache Santuario4 project.

• JMeter5 – a desktop application designed to load test
functional behavior and measure performance of web
applications.

The project details of each subject are in Table I. The LOC
count information was gathered using the metrics calculation
and dependency analyzer plugin for Eclipse Metrics6. Test
count and coverage percentage were collected with the Java
code coverage plugin for Eclipse EclEmma7.

Subject Version LOCs (M) Test Cases Coverage
NanoXML 2.2.6 5393 8 53.2%

org.jacoco.report 0.5.5 5979 225 97.2%
XML-Security 1.5.0 60946 461 59.8%

JMeter 2.6 127359 593 34.2%

Table I: Experimental Subjects.

To assess the efficiency and effectiveness of DCC the
following experiments were performed, using fifteen faulty

2NanoXML – http://devkix.com/nanoxml.php
3JaCoCo – http://www.eclemma.org/jacoco/index.html
4Apache Santuario – http://santuario.apache.org/
5JMeter – http://jmeter.apache.org/
6Metrics – http://metrics.sourceforge.net/
7EclEmma – http://www.eclemma.org/

versions per subject program. We injected one fault in each
of the 15 versions8:

• SFL without DCC. This is the reference baseline.
• DCC with constant value coefficient filters from 0 to

0.95, with intervals of 0.05.
• DCC with percentage filters from 100% to 5%, with

intervals of 5%.
The metrics gathered were the fault localization execution

time, the size of the fault localization report, and the average
LOCs needed to be inspected until the fault is located.
The latter metric can be calculated by sorting the fault
localization report by the value of the coefficient, and finding
the injected fault’s position. In this metric, we are assuming
that the developer performs the inspection in an ordered
manner, starting from the highest fault coefficient LOCs.

As spectrum-based fault localization creates a ranking of
components in order of likelihood to be at fault, we can
retrieve how many components we still need to inspect until
we hit the faulty one. Let d ∈ {1, . . . ,K}, where K is the
number of ranked components and K ≤ M , be the index
of the statement that we know to contain the fault. For all
j ∈ {1, . . . ,M}, let sj . Then the ranking position of the
faulty statement is given by

τ =
|{j|sj > sd}|+ |{j|sj ≥ sd}| − 1

2
(3)

|{j|sj > sd}| counts the number of components that outrank
the faulty one, and |{j|sj ≥ sd}| counts the number of
components that rank with the same probability as the faulty
one plus the ones that outrank it.

We define quality of diagnosis as the effectiveness to
pinpoint the faulty component. As said before, this metric
represents the percentage of components that need not be
considered when searching for the fault by traversing the
ranking. It is defined as

(1− τ

KSFL
) · 100% (4)

where KSFL is the number of ranked components of SFL
without DCC – the reference baseline.

8In the future, we plan to assess the effectiveness of DCC when tackling
multiple bugs, by injecting several faults at once.

The experiments were run on a 2.7 GHz Intel Core i7
MacBook Pro with 4 GB of RAM, running OSX Lion.

B. Experimental Results

Figures 5, 6, 7 and 8 summarize the overall execution
time outcomes for all the experimental subjects. Each figure
contains two plots, detailing the fault localization execution
of each injected fault with DCC using constant coefficient
value filters and with DCC using percentage filters, respec-
tively. These filtering methods were previously detailed in
Section III. Please note that these results are gathered by
running the entire fault localization experiments detailed
in the previous section, and do not pertain only to the
instrumentation overhead.

Due to space constraints, only three thresholds are shown
for both filters: 0.0, 0.25 and 0.5 thresholds for the con-
stant coefficient value filters (Cf) and 50%, 30% and 10%
thresholds for the percentage filters (Pf). To obtain a better
understanding of the performance of each experiment, we
also added, for every injected fault, the fault localization
execution time of the SFL without DCC approach, labeled
“No DCC” in the aforementioned figures. This way, DCC
approaches can be easily compared with the SFL approach.
Unless stated otherwise, every fault localization execution
is able to find the injected fault (i.e., the resulting report
contains the injected fault).

The first experimental subject to be analyzed was the
NanoXML project, whose experiment results can be seen in
Figure 5. Note that experiments 01, 11 and 13 for Cf = 0.5
(see Figure 5a) and the experiments 01, 04, 11, 12, 13, 14,
15 for Pf = 10% (see Figure 5b) were not able to find the
injected faults.

As we can see from the experiment results, the DCC
approach underperforms the current SFL method based in
the execution time. Such results can be explained if we
analyze the NanoXML project information in Table I. This
project, not only is rather small in size, but also has very few
test cases. At the same time, it has a coverage of over 50%.
What this means is that some test cases, if not all, touch
many different statements. As such, the generated program
spectra matrices, detailed in Sections II-A and II-B will
be rather dense. Because of this, many components will
have similar coefficients, rendering the filtering operation
ineffective: either discarding many different components, or
keeping a lot of components to be re-instrumented and re-
tested.

The next analyzed subject was org.jacoco.report,
part of the JaCoCo project. The filters Cf = 0.5 (see
Figure 6a) and Pf = 10% (see Figure 6b) were both not
able to find the injected faults in experiments 09 and 15.
Also, the injected fault in experiment 02 was not found in
Pf = 10%.

This subject, despite having many more test cases than the
previous project, still has some performance drops in some

��

����

�����

�����

�����

�����

�����

�����

�����

�����

�� �� �� �� �� �� �	 �
 �� �� �� �� �� �� ��

�

�
�
�
��
�
�
��
��
�
��
�
�
�

���������������

���
����
���

 ��!""

(a) Coefficient filter

��

����

�����

�����

�����

�����

�����

�����

�����

�����

�� �� �� �� �� �� �	 �
 �� �� �� �� �� �� ��

�

�
�
�
��
�
�
��
��
�
��
�
�
�

���������������

���
���
���

 ��!""

(b) Percentage filter

Figure 5: NanoXML time execution results.

of the experiments. Upon investigating the fault localization
reports of the lower performance experiments, we realized
that their length can be as high as 950 statements in some
experiments. This means that the set of test cases that
touch the injected faulty statements can cover roughly 15%
of the entire project. Because of this, the same thing as
the previous project happens: many components will have
similar coefficients, rendering the expansions ineffective.

The following subject was the XML-Security project.
Injected faults in experiments 03 and 08 were not found by
Cf = 0.5 (see Figure 7a). Experiment 08 also did not have
its injected fault in Pf = 10% (see Figure 7b).

The last subject was the JMeter project. Injected faults
were not found by Cf = 0.5 (see Figure 8a) in experiments
01 and 11. Every fault was found with the percentage filters.

Both XML-Security and JMeter have better results
when utilizing DCC. There are mainly two reasons for these
results. The first is the fact that the program spectra matrix
is sparser. The other important reason is, as programs grow
in size, the overhead of a fine-grained instrumentation, used
in methodologies such as SFL, is much more noticeable.
In this kind of sizable projects (see project informations in
Table I), and if the matrix is sparse enough, it is preferable

��

�����

�����

�����

�����

�����

�����

�	���

�
���

�����

������

������

������

������

������

������

�� �� �� �� �� �� �	 �
 �� �� �� �� �� �� ��

�

�
�
�
��
�
�
��
��
�
��
�
�
�

���������������

���
����
���

 ��!""

(a) Coefficient filter

��

�����

�����

�����

�����

�����

�����

�	���

�
���

�����

������

������

������

������

������

������

�� �� �� �� �� �� �	 �
 �� �� �� �� �� �� ��

�

�
�
�
��
�
�
��
��
�
��
�
�
�

���������������

���
���
���

 ��!""

(b) Percentage filter

Figure 6: org.jacoco.report time execution results.

to re-run some of the tests, than to instrument every LOC
at the start of the fault localization process.

These time execution results confirm our assumptions that
DCC can over-perform SFL for larger projects, where the in-
strumentation overhead is heavily noticeable. In contrast, for
smaller projects, DCC does suffer in performance, mainly
due to the fact that the overhead of re-running tests produces
a bigger performance hit than the instrumentation granularity
overhead. In fact, if we take into account all experiments for
all four projects, there actually is an increase of execution
time of 8% (σ = 0.48)9. However, if we only consider the
larger projects where instrumentation is a more prevalent
issue (i.e. XML-Security and JMeter), the dynamic code
coverage approach can reduce execution time by 27% on
average (σ = 0.28).

The other gathered metrics in this empirical evaluation,
unlike execution time, show a consistent improvement over
SFL in every project. In average, the DCC approach reduced
63% (σ = 0.30) the generated fault localization ranking,
providing a more concise report when compared to SFL. The

9We have chosen to use the metrics gathered by the Pf = 30% filter
since it is the best performing filter of those considered in this section that
is able to find the injected faults for every experiment.

��

������

������

������

������

������

������

�	����

�
����

������

�������

�������

�������

�� �� �� �� �� �� �	 �
 �� �� �� �� �� �� ��

�

�
�
�
��
�
�
��
��
�
��
�
�
�

���������������

���
����
���

 ��!""

(a) Coefficient filter

��

������

������

������

������

������

������

�	����

�
����

������

�������

�������

�������

�� �� �� �� �� �� �	 �
 �� �� �� �� �� �� ��

�

�
�
�
��
�
�
��
��
�
��
�
�
�

���������������

���
���
���

 ��!""

(b) Percentage filter

Figure 7: XML-Security time execution results.

quality of diagnosis, described in equation 4, also suffered
a slight improvement, from 85% (σ = 0.20) without DCC
to 87% (σ = 0.19) with DCC.

C. Threats to Validity

The main threat to external validity of these empirical
results is the fact that only four test subjects were considered.
Although the subjects were all real, open source software
projects, it is plausible to assume that a different set of sub-
jects, having inherently different characteristics, may yield
different results. Other threat to external validity is related to
the injected faults used in the experiments. These injected
faults, despite being fifteen in total for each experimental
subject, may not represent the entire conceivable software
fault spectrum.

Threats to internal validity are related to some fault in
the DCC implementation, or any underlying implementation,
such as SFL or even the instrumentation for gathering
program spectra. To minimize this risk, some testing and
individual result checking were performed before the exper-
imental phase.

��

������

������

������

������

������

������

�	����

�
����

������

�� �� �� �� �� �� �	 �
 �� �� �� �� �� �� ��

�

�
�
�
��
�
�
��
��
�
��
�
�
�

���������������

���
����
���

 ��!""

(a) Coefficient filter

��

������

������

������

������

������

������

�	����

�
����

������

�� �� �� �� �� �� �	 �
 �� �� �� �� �� �� ��

�

�
�
�
��
�
�
��
��
�
��
�
�
�

���������������

���
���
���

 ��!""

(b) Percentage filter

Figure 8: JMeter time execution results.

V. RELATED WORK

The process of pinpointing the fault(s) that led to symp-
toms (failures/errors) is called fault localization, and has
been an active area of research for the past decades. Based
on a set of observations, automatic approaches to software
fault localization yield a list of likely fault locations, which
is subsequently used either by the developer to focus the
software debugging process. Depending on the amount
of knowledge that is required about the system’s internal
component structure and behavior, the most predominant
approaches can be classified as (1) statistical approaches
or (2) reasoning approaches. The former approach uses
an abstraction of program traces, dynamically collected at
runtime, to produce a list of likely candidates to be at fault,
whereas the latter combines a static model of the expected
behavior with a set of observations to compute the diagnostic
report.

Statistics-based fault localization techniques, as stated
above, use an abstraction of program traces, also known
as program spectra, to find a statistical relationship with
observed failures. Program spectra are collected at run-time,
during the execution of the program, and many different
forms exist [7]. For example, component-hit spectra indicate

whether a component was involved in the execution of the
program or not. In contrast to model-based approaches, pro-
gram spectra and pass/fail information are the only dynamic
source of information used by statistics-based techniques.

Well-known examples of such approaches are the Taran-
tula tool by Jones, Harrold, and Stasko [12], the Nearest
Neighbor technique by Renieris and Reiss [13], the Sober
tool by Lui, Yan, Fei, Han, and Midkiff [2], the work
of Liu and Hand [14], CrossTab by Wong, Wei, Qi, and
Zap [3], the Cooperative Bug Isolation (CBI) by Liblit and
his colleagues [15], [16], [17], [18], the Time Will Tell
approach by Yilmaz, Paradkar, and Williams [19], HOLMES
by Chilimbi et al. [20], and MKBC by Xu, Chan, Zhang,
Tse, and Li [21]. Although differing in the way they derive
the statistical fault ranking, all techniques are based on
measuring program spectra. Note that this list is by no means
exhaustive.

Toolsets providing fault localization using spectrum-based
fault localization exist, namely in Zoltar [22] and Taran-
tula [23], [12] for C projects, and GZoltar [24] for Java
projects. However, none of these tools employ a dynamic
code coverage approach to SFL, having to instrument the
entire SUT. Also, their instrumentation granularity is set at
a LOC level of detail. A DCC approach could certainly
be added to any of these tools, with minimal algorithmic
changes, provided that the underlying instrumentation tool
that these tools use to gather program spectra supports
different levels of detail.

Reasoning approaches to fault localization use prior
knowledge of the system, such as required component be-
havior and interconnection, to build a model of the correct
behavior of the system. An example of a reasoning technique
is model-based diagnosis (see, e.g., [25]), where a diagnosis
is obtained by logical inference from the static model of the
system, combined with a set of run-time observations. In
the software engineering community this approach is often
called model-based software debugging [26]. Well-known
approaches to model-based software debugging include the
approaches of Friedrich, Stumptner, and Wotawa [27], [28],
Nica and Wotawa [29], Wotawa, Stumptner, and Mayer [30],
and Mayer and Stumpter [26].

As model-based techniques technique may suffer from
large diagnostic results and not scale to sizable projects,
some work was already combining SFL with Model-Based
Software Debugging (MBSD) has been proposed [31], [32],
where MBSD is used to refine the output report gener-
ated by the spectrum-based fault localization, filtering the
components that do not explain the observed failures. Our
DCC approach could also be combined with this technique,
by performing the fault localization until a certain middle-
grained level of component detail (e.g., method level), and
submit the top components to be analyzed by MBSD.

VI. CONCLUSIONS & FUTURE WORK

We have shown that current approaches to spectrum-based
fault localization face some challenges concerning scalabil-
ity due to the input gathering overhead caused by a fine
grained instrumentation throughout the system under test.
For instance, this may be an issue in resource-constrained
systems. A solution to this problem was presented, coined
Dynamic Code Coverage (DCC), that initially uses a coarser
granularity of instrumentation, and progressively increases
the instrumentation detail of potential faulty components. In
our empirical evaluation, we have validated our approach,
and demonstrated that it not only reduces the execution
time by 27% on average, but also reduces the number of
components reported to the user by 63% on average.

As for future work, some aspects of the dynamic code
coverage technique still require further investigation. One
of those is the way of how the initial system granularity is
established. Currently, this value is set manually and is the
same across the entire system under test. A way to change
this would be by using static analysis to assess program
information and to adjust the system’s initial granularity
accordingly. Another approach would be to learn what were
the most frequently expanded components from previous
executions, and change these components’ initial granularity
independently. Other issue that requires further investigation
pertains to the filtering methods. It is possible that there are
better filtering methods than the ones presented in this paper,
namely methods that employ dynamic strategies, that change
the cutting threshold based on program spectra analysis.

REFERENCES

[1] R. Abreu, P. Zoeteweij, R. Golsteijn, and A. J. C. Van
Gemund, “A practical evaluation of spectrum-based fault lo-
calization,” Journal of Systems and Software, vol. 82, no. 11,
pp. 1780–1792, 2009.

[2] C. Liu, L. Fei, X. Yan, J. Han, and S. Midkiff, “Statisti-
cal debugging: A hypothesis testing-based approach,” IEEE
Transactions on Software Engineering (TSE), vol. 32, no. 10,
pp. 831–848, 2006.

[3] E. Wong, T. Wei, Y. Qi, and L. Zhao, “A crosstab-based
statistical method for effective fault localization,” in Pro-
ceedings of the 1st International Conference on Software
Testing, Verification, and Validation (ICST’08), R. Hierons
and A. Mathur, Eds. Lillehammer, Norway: IEEE Computer
Society, 9 – 11 April 2008, pp. 42–51.

[4] R. Abreu, P. Zoeteweij, and A. J. C. van Gemund, “Spectrum-
based multiple fault localization,” in Proceedings of the
IEEE/ACM International Conference on Automated Software
Engineering (ASE’09), G. Taentzer and M. Heimdahl, Eds.
Auckland, New Zealand: IEEE Computer Society, to appear,
16 – 20 November 2009.

[5] A. Avižienis, J.-C. Laprie, B. Randell, and C. E. Landwehr,
“Basic concepts and taxonomy of dependable and secure
computing,” IEEE Transactions on Dependable Secure Com-
puting, vol. 1, no. 1, pp. 11–33, 2004.

[6] T. Reps, T. Ball, M. Das, and J. Larus, “The use of program
profiling for software maintenance with applications to the
year 2000 problem,” in Proceedings of the 6th European
Software Engineering conference held jointly with the 5th
ACM SIGSOFT international symposium on Foundations of
software engineering, ser. ESEC ’97/FSE-5. New York, NY,
USA: Springer-Verlag New York, Inc., 1997, pp. 432–449.

[7] M. J. Harrold, G. Rothermel, K. Sayre, R. Wu, and L. Yi,
“An empirical investigation of the relationship between fault-
revealing test behavior and differences in program spectra,”
STVR Journal of Software Testing, Verification, and Reliabil-
ity, no. 3, pp. 171–194, September 2000.

[8] Q. Yang, J. J. Li, and D. Weiss, “A survey of coverage
based testing tools,” in Proceedings of the 2006 international
workshop on Automation of software test, ser. AST ’06. New
York, NY, USA: ACM, 2006, pp. 99–103.

[9] R. Abreu, P. Zoeteweij, and A. J. van Gemund, “An evaluation
of similarity coefficients for software fault localization,” in
Proceedings of the 12th Pacific Rim International Symposium
on Dependable Computing, ser. PRDC ’06. Washington, DC,
USA: IEEE Computer Society, 2006, pp. 39–46.

[10] A. K. Jain and R. C. Dubes, Algorithms for clustering data.
Upper Saddle River, NJ, USA: Prentice-Hall, Inc., 1988.

[11] R. Abreu, P. Zoeteweij, and A. J. C. van Gemund, “On the
accuracy of spectrum-based fault localization,” in Proceedings
of the Testing: Academic and Industrial Conference Practice
and Research Techniques - MUTATION. Washington, DC,
USA: IEEE Computer Society, 2007, pp. 89–98.

[12] J. A. Jones and M. J. Harrold, “Empirical evaluation of
the tarantula automatic fault-localization technique,” in Pro-
ceedings of the 20th IEEE/ACM international Conference on
Automated software engineering, ser. ASE ’05. New York,
NY, USA: ACM, 2005, pp. 273–282.

[13] M. Renieris and S. P. Reiss, “Fault localization with nearest
neighbor queries,” in Proceedings of the 18th IEEE In-
ternational Conference on Automated Software Engineering
(ASE’03), J. Grundy and J. Penix, Eds. Montreal, Canada:
IEEE Computer Society, 6 – 10 October 2003, pp. 30–39.

[14] C. Liu and J. Han, “Failure proximity: a fault localization-
based approach,” in Proceedings of the 14th ACM SIGSOFT
International Symposium on Foundations of Software Engi-
neering (SIGSOFT FSE’06), M. Young and P. T. Devanbu,
Eds. Portland, Oregon, USA: ACM Press, 5 – 11 November
2006, pp. 46–56.

[15] B. Liblit, M. Naik, A. X. Zheng, A. Aiken, and M. I. Jordan,
“Scalable statistical bug isolation,” in Proceedings of the
ACM SIGPLAN 2005 Conference on Programming Language
Design and Implementation (PLDI’05), V. Sarkar and M. W.
Hall, Eds. Chicago, Illinois, USA: ACM Press, 12 – 15 June
2005, pp. 15–26.

[16] B. Liblit, “Cooperative debugging with five hundred mil-
lion test cases,” in Proceedings of the ACM/SIGSOFT In-
ternational Symposium on Software Testing and Analysis
(ISSTA’08), B. G. Ryder and A. Zeller, Eds. Seattle,
Washington, USA: ACM Press, 20 – 24 July 2008, pp. 119–
120.

[17] P. A. Nainar, T. Chen, J. Rosin, and B. Liblit, “Statistical de-
bugging using compound boolean predicates,” in Proceedings
of the ACM/SIGSOFT International Symposium on Software
Testing and Analysis (ISSTA’07), D. S. Rosenblum and S. G.
Elbaum, Eds. London, UK, July: ACM Press, 9 – 12 July
2007, pp. 5–15.

[18] A. X. Zheng, M. I. Jordan, B. Liblit, M. Naik, and A. Aiken,
“Statistical debugging: simultaneous identification of multiple
bugs,” in Proceedings of the 23rd International Conference
on Machine Learning (ICML’06), ser. ACM International
Conference Proceeding Series, W. W. Cohen and A. Moore,
Eds., vol. 148. Pittsburgh, Pennsylvania, USA: ACM Press,
25 – 29 June 2006, pp. 1105–1112.

[19] C. Yilmaz, A. M. Paradkar, and C. Williams, “Time will
tell: fault localization using time spectra,” in Proceedings of
the 30th International Conference on Software Engineering
(ICSE’08), W. Schäfer, M. B. Dwyer, and V. Gruhn, Eds.
Leipzig, Germany: ACM Press, 10 – 18 May 2008, pp. 81–
90.

[20] T. M. Chilimbi, B. Liblit, K. Mehra, A. V. Nori, and
K. Vaswani, “Holmes: Effective statistical debugging via
efficient path profiling,” in Proceedings of the 31st Interna-
tional Conference on Software Engineering, ser. ICSE ’09.
Washington, DC, USA: IEEE Computer Society, 2009, pp.
34–44.

[21] J. Xu, W. K. Chan, Z. Zhang, T. H. Tse, and S. Li, “A
dynamic fault localization technique with noise reduction for
java programs,” in Proceedings of the 11th Int. Conference
on Quality Software (QSIC 2011), 2011, pp. 11–20.

[22] T. Janssen, R. Abreu, and A. J. van Gemund, “Zoltar: A
spectrum-based fault localization tool,” in Proceedings of
the 2009 ESEC/FSE workshop on Software integration and
evolution @ runtime, ser. SINTER ’09. New York, NY,
USA: ACM, 2009, pp. 23–30.

[23] J. A. Jones, M. J. Harrold, and J. Stasko, “Visualization of test
information to assist fault localization,” in Proceedings of the
24th International Conference on Software Engineering, ser.
ICSE ’02. New York, NY, USA: ACM, 2002, pp. 467–477.

[24] A. Riboira, R. Abreu, and R. Rodrigues, “An OpenGL-based
eclipse plug-in for visual debugging,” in Proceedings of the
1st Workshop on Developing Tools as Plug-ins, ser. TOPI ’11.
New York, NY, USA: ACM, 2011, pp. 60–60.

[25] J. de Kleer and B. C. Williams, “Diagnosing multiple faults,”
Artificial Intelligence, vol. 32, no. 1, pp. 97–130, 1987.

[26] W. Mayer and M. Stumptner, “Model-Based Debugging State
of the Art And Future Challenges,” Electronic Notes in
Theoretical Computer Science, vol. 174, no. 4, pp. 61–82,
2007.

[27] G. Friedrich, M. Stumptner, and F. Wotawa, “Model-based
diagnosis of hardware designs,” Artificial Intelligence, vol.
111, no. 1-2, pp. 3–39, 1999.

[28] ——, “Model-based diagnosis of hardware designs,” in Pro-
ceedings of the 12th European Conference on Artificial In-
telligence (ECAI’96), W. Wahlster, Ed. Budapest, Hungary:
John Wiley and Sons, Chichester, 11–16 August 1996, pp.
491–495.

[29] M. Nica and F. Wotawa, “From constraint representations
of sequential code and program annotations to their use in
debugging,” in Proceedings of the 18th European Conference
on Artificial Intelligence (ECAI’08), ser. Frontiers in Artificial
Intelligence and Applications, M. Ghallab, C. D. Spyropoulos,
N. Fakotakis, and N. M. Avouris, Eds., vol. 178. Patras,
Greece: IOS Press, 21–26 July 2008, pp. 797–798.

[30] F. Wotawa, M. Stumptner, and W. Mayer, “Model-based
debugging or how to diagnose programs automatically,” in
Proceedings of IAE/AIE 2002, ser. LNCS, T. Hendtlass and
M. Ali, Eds., vol. 2358. Cairns, Australia: Springer-Verlag,
17 – 20 June 2002, pp. 746–757.

[31] W. Mayer, R. Abreu, M. Stumptner, and A. J. van Gemund,
“Prioritizing model-based debugging diagnostic reports,” in
Procedings of the 19th International Workshop on Principles
of Diagnosis (DX’08), Blue Mountains, NSW, Australia,
September 2008, pp. 127–134.

[32] R. Abreu, W. Mayer, M. Stumptner, and A. J. C. van Gemund,
“Refining spectrum-based fault localization rankings,” in Pro-
ceedings of the 2009 ACM symposium on Applied Computing,
ser. SAC ’09. New York, NY, USA: ACM, 2009, pp. 409–
414.

ABOUT THE AUTHORS

Alexandre Perez is a student and researcher at Faculty of
Engineering of University of Porto, Portugal. Currently, he
is finishing his master degree in Informatics and Computing
Engineering. His master’s thesis is being supervised by
André Riboira and Rui Abreu.

André Riboira graduated in Informatics Engineering
from the College of Engineering of Porto, Portugal, carrying
out his graduation project at Faculty of Medicine of the
University of Porto, Portugal. He received his master degree
in Informatics and Computing Engineering from the Faculty
of Engineering of the University of Porto, Portugal, in 2011.
He was a researcher at the University of Minho, Portugal.
Currently he is a Ph.D student at the Faculty of Engineering
of the University of Porto, Portugal, and is a researcher at
the same faculty. He is also a researcher at the HAS-Lab /
INESC TEC, Portugal.

Rui Abreu graduated in Systems and Computer Engi-
neering from University of Minho, Portugal, carrying out his
graduation thesis project at Siemens S.A., Portugal. Between
September 2002 and February 2003, Rui followed courses
of the Software Technology Master Course at University of
Utrecht, the Netherlands, as an Erasmus Exchange Student.
He was an intern researcher at Philips Research Labs, the
Netherlands, between October 2004 and June 2005. He
received his Ph.D. degree from the Delft University of
Technology, the Netherlands, in November 2009, and he is
currently an assistant professor at the Faculty of Engineering
of the University of Porto, Portugal. He is also a researcher
at the HAS-Lab / INESC TEC, Portugal.

	Front Page
	Table of Contents
	List of Figures
	List of Tables
	List of Algorithms
	1 Introduction
	1.1 Context
	1.2 Concepts and Definitions
	1.3 Motivation
	1.4 Research Question
	1.5 A Dynamic Code Coverage Approach
	1.6 Document Structure

	2 State of the art
	2.1 Traditional Debugging
	2.1.1 Assertions
	2.1.2 Breakpoints
	2.1.3 Profiling
	2.1.4 Code Coverage

	2.2 Statistical Debugging
	2.2.1 Tarantula
	2.2.2 Zoltar
	2.2.3 EzUnit
	2.2.4 GZoltar

	2.3 Reasoning Approaches
	2.3.1 Model-Based Diagnosis
	2.3.2 Model-Based Software Debugging

	2.4 Discussion

	3 Dynamic Code Coverage
	3.1 Motivational Example
	3.2 Dynamic Code Coverage Algorithm
	3.3 Discussion

	4 Tooling
	4.1 GZoltar Toolset
	4.2 Modifications and Improvements
	4.3 Dynamic Code Coverage Prototype
	4.4 Discussion

	5 Empirical Evaluation
	5.1 Experimental Setup
	5.2 Experimental Results
	5.3 Threats to Validity

	6 Conclusions and Future Work
	6.1 State of the art of Debugging Tools
	6.2 Proposed Solution
	6.3 Main Contributions
	6.4 Publications
	6.5 Future Work

	References
	A Publications
	A.1 Fault Localization using Dynamic Code Coverage
	A.2 GZoltar: an Eclipse plug-in for Testing and Debugging
	A.3 A Dynamic Code Coverage Approach to Maximize Fault Localization Efficiency

