
A Practical Framework for Privacy-Preserving
NoSQL Databases

Ricardo Macedo∗, João Paulo∗, Rogério Pontes∗, Bernardo Portela†, Tiago Oliveira†, Miguel Matos‡, Rui Oliveira∗
∗HASLab - High-Assurance Software Lab, INESC TEC & U. Minho, Portugal.
†HASLab - High-Assurance Software Lab, INESC TEC & FCUP, Portugal.

‡INESC ID/IST, U. Lisboa, Portugal.

Abstract—Cloud infrastructures provide database services as
cost-efficient and scalable solutions for storing and processing
large amounts of data. To maximize performance, these services
require users to trust sensitive information to the cloud provider,
which raises privacy and legal concerns. This represents a major
obstacle to the adoption of the cloud computing paradigm.

Recent work addressed this issue by extending databases
to compute over encrypted data. However, these approaches
usually support a single and strict combination of cryptographic
techniques invariably making them application specific. To assess
and broaden the applicability of cryptographic techniques in
secure cloud storage and processing, these techniques need to
be thoroughly evaluated in a modular and configurable database
environment. This is even more noticeable for NoSQL data stores
where data privacy is still mostly overlooked.

In this paper, we present a generic NoSQL framework and a set
of libraries supporting data processing cryptographic techniques
that can be used with existing NoSQL engines and composed
to meet the privacy and performance requirements of different
applications. This is achieved through a modular and extensible
design that enables data processing over multiple cryptographic
techniques applied on the same database. For each technique, we
provide an overview of its security model, along with an extensive
set of experiments. The framework is evaluated with the YCSB
benchmark, where we assess the practicality and performance
tradeoffs for different combinations of cryptographic techniques.
The results for a set of macro experiments show that the average
overhead in NoSQL operations performance is below 15%, when
comparing our system with a baseline database without privacy
guarantees.

I. INTRODUCTION

Nowadays, cloud computing is an ubiquitous technology

capable of satisfying the most demanding storage and pro-

cessing workloads [1]. Its benefits are well known: virtual

infinite resources, fine-grained resource allocation, no up-front

infrastructure costs, and constant access from anywhere at

any time. Outsourcing databases to cloud providers became

a logical step for many IT organizations to reduce costs and

provide a good quality of service.

The cloud computing model assumes a level of trust on the

provider that is not realistic for many applications. Several

security concerns are raised when users want to offload sensitive

data to a cloud provider. Once data is outsourced to the

cloud, the users’ control over that data is lost. This is an

issue even if one could trust the cloud provider not break

confidentiality, as recent reports have shown that cloud services

often have security flaws that can result in the leakage of

sensitive information [2]. These privacy issues justify why many

enterprises holding sensitive data are reluctant to adopt the

cloud paradigm. Information may be sensitive for a number

of reasons, e.g., if it is personal data, part of a business’

competitive advantage or even due to regulations designed

to ensure privacy or confidentiality, such as the novel European

General Data Protection Regulation (GDPR)1.

The protection of data is generally achieved using efficient

encryption standards [3]. However, these approaches inherently

prevent any sort of computation to be performed over encrypted

data. This has motivated research and development of crypto-

graphic techniques that provide a restricted set of computations

to be performed over encrypted data, such as equality and

range queries [4, 5]. The development of secure databases can

thus be achieved in a variety of different ways, with varying

levels of performance and security trade-offs.

Finding the cryptographic mechanisms best suited for the

functionality, performance and security requirements of specific

applications is a non-trivial task. On one hand, strong security

can lead to a system that is neither available nor scalable.

On the other hand, disregarding privacy towards performance

can lead to unmet security requirements preventing real-world

deployment. The careful selection of cryptographic techniques

is, therefore, highly dependent on the expected application

workload, and on the limitations imposed to sensitive data.

This task gets increasingly complex once one considers that

real-world databases store different types of information with

(potentially widely) varying levels of privacy requirements.2

A great amount of research is centered around privacy-aware

SQL databases as these have for many years been the standard

systems for applications to store and query data [6, 7]. More

recently, NoSQL databases have emerged to address the high-

scalability and availability needs of some applications, which

can afford relaxed data consistency guarantees [8, 9]. NoSQL

databases have a simplified API which has been left unprotected

and is subpar to the existing security guarantees of SQL queries.

As a matter of fact, research on secure NoSQL databases is still

poorly addressed in the literature [10, 11]. This paper aims to

1http://www.eugdpr.org.
2According to GDPR, users’ personal information (e.g., name, date of birth,

citizen id) must be encrypted while information generated by the application
that does not identify the users, does not need the same level of protection.
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make NoSQL databases up-to-date to current security standards

and guarantees of SQL databases.

Moreover, current secure SQL and NoSQL database solutions

usually support a single and strict combination of cryptographic

techniques invariably making them application specific. Our

contributions in this paper stem from the idea that the design of

privacy-preserving databases should be supported by a modular

and extensible architecture, enabling a granular specification

of functional and security requirements. This would allow for

cloud developers to devise highly scalable NoSQL databases

with security mechanisms tailored to the application at hand,

which in turn maximizes system performance and throughput,

while ensuring an adequate level of privacy for the system

to be securely deployed on the cloud. In summary, our main

contributions are:

• SAFENOSQL, a generic framework supporting existing

NoSQL engines able to meet the privacy and performance

requirements of different applications. This framework

has a modular and extensible design that enables data

processing over multiple cryptographic techniques applied

on the same database schema.

• A SAFENOSQL prototype based on Apache HBase,

along with a set of libraries implementing different data

processing cryptographic techniques.

• An extensive evaluation of the prototype with micro

and macro experiments under different representative

application scenarios. The results of macro experiments

show that the average overhead in NoSQL operations

performance is less than 15% with respect to an HBase

deployment without privacy-preserving guarantees.

The paper is structured as follows: Section II presents the

relevant related work of privacy-aware databases. Section III

describes the cryptographic schemes to be applied on the

prototype and the security models that must be considered.

The modular and extensible architecture for privacy-aware

NoSQL databases SAFENOSQL is presented in Section IV.

The implementation of a prototype that follows the architecture

is then presented in Section V. Section VI presents an extensive

experimental evaluation using realistic workloads. The paper

concludes in Section VII with relevant observations and future

work.

II. RELATED WORK

Several approaches have been proposed to address the gap in

NoSQL privacy-preserving databases. In the BigSecret system,

stored data is protected with standard encryption, while the

indexes are encoded using techniques that allow comparisons

(pseudo-random functions) and range queries (order-preserving

partitioning) [10]. Yuan et al. employ algorithms of searchable

encryption to build a privacy-preserving key-value store on

top of the Redis database [11]. The values are protected

with symmetric encryption and the keys are secured with

pseudo-random functions. However, this approach provides

a restricted set of features and a low modularity, since to

provide more computation capabilities, the key-value pair

must be rewritten in order to append to the key more

information about the corresponding value. As a distinct

solution, SafeRegions combines secret sharing and multi-

party computation to perform secure NoSQL queries on three

independent and untrusted HBase clusters [12]. Furthermore,

this solution provides simultaneously secure computation over

the stored values and security guarantees similar to standard

encryption. Finally, in Arx a variant of order-preserving

encryption with stronger security guarantees is proposed [13].

NoSQL queries are rewritten by a proxy at the trusted premises

and a backend component deployed at the untrusted premises

is used to perform computation over encrypted data. Messages

exchanged between the proxy and backend component are done

with a SQL dialect which requires translating queries to NoSQL

language when the system interacts with NoSQL applications

or NoSQL backend components. All previous solutions have

been designed considering a specific, and hence restricted, set

of data protection techniques. The main advantage of our work

is that it provides a modular and flexible design where these

and other techniques, with varying performance and security

guarantees, can easily be supported.

In a different context, yet relevant for this paper, the design of

secure databases has also been explored in the SQL paradigm.

In CryptDB, a client rewrites SQL queries so that the database

engine can execute them over protected data at untrusted envi-

ronments [6]. It leverages different layered security schemes,

allowing for the execution of equality checking and range

queries, and generic sums and multiplications over encrypted

data. A different approach is presented in Monomi, a CryptDB-

based framework, able to perform secure data analytics by

splitting the queries execution between the server and the

client, allowing complex SQL queries to be performed [7].

An alternative solution proposed by the L-EncDB system

ensures sensitive data protection while preserving the same

length, format and primitive type through a set of format-

preserving encryption techniques with deterministic properties,

alongside an order-preserving encryption scheme to support

most of the SQL queries [14]. In Xiang et al., a secret sharing

scheme is combined with order-preserving encryption to protect

sensitive information stored and processed at the multiple

untrusted cloud providers [15, 16]. It was also shown that

it is possible to provide a SQL database, with a restricted

range of supported queries, by relying solely on secret sharing

and multi-party computation over three untrusted remote

backends [17, 18]. Despite being a fundamentally different

paradigm, these monolithic secure SQL database designs show

the need of having a generic, flexible and modular framework

solution able to combine different encryption mechanisms.

Another approach towards data privacy in the context of

relational databases is to perform "at rest" data encryption. In

this setting the cryptographic keys used to encrypt data are

stored on trusted infrastructures with security measures that

prevent attackers from corrupting the system and obtaining

the keys [19, 20]. However, since the security mechanisms

disallow most computations, some queries require the key to

be given to the untrusted server, for decrypting information

and responding to queries. Contrary to our deployment, where

1212121212



the key remains within trusted premises at all times, this model

has the disadvantage that if the cloud is corrupted while one

of these queries is being processed at the untrusted server’s

memory, the attacker can retrieve the associated sensitive data.

III. SECURITY

When considering various cryptographic techniques, the

differences in privacy guarantees are observable in their

respective security models. A more functionally restrictive

encryption algorithm might ensure indistinguishability against a

powerful adversary, while a different scheme allowing for some

operations to be performed over encrypted data has to consider

more limited adversaries. Throughout this work we explore,

implement and analyse three different techniques for ensuring

privacy-preserving computation that are widely used in different

contexts, and that can be applicable towards enabling NoSQL

processing over encrypted data. In this section, we describe

each cryptographic technique, as well as the privacy guarantees

and performance impact of the respective instantiations.

For clarity in presentation throughout the paper, we briefly

establish a clear distinction between what we will refer to

as primitives and implementations. A cryptographic primitive

is a high-level description of a fixed set of algorithms and a

security model defining the context where such a technique

can be considered secure. A cryptographic implementation

is an instantiation of a given primitive, typically a library

that provides the required algorithms, and ensures the security

properties enforced by it.

An encryption scheme generally consists in a triple of Proba-

bilistic Polynomial Time (PPT) algorithms (Gen,Enc,Dec). On

input 1λ, where λ is the security parameter, the key generation

algorithm Gen returns a fresh key k. Upon input key k and

message m, the encryption algorithm Enc returns a ciphertext

m′. Upon input key k and ciphertext m′, the decryption

algorithm Dec returns the original message m. We require

that m = Dec(k,Enc(k,m)) for all λ ∈ N, all k ∈ Gen(1λ)
and all m. We will now refine this definition to describe several

primitives, and refer to our respective implementations.

A. Standard encryption

The encryption scheme considers a probabilistic encryption

algorithm Enc. Our respective implementation follows the

Advanced Encryption Standard [3], whose security guarantees

adhere to the standard notions of semantic security definitions

detailed in [21]. This entails a considerably robust level of

security, meaning it is infeasible for a computationally bounded

adversary to derive significant information about a message

from the associated ciphertext.

Classical cryptographic algorithms ensuring semantic secu-

rity are not designed to produce ciphertexts over which one

can perform meaningful computations. The applicability of

these techniques is, therefore, limited to the protection of data

in scenarios where no operations are to be performed over it,

such as data transmission or storage. For instance, retrieving a

value encrypted in this fashion would require a full database

retrieval and subsequent decryption, which is unfeasible for

any realistic database deployment.

B. Deterministic encryption
The encryption scheme considers a deterministic encryp-

tion algorithm Enc, and must ensure that m1 = m2 ⇒
Enc(k,m1) = Enc(k,m2) for all λ ∈ N, all k ∈ Gen(1λ)
and all m1,m2. The implementation of our scheme is achieved

by adapting the Advanced Encryption Standard [3] to behave

deterministically. The security guarantees of deterministic

encryption schemes are formalized in [22], and somewhat

follow the semantic security definitions in [21] with the caveat

that the messages to be encrypted must have high min entropy

conditioned on values of the other messages. One application

example that fits this requirement would be the encryption of

social security numbers, which likely share prefixes, but are

otherwise uncorrelated.
From the properties of deterministic algorithms, ciphertexts

can be compared without requiring the associated key, which

also entails that the set of ciphertexts referring to the same data

are known to the data holder as well. This approach of revealing

duplicates to obtain functionality benefits is commonly used in

secure storage systems relying on it for data deduplication [23].

In this setting, obtaining an encrypted value is trivial, but

range querying would again require a full database retrieval

and decryption, since equality does not suffice.

C. Order-preserving encryption
The encryption scheme considers a deterministic encryp-

tion algorithm Enc, and must ensure that m1 > m2 ⇒
Enc(k,m1) > Enc(k,m2) for all λ ∈ N, all k ∈ Gen(1λ) and

all m1,m2. We follow the scheme proposed in [24]. Security

guarantees of order-preserving encryption are formalized and

discussed in [5]. The security of an OPE scheme is described

via two main notions: window one-wayness, the expected

margin of error for a server holding an OPE-encrypted database

to extract original values, and window distance one-wayness,
the expected margin of error for a server holding an OPE-

encrypted database to extract distances between original values.

Contrary to previous definitions, the security of OPE does not

ensure strong security properties such as indistinguishability.
In addition to equality, the order-revealing nature of these

schemes allows for comparisons to be performed over encrypted

data. This is also the factor that enables inference attacks to be

performed over data encrypted with OPE, where knowledge

of data distribution can lead to high success rates for sensitive

data extraction [25]. As such, the applicability of OPE should

follow from these security limitations, for usage on high entropy

attributes such as sequential identifiers, or for handling data

with low sensitivity, where revealing partial information about

the original values is not problematic. This considerable security

downgrade has the significant advantage of allowing for equality

and range queries to be executed efficiently on the server side.

IV. ARCHITECTURE

The proposed architecture for SAFENOSQL framework aims

to be generic, in order to be compatible with most of the
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Fig. 2: Architecture of SAFENOSQL.

existing key-value based NoSQL databases [8, 9]. For this

reason, and as depicted in Figure 1, we assume a typical

logical table view where each key-value can be seen as a row

indexed by a key. A key is associated with several values

organized in different columns. In this context, the following

set of operations is supported in our framework:

• Put. A new key-value pair is inserted or updated if the

corresponding key already exists.

• Get. The key-value for a specific key is read.

• Delete. The key-value for a specific key is deleted.

• Scan. A range of key-value pairs is read.

• Filter. Search for one or more key-value pairs where a

specific column matches a desired value.

Figure 2 shows the proposed architecture for SAFENOSQL.

We consider two deployment environments for databases over

which we design our framework: trusted site and untrusted
site. The trusted site is the point of access of the database

clients. This can either be independent personal computers or

an on-premise trusted cluster controlled by the data owner.3

The untrusted site is where the bulk of data processing is made.

One or more cloud providers can play this role, where data is

not controlled by the data owner at all times, and where the

existence of security vulnerabilities must be considered.

A. CryptoWorkers and CryptoBoxes

Our framework extends NoSQL databases security mecha-

nisms with CryptoWorkers, which abstract the integration of

3A trusted infrastructure is achieved via strong access control and security
policies, which is necessary for the reliability of cryptographic mechanisms
mentioned in the paper.

cryptographic schemes on the system. CryptoWorkers reside

on the trusted and untrusted site, and provide a privacy-aware

NoSQL API for simple integration with NoSQL database

architectures. Each database request that is handled by a Cryp-

toWorker is converted into an operation with the same semantics

but with additional security guarantees. Depending on the

defined security guarantee and on the cryptographic primitive

implementation, requests will be translated differently. However,

the translation process is abstracted in three operations:

• Encode - is executed on the trusted site, where a query

is protected before transmission. For instance, encoding a

Put with standard encryption will simply require for the

data to be encrypted before being sent to the untrusted site.

However, complex mechanisms for obfuscation can also

be implemented, where an encoding of a Put operation

translates into several encoded insertion requests.

• Process - is executed on the untrusted site, where an

encoded query is processed, and some data is returned.

This is trivial for some techniques, but this operation

enables our framework to support additional cryptographic

mechanisms that require computation over ciphertext.

• Decode - is executed on the trusted site, where a plaintext

query response is generated from the ciphertext NoSQL

database result.

These operations are supported by modular and easily

interchangeable components, CryptoBoxes. These components

resort to libraries containing standalone cryptographic imple-

mentations. More concretely, supporting a specific security

technique in our architecture requires a developer to provide

an implementation of a CryptoBox, where the most granular

cryptographic operations will be performed, and an implemen-

tation of a CryptoWorker, which will have NoSQL context, and

employ the CryptoBox to appropriately capture the NoSQL

API. This gives us modularity on two different levels: i.)

on the security primitive, by allowing extensible deployment

configurations with different data sets protected with different

techniques (CryptoBoxes), co-existing within the same system,

and ii.) on the level of the actual implementation, where if

one is interested in upgrading an existing technique with some

state-of-the-art advancement, this can be achieved by simply

exchanging the implementation on the CryptoBox level, while

the original CryptoWorker component can be reused. Note that

replacing the CryptoBox, for a specific database column, with

another one will require the migration of data belonging to that

column. Different encryption schemes are not compatible so it

is necessary to generate new protected ciphertexts according

to the new CryptoBox encryption algorithm.

B. The life cycle of a Put and Get operation

To exemplify the behavior of our framework, and how this set

of components interact in an application scenario, lets assume a

NoSQL schema where each key is protected with deterministic

encryption, the first column value with standard encryption,

and the second column value with deterministic encryption. In

this step-by-step description, we will reference Figure 2 for

specifying where each computation is taking place.

1414141414



Upon a Put request for a certain key-value pair (1), the

CryptoWorker module intercepts the request (2) and executes

its Encode operation. This will encrypt the key-value pair

with the appropriate techniques, by resorting to the various

CryptoBoxes (3). Afterwards, the secure Put request will be

forwarded to the NoSQL backend, where the Process operation
will simply store the data at the untrusted site (4). No operations

are necessary to Decode a Put operation.

A Get request for a specific key (1) would go through the

CryptoWorker (2) to execute the according Encode operation.

This encrypts the key with the same technique, thus resorting

to the associated deterministic encryption CryptoBox (3). This

encoded Get operation is now sent to the NoSQL backend

(4), that executes the query, which is a simple and unmodified

operation to recover the value associated to the encrypted key.

The data is returned to the trusted site CryptoWorker (4), for

execution of Decode. This again resorts to the CryptoBox to

decrypt the key-value elements to their plaintext values (3),

and reply to the original client request with the result (2,1).

C. Remote processing

The encryption techniques implemented in the experimental

part of this paper only require CryptoWorker processing at the

trusted infrastructure (Encode and Decode). However, for our

framework to be extensible towards optimizations or other

techniques discussed in the literature, such as searchable

encryption [11], one must be able to employ additional struc-

tures (such as protected indexes) and perform some additional

calculations at the untrusted site. This is the motivation to use

the CryptoWorker module deployed at the untrusted deployment

for the aforementioned Process operation, which is sufficiently

generic to capture complex mechanisms for computation over

encrypted data. In fact, our design can be easily extended with

other state-of-the art cryptographic techniques.

To exemplify, consider a single-word search query over data

protected with searchable encryption (1). This primitive makes

use of tokens, which are used exclusively to process some

search query over encrypted data. The trusted site CryptoWorker

intercepts the request (2) and executes the Encode operation to

produce a token. This token is then sent to the untrusted site

CryptoWorker (4 a) to execute Process. The remote process

must now access a searchable encryption CryptoBox to compute

the token over stored data and produce a query response

(4b and 4c). This response is then returned to the trusted

site CryptoWorker for Decode to be executed. Data is then

decrypted according to the respective CryptoBox (3) and the

reply is provided to the client (2,1).

In terms of scalability and availability, the techniques

discussed in this paper do not affect the sharding and replication

design of the NoSQL backend. However, in order to support

several NoSQL clients accessing the same data, it is necessary

to have a key management service so that all CryptoWorkers at

the trusted site have access to the necessary keys for encoding

and decoding the data in each query.

Secure HBase Client

Trusted site

Untrusted site
(HBase Cluster)

STD

CryptoWorker

ClientClientApplication

HBase 
Master

Handler
Schema

Conf.

DET OPE

1

23

HBase Region 
Server

CryptoWorker 
CoProcessor
(Not needed)

HBase Region 
Server

CryptoWorker 
CoProcessor
(Not needed)

HBase Region 
Server

CryptoWorker 
CoProcessor

Fig. 3: Implementation of SAFENOSQL resorting to HBase.

V. IMPLEMENTATION

The SAFENOSQL prototype is implemented on top of

Apache HBase, a distributed, scalable and open-source non-

relational database [9]. Inspired by Google’s BigTable, HBase

tables are multi-dimensional sorted maps, similar to the NoSQL

logical table representation discussed in the previous section.

Row keys are associated with an unbounded and dynamic

number of qualifiers (columns) that are grouped into column

families (groups of columns). Each value on a table is uniquely

identified by a column family’s name and qualifier’s name. A

table can be horizontally partitioned into several Regions, each

holding a subset of the rows for that table. This partitioning

scheme is transparent for the database applications and is a

fundamental characteristic that makes HBase highly scalable.

Figure 3 depicts how SAFENOSQL is instantiated over

HBase. At the trusted site, applications resort to the Secure
HBase client component, a modified HBase client that exports

the original HBase API (1) with privacy guarantees. Secure

requests are forward to the HBase cluster composed by an

HBase Master and several Region Servers. The client contacts

the Master component when it needs to locate the Region

Server(s) holding the Region(s) that serves the rows for that

request (2). Once the Region server is located, client requests

are made directly to the Region Server (3) that handles the

desired data to be processed and retrieved. The HBase Master

may be deployed in a primary/secondary replication mode to

ensure high availability, while the Regions are replicated using

HDFS to ensure data availability.

The HBase client API is similar to the one described in

Section IV (i.e., Put/Update, Get, Delete, Scan). Additionally,

Scan operations support Filters for qualifiers (SingleColum-

nValueFilter). Namely, it is possible to issue a Scan for the

entire table, or for a range of rows, and filter at the HBase

backend the desired qualifier values by equality or range.

In Figure 3 we also depict the components of SAFENOSQL

prototype. The gray boxes present the novel components that

were added to HBase in order to have a secure NoSQL
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implementation. Our CryptoWorker implementation extends

the original HBase client implementation as a middleware

component and provides confidentiality guarantees on NoSQL

operations. Through a configuration file it is possible to define

the encryption technique that will be used for keys and

for qualifiers. Since qualifiers can be grouped into column

families, our configuration file allows defining the same

encryption scheme for all the qualifiers belonging to a specific

column family. As discussed in Section IV, the CryptoWorker

component is composed by a module that intercepts NoSQL

requests and resorts to the appropriate CryptoBoxes to encode

sensitive data, process it (if necessary), and decode encrypted

data according to the configuration file schema.

Our prototype currently contemplates three distinct Cryp-

toBoxes. Standard encryption (STD) CryptoBox relies on

OpenSSL [26] cryptographic library. Deterministic encryption

(DET) is implemented in accordance to the construction

described in [22]. Finally, the OPE CryptoBox is implemented

following the design of [24] and it relies on OpenSSL and

MPFR [27], a multiple-precision floating-point library.

Although the three supported cryptographic techniques do

not require additional computation at the HBase backend,

other techniques such as searchable encryption may require

keeping a secure index and having additional processing

over encrypted data at the backend. In HBase, supporting

these novel techniques is attainable without changing the core

implementation of HBase backend components, which would

increase significantly the implementation effort of our prototype.

For this, one can resort to HBase co-processors. These can be

seen as plugins specifying additional computation that must be

done at each Region Server when specific NoSQL queries are

executed. For instance, if a Get operation requires consulting

the secure index and doing some additional computation, it

is possible to deploy a CryptoWorker as a co-processor that,

for each Get operation, will do the necessary steps to provide

the correct results for that query. Our current prototype is

designed to avoid changing HBase’s core implementation.

In fact, supporting the three techniques discussed above did

not require any line of code at the HBase backend’s core

to be changed, while for the HBase client’s code we only

added approximately 2100 lines to integrate our CryptoWorker

implementation. This approach has the additional benefits of

compatibility with evolving versions of HBase, as well as easier

transition from HBase to other NoSQL databases.

Encrypted data retrieved with Get and Scan operations

must be decoded to plaintext at the trusted site CryptoWorker

before being forwarded to the application. As shown in our

experimental evaluation discussed in Section VI, decoding

information encrypted with OPE has a significant penalty in

the latency and throughput of HBase operations. As such,

we propose an optimization that trades additional storage

space for a considerable performance improvement. In our

system, every column qualifier encrypted with OPE will be

accompanied by the same value protected with STD. Then,

when a value protected with OPE must be retrieved to the client,

instead of decoding the OPE encryption, the CryptoWorker

module decodes the value protected with STD instead, which

is considerably faster. For instance, decoding a 14 bytes length

ciphertext with OPE takes 567.434μs and with STD takes

5.884μs. Moreover, for a 256 bytes ciphertext, OPE takes

2.861s to decode while STD takes 8.028μs. This optimization

also contemplates the storage of data encrypted with OPE, so

filtering operations such as equality or range queries are still

supported.

VI. EXPERIMENTAL EVALUATION

This section presents the experimental evaluation of the

SAFENOSQL prototype. First, we describe the experimental

setup and workloads, and then we discuss the results obtained.

A. Experimental Setup, Benchmark and Workloads

Experiments ran on a cluster composed of 6 servers equipped

with an Intel i3 CPU with four cores at 3.7 GHz, 8GB of RAM

and a 128 GB SSD disk interconnected with a gigabit switch.

The HBase cluster was deployed on 5 nodes. The HBase master

ran on an isolated server and four HBase Region Servers were

deployed on the remaining servers. Each RegionServer was

configured with 4GB of heap size, with 55% of this space

assigned to the memstore and 10% to the block cache.
The remaining server was used as the database client.

For this client, our experiments resort to the Yahoo! Cloud

Serving Benchmark (YCSB), a well-known benchmark suited

for NoSQL data stores, including HBase, that provides realistic

cloud-based workloads [28]. Each workload can be customized

by defining the operations that are going to be performed at

the NoSQL data store i.e., Insert (HBase’s Put), Read (HBase’s

Get), Update (HBase’s Put), Read-Modify-Write (HBase’s Get-

Update), Delete (HBase’s Delete) and Scan (HBase’s Scan)

operations. Also, other parameters such as the operation’s data

access pattern, the ratio for each operation, and the benchmark’s

execution time can be defined by the user.

Although YCSB operations allow testing most of the

HBase’s API, these do not contemplate equality and range

filter operations over column qualifiers (QualifierFilter or

SingleColumnValueFilter as typically known in HBase). For

this reason, we extended YCSB to include such operations on

the benchmarking suite. Each experiment discussed along this

section ran for 20 minutes with an extra 3 minute period of

ramp-up time for a database pre-populated with 10 million

rows. Also, each experiment was repeated 5 times to calculate

the mean and standard deviation across distinct runs.

Two table schemas were designed specifically for the

experiments in order to test our prototype in a more realistic

setup. With this approach it is possible to extract meaningful

results and conclusions, for this and other similar use-cases,

about the performance overhead induced by the different

cryptographic techniques. In more detail, as the healthcare

sector deals with different types of sensitive information and

it must comply with several legal regulations concerning data

privacy, we chose to explore such use-case.

The first table schema, Patients, is shown in Table I and

contemplates a subset of the data typically found on an Hospital
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database table that stores personal information from patients.

The NoSQL table stores an application generated key (Patient

ID) for each patient, while each row is composed by a set

of column families (Identification, Contacts, Observations,

Appointments) that group distinct column qualifiers holding

patient’s information (MainID, Surname, Name, Birth date,

Nationality, CivilD. Address, Contact, Observations). The

Appointments (App) column family can have a dynamic number

of qualifiers, each indicating the ID of the patient’s medical

appointments (Appointment ID). Table I also shows the size in

bytes of each column qualifier and a proposal for the encryption

techniques to be applied on each field in order to ensure privacy

of personal information while still allowing querying such

data. Briefly, most information related to a given Patient is

encrypted using standard encryption (STD). In order to be

able to retrieve the information of a specific patient given her

first name, last name and date of birth, the column qualifier

MainID contains such information encrypted with deterministic

encryption (DET). This specific set of characteristics is often

used in medical systems to identify the patients. The storage

space for a single row in plaintext is 1526 bytes and for the

proposed secure schema is 1888 bytes. This is an important

aspect to have in account as it represents another tradeoff on

data storage and bandwidth for secure NoSQL databases.

The second table schema, Appointments, is shown in Table II

and stores the Hospital appointments between a given physician

and a patient. The key (Appointment ID) is an unique identifier

generated by the application and each row is composed by

a set of column families (Physician, Patient, Appointment,

Institution) grouping distinct column qualifiers holding relevant

information for the appointment (Physician ID, Patient ID,

Appointment Date, Type of appointment, Observations, Institu-

tion Name and Address). In this table, we propose a possible

schema where the column qualifiers PhysicianID is encrypted

with DET, the Date of the appointment is encrypted with OPE,

while the remaining column qualifiers are encrypted with STD.

This design allows, for instance, retrieving all appointments of

a given physician for a given time period. According to the

optimization discussed in the previous section, a novel column

qualifier Date-STD was created in order to reduce the overhead

of decoding operations when OPE is being used. The storage

space for a single row in plaintext is 1552 bytes and for the

proposed secure schema is 1756 bytes.

B. Micro-experiments

Micro-experiments were performed for the Appointments
schema to understand the isolated impact of the cryptographic

techniques supported by SAFENOSQL prototype. Experiments

ran isolated YCSB operations, while all table qualifiers were

stored in plaintext and only the row keys were protected with

different cryptographic techniques (STD, DET, OPE). This

approach was used to provide a controlled testing scenario

where the only factor changing is the way a single data value

is encrypted. Such approach, allows a more precise comparison

of the overhead of each technique and a comparison with a

baseline HBase deployment without encryption. Benchmark

operations write/read the entire row, while Scan and Filter

operations were issued with a random starting row key. For

the Filter operations a pre-defined value stored in the database

was used as the value to be searched. We also varied the data

access pattern of the benchmark by running all experiments

with both the Zipfian (Hotspot) and Uniform distributions.

Figure 4 and Figure 5 and Table III show the throughput and

latency values for the micro-experiments. For STD encryption

we only show values for the write tests, while for DET

encryption we do not show values for range queries. As

explained in Section III, STD encryption applicability is limited

to the protection of data in scenarios where no operations are

to be performed over it, such as data transmission or storage.

Similarly, for DET encryption, as the order of the plaintext

is not enforced on the resulting cyphertext, this is not a valid

technique for retrieving data whose value is between a certain

range. Performing such queries over data encrypted in this

fashion would require a full database retrieval to the client

premises and subsequent decryption, which is unfeasible for

any realistic database deployment.

Regarding the results, as expected, performing insertions

and queries over data protected with STD and DET encryption

has a small overhead when compared with the analogous

operations done over plaintext. On the other hand, the overhead

is significant for the OPE technique mainly due to the time

spent encoding and decoding the plaintext and ciphertexts,

respectively. Nevertheless, this overhead value is according to

the expected value for our OPE CryptoBox implementation [24].

This means, that such value can be improved in the future

with more efficient implementations of OPE or by relying on

more efficient cryptographic techniques such as searchable

encryption [13]. The only exception is shown in the Qualifier

Equality Filter (QEF), where the performance of OPE is similar

to the baseline HBase deployment. In this equality filter most

of the overhead is due to the search of the correct value at the

HBase backend and a single set of key-value pairs is returned

and decrypted. On the other hand, for both Scan and Qualifier

Range Filter (QRF) operations the set of returned rows to the

client is significantly higher (at least one order of magnitude)

and the overhead of decoding key encrypted with OPE keys is
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Fig. 4: Normalized throughput for the micro-experiments. HBase baseline corresponds to value 1. For each YCSB operation

(Insert (INS), Read, Read-Modify-Write (RMW), SCAN, Qualifier Equality Filter (QEF), Qualifier Range Filter (QRF)) the

throughput is shown for STD, DET, and OPE encryption techniques and both Uniform (U) and Zipfian (Z) access patterns.

INS READ RMW SCAN QEF QRF

U Z U Z U Z U Z U Z U Z

BAS Thr (ops/s) 333.835
± 7.107

334.255
±5.291

532.071
±10.689

614.828
±11.542

183.432
±7.082

204.391
±4.873

69.576
±7.331

79.095
±7.301

0.043
±0.006

0.043
±0.004

70.234
±11.020

78.537
±11.519

Lat (ms) 2.033
± 0.064

2.928
±0.047

1.874
±0.038

1.624
±0.031

5.582
±0.240

5.105
±0.165

14.447
±1.463

12.666
±1.134

26675.757
±3234.64

23404.915
±2063.02

14.502
±2.440

12.912
± 2.019

STD Thr (ops/s) 327.228
± 5.783

325.061
±5.746 - - - - - - - - - -

Lat (ms) 2.993
± 0.054

3.015
±0.056 - - - - - - - - - -

DET Thr (ops/s) 329.315
± 4.954

331.907
±7.559

476.395
±5.631

546.04
±22.883

184.304
±6.208

197.209
±8.222 - - 0.033

±0.002
0.032
±0.002 - -

Lat (ms) 2.973
± 0.046

2.951
±0.068

2.093
±0.025

1.828
±0.079

5.630
±0.137

5.313
±0.156 - - 29821.832

±1850.85
30228.441
±1951.79 - -

OPE Thr (ops/s) 120.438
± 0.862

121.082
±0.927

124.83
±1.382

136.988
±0.440

89.02
±1.892

90.579
±1.641

2.994
±0.026

2.998
±0.039

0.042
±0.006

0.045
±0.002

2.893
±0.049

2.906
±0.092

Lat (ms) 8.234
± 0.061

8.191
±0.064

8.001
±0.089

7.288
±0.023

11.998
±0.798

12.056
±0.449

333.716
±2.952

333.176
±4.441

23816.373
±3787.09

22355.588
±1134.39

345.251
±5.888

343.964
±11.362

TABLE III: Throughput (Thr) and latency (Lat) results for the micro-experiments. For YCSB operation (Insert (INS), Read,

Read-Modify-Write (RMW), Scan, Qualifier Equality Filter (QEF), Qualifier Range Filter (QRF)) values are shown for baseline

(BAS) HBase solution and for STD, DET and OPE schemes, including both Uniform (U) and Zipfian (Z) access patterns.
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TABLE IV: Operations percentage per YCSB test.

highly noticeable. As expected, the Zipfian distribution provides

higher throughput for most tests due to the hotspot distribution

that leverages HBase caching mechanisms.

The previous results show that for each cryptographic

technique one can expect different tradeoffs in terms of database

performance and supported functionality. This way, on a real

deployment scenario, a single technique is not the best approach

for protecting all the information stored in the same database.

To understand the impact of combining different techniques we

next focus on macro-experiments where multiple techniques

are combined to provide a fully-functional database in a more

realistic experimental setup.

C. Macro-experiments

The macro-experiments were devised to assess the impact of

combining different cryptographic techniques for the Patients
and Appointments schemas. As discussed in Subsection VI-A,

we protected the key and column qualifiers with the crypto-

graphic techniques described in Table I and Table II in order

to ensure that useful queries can still run over encrypted data

while protecting sensitive information.

To evaluate the performance of our solution, we compared

it against a baseline HBase deployment storing everything in

plaintext, and ran a set of YCSB tests. Table IV shows the

ratio of operations performed for each test. Tests (A to F) are

standard configurations already provided in YCSB and typically

used in previous work [29]. We modified test E and created two

variants, E1 and E2. In the first we leverage Qualifier Equality

Filters (QEF) and Range Filters (QRF) for Date values of the

Appointments schema. In the latter, we leverage Equality Filters

(QEF) for the MainID of the Patients schema. Additionally, the

tests G and H were defined specifically for our tests, in order

to reproduce a typical query environment for our healthcare

use-case. The Appointments schema (test G) has a significant
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Fig. 6: Normalized throughput (a) and latency (b) results of macro-experiments (HBase baseline results correspond to value 1).
SC. System Metric A B E1 E2 F G H

AP

BAS
Thr (ops/s) 400.36 ± 16.191 421.183 ± 11.920 6.370 ± 0.430 - 277.306 ± 9.689 8.567 ± 1.897 -

Lat (ms) 2.502 ± 0.097 2.377 ± 0.081 157.703 ± 10.578 - 3.10 ± 0.123 125.278 ± 39.02

SAFENOSQL
Thr (ops/s) 292.396 ± 10.986 389.056 ± 41.218 6.843 ± 1.352 - 221.253 ± 3.725 6.617 ± 1.595 -

Lat (ms) 3.425 ± 0.127 2.597 ± 0.255 151.533 ± 27.342 - 4.521 ± 0.078 159.074 ± 33.503 -

PA

BAS
Thr (ops/s) 331.014 ± 10.075 326.441 ± 23.309 - 0.089 ± 0.003 221.154 ± 11.286 - 0.066 ± 0.002

Lat (ms) 3.024 ± 0.092 3.078 ± 0.210 - 11,284.588±395.137 4.534 ± 0.232 - 15,219.327±533.208

SAFENOSQL
Thr (ops/s) 332.467 ± 23.298 313.042 ± 11.189 - 0.055 ± 0.003 211.308 ± 8.300 - 0.056 ± 0.008

Lat (ms) 3.022 ± 0.195 3.199 ± 0.114 - 18,196.153±925.209 4.740 ± 0.186 - 18,354.071±2 801.68

TABLE V: Appointments (AP) and Patients (PA) schemas macro-experiments latency (Lat) and throughput (Thr) results for the

baseline (BAS) HBase and SAFENOSQL prototype.

number of insertions and a lower number of search queries. The

Patients schema (test H) has a smaller percentage of insertions

and a higher percentage of search queries. All experiments ran

with the zipfian access distribution.

In test G, appointments Date was populated with a random

value between 2015-2020. Filter operations (QEF and QRF)

ran for values comprehended between this range and performed

a full table Scan to search for such values. In test H, Patient’s

MainID were also filtered with a full table Scan to find the

desired values. For this experiment we ensured that only values

stored at the database are searched.

Figure 6a, Figure 6b and Table V show the throughput and

latency values for the macro-experiments. As expected, the

Patients schema provides less overhead in most tests since it

does not resort to OPE for protecting sensitive information. In

average, when compared to the baseline HBase system, the

Patients tests present an overhead of 12.29% across the different

YCSB tests. As the worst-case scenario an overhead of 37.9%

is visible in test E2. On the other hand, the Appointments

schema presents an average performance loss of 14.03%. In

workload A the overhead reaches approximately 27%.

For the workloads tests G and H, when compared to the

baseline HBase systems, overheads of 22.76% and 15.42% are

observable, respectively. A considerable part of the overhead

in workload G is due to OPE cipher’s performance, since the

insert proportion corresponds to 50% of the total operations.

In workloads H and E2, most of the performance overhead is

due to performing a range scan over keys protected with DET

encryption. As this encryption technique does not preserve the

order of the plaintext, a full table scan must be done to search

for the keys between the requests range of values.

Interesting results are shown for workload E1 where the

throughput and latency values are similar to the baseline. This

happens due to the extra qualifier Date-STD protected with STD

encryption that is stored along with the OPE Date qualifier. This

optimization was described in Section V and allows reducing

the overhead of decoding operations with the OPE CryptoBox.

The previous results show that combining different cryp-

tographic techniques is key for supporting a wide range of

applications workloads, with different NoSQL operations, while

providing acceptable performance. Also, there is still some

space for improvement, which justifies the importance of a

flexible framework such as SAFENOSQL that will allow easily

incorporating novel cryptographic techniques, with different

tradeoffs in terms of performance, security and functionality.

VII. CONCLUSION

This paper presents SAFENOSQL, a secure framework for

NoSQL databases aiming at a modular and flexible design that

can easily be extended with state-of-the-art privacy-preserving

computation techniques. In more detail, we propose an ar-

chitecture that resorts to novel CryptoWorker and CryptoBox

components in order to be generic for most NoSQL databases

and to easily accommodate different widely used cryptographic

techniques. We have implemented a prototype of our framework

based on Apache HBase and conducted an extensive set of

micro- and macro-experiments with various realistic workloads

to assess the practicality of our solution.

The results show that by combining different cryptographic

techniques, it is possible to have a practical solution that

balances the desired functionality, performance and security

for different applications. In average, when compared with a

baseline HBase deployment without any data privacy guaran-

tees, SAFENOSQL prototype introduces less than 15% of

performance overhead across the different realistic macro-

workloads tested. Also, the results show that there is still

space for improvement, for instance, by introducing other

cryptographic techniques in SAFENOSQL that can overcome

the current performance penalty of OPE. This is a key

conclusion that shows the importance of designing a flexible
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architecture where the addition of novel encryption techniques

can be done in a straightforward fashion.
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