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ABSTRACT Convolution Neural Network (CNN)-based object detection models have achieved unprece-
dented accuracy in challenging detection tasks. However, existing detection models (detection heads) trained
on 8-bits/pixel/channel low dynamic range (LDR) images are unable to detect relevant objects under lighting
conditions where a portion of the image is either under-exposed or over-exposed. Although this issue can
be addressed by introducing High Dynamic Range (HDR) content and training existing detection heads on
HDR content, there are several major challenges, such as the lack of real-life annotated HDR dataset(s)
and extensive computational resources required for training and the hyper-parameter search. In this paper,
we introduce an alternative backwards-compatible methodology to detect objects in challenging lighting
conditions using existing CNN-based detection heads. This approach facilitates the use of HDR imaging
without the immediate need for creating annotated HDR datasets and the associated expensive retraining
procedure. The proposed approach uses HDR imaging to capture relevant details in high contrast scenarios.
Subsequently, the scene dynamic range and wider colour gamut are compressed using HDR to LDRmapping
techniques such that the salient highlight, shadow, and chroma details are preserved. Themapped LDR image
can then be used by existing pre-trained models to extract relevant features required to detect objects in both
the under-exposed and over-exposed regions of a scene. In addition, we also conduct an evaluation to study
the feasibility of using existing HDR to LDR mapping techniques with existing detection heads trained on
standard detection datasets such as PASCAL VOC and MSCOCO. Results show that the images obtained
from themapping techniques are suitable for object detection, and some of them can significantly outperform
traditional LDR images.

INDEX TERMS High dynamic range (HDR), low dynamic range (LDR), object detection, faster RCNN,
SSD, R-FCN.

I. INTRODUCTION
The introduction of Convolution Neural Networks (CNN) has
brought about a complete paradigm shift in object recog-
nition and detection, which has been a major challenge
in computer vision [1]. State-of-the-art CNN based object
detectors [2]–[5] have been able to achieve unprecedented
accuracy in generic object detection tasks, for example,
≥ 80% accuracy on the Pascal Visual Object Challenge
(PASCAL VOC) and ≥ 50% in the challenging Microsoft
Common Object in Context (MS COCO) detection track.
However, in spite of this unprecedented accuracy, a common
issue with most existing detection models is their inability
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to accurately detect salient objects in challenging and/or
extreme lighting conditions. This can be attributed to the
fact that existing detection models are typically trained
on generic object detection datasets comprising mostly of
well-exposed and/or moderately lit 8/bits/pixel/channel Low
Dynamic Range (LDR) images. In these images, a large
portion of the scene information is captured as midtones with
little or no information in the under-exposed or over-exposed
regions. Thus current detection models trained on existing
datasets are unable to extract salient features from scenes with
challenging lighting conditions that are typically encountered
in real-world scenarios.

One of the solutions to address this problem is to introduce
HighDynamic Range (HDR) andWide colour Gamut (WCG)
imaging which can capture the entire range of lighting
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conditions and colour gamut seen by the human eye [6]. Sub-
sequently, the capturedHDR andWCG content can be used to
create annotated datasets and train existing detection heads.
Unlike the traditional LDR image trained models, HDR
trained models would thus be able to take advantage of the
extended dynamic range and colour gamut to extract salient
information from both the under-exposed and over-exposed
regions of a scene in addition to the mid-tones. However,
there are a large number of challenges which need to be
overcome before retraining of detectors on HDR datasets is
possible. Firstly, the amount of unique and true HDR content
(available for annotation) is remarkably low. Secondly, there
are no existing annotation tools which support native HDR
image content. Thirdly, due to the intrinsic differences in
source content, retraining and hyper-parameter search for
state-of-the-art detectors is computationally time and energy
consuming. Finally, due to the lack of diverse true HDR
content, retrained detectors would be unable to generalise
well to out-of-distribution real-world data.
Given these challenges, in this paper, we propose a

robust methodology for object detection in extreme and/or
challenging lighting conditions while ensuring backward
compatibility with most current detection models trained on
existing LDR datasets. The proposed methodology explores
several techniques to transform native HDR content to LDR
content using generic transfer functions (explained later in
section II-A) such that the resultant 8-bits/pixel/channel LDR
images are able to reproduce salient scene information (both
luminance and chroma) by essentially compressing and faith-
fully reproducing the tones of native HDR content. Addi-
tionally, we also conduct a comprehensive evaluation, with
an out of distribution dataset (OOD), to study the effects of
seven different HDR to LDR mapping techniques, compare
them with traditional LDR approaches on three CNN based
detection models, and measure their detection accuracy.

II. RELATED WORK
As the contributions of this paper encompass prior research
from two significantly different research areas, a detailed
description of all relevant previous work from both research
areas is out of scope and hence in this section we only provide
a brief overview of the prior research directly used in this
work.

A. HDR TO LDR MAPPING
The vast majority of the imaging devices are only able
to capture, process, and display LDR content with ITU-R
BT.709 colour gamut [7], i.e., they are unable to represent
the full colour gamut and scene dynamic range as seen by the
human eye. However, true HDR content is able to capture,
store and process more than 16-stops of scene dynamic range
with either ITU-R BT.709 [7] or ITU-R BT.2020 [8] to fully
encompass the dynamic range that the human eye can see
with minimal eye adaptation [6]. Also, unlike WCG con-
tent, typically captured using the BT 2020 colour space [8],
true HDR content (16-bit floating point format) cannot be

processed and displayed using hardware-based LDR process-
ing and display devices. To represent HDR content on LDR
devices, the dynamic range and colour gamut information
(not necessarily WCG) of native HDR content needs to be
compressed using transfer functions. These are designed to
compress maximal luminance information especially from
the over- and under-exposed regions of a scene while pre-
serving the chroma information. Such transfer function based
algorithms are typically known as tone-mapping operators
(TMOs), image-appearance/colour appearance based oper-
ators, or exposure fusion operators. Although, a few Field
Programmable Gate Array (FPGA)-based real-time HDR
to LDR processing devices exist [9], they typically use
scaled-down versions of perceptual and global TMOs which
by their intrinsic simplicity are unable to faithfully represent
the complexity of a scene’s luminance and chroma informa-
tion. Given these challenges, the following transfer functions
have been considered as a part of this work.1 Figure 1 pro-
vides a visual representation of each HDR to LDR transfer
function and the justification for the selection of these transfer
functions is given later in section III-D.

1) PHOTOGRAPHIC TONE MAPPING OPERATOR
((ReinhardTMO)
Introduced in 2002 by Reinhard et al. [10], this HDR to LDR
mapping technique leverages the time tested photographic
tone-compression technique (Zonal System) first proposed
by Ansel Adams [11]. The compression process first maps
the image by scaling the original scene luminance using the
log-average luminance as the approximation to the key of
the scene. Subsequently, it focuses on photographic ‘‘dodg-
ing and burning’’ principles which change the exposures of
different parts of the image such that the darker and brighter
regions of a scene can be faithfully reproduced.

2) DISPLAY ADAPTIVE TONE MAPPING OPERATOR
(MantiukTMO)
This TMO, proposed in 2008 by Mantiuk et al. [12], allows
the configuring of different parameters to take into consider-
ation the display features and the environment where the con-
tent is being viewed in order to optimise its output. Besides
the possibility of fine-tuning each parameter individually,
the TMO includes a preset of different profiles to target dif-
ferent viewing conditions (display size, ambient luminance,
etc.). The tone-mapping process starts by processing the
image, based on a display model and viewing conditions.
Subsequently, the image is processed by taking into account
human visual models having as basis the tone-reproduction
for realistic computer-generated images [13] and the adapta-
tion for realistic image display [14].

1The transfer functions chosen for this work, typically map 16-
bits/pixel/channel floating point HDR content captured using the
BT709 colour space to 8-bits/pixel/channel sRGB colour space.
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FIGURE 1. Visual representation of seven HDR to LDR mapping techniques along with an LDR representation.

3) ADAPTIVE LOGARITHMIC MAPPING (FattalTMO)
Based on the assumption that the human eye is more
sensitive to local intensity ratio changes rather than absolute
luminances, Fattal et al. [15] proposed a tone-compression
technique based on the gradient domain compression. This
TMO identifies large gradients at different scales and attenu-
ates their magnitudes while keeping their direction unaltered.
All the computations are performed in the logarithmic
scale of luminances, where higher significant gradients are
penalised more to compress drastic luminance changes while
preserving detail. The attenuation of the gradients is achieved
by applying an appropriate spatially variant attenuation
mapping to the magnitudes of the derivatives at each pixel.
The progressiveness of the method is performed by con-
structing a Gaussian pyramid to achieve a multi-resolution
edge detection scheme. To handle the extensive system
of linear equations, the authors propose using the Full
Multigrid Algorithm [16], with Gauss-Seidel smoothing
iterations.

4) TONE-MAPPING ALGORITHM FOR HIGH CONTRAST
IMAGES (AshikhminTMO)
This approach takes advantage of knowledge of the human
visual system (HVS) and consists of three main steps:
local luminance adaptation, compression of image values to
display values, and a final pass for detail re-introduction that
could have been lost in the previous step. For estimating the
local adaptation level, the TMO balances the local contrast
signal whilst maintaining information about image details
based on the average luminance over a pixel neighbourhood.
The compression of image values to display values is
achieved by employing threshold vs intensity functions
having as reference the world luminance. As this step works
at a contrast level, some detail can be lost. Thus, the third step
is performed to recover detail by multiplying the obtained
image by a detailed image that is given by the ratio of pixel
luminance to the corresponding local world adaptation level.

5) VISUAL ADAPTATION MODEL (Ferwerda TMO)
Introduced by Ferwerda et al. [17], this HDR to LDR
mapping technique was developed for targeting realistic
image synthesis based on the physical features of the HVS
(i.e. scotopic, mesopic and photopic vision) and was based on
previous work regarding both brightness-based operators [18]
and contrast based operators [19]. The first step of the
TMO consists of calculating the luminance adaptation of the
input image. Then, the scotopic and photopic vision scaling
factors are calculated by employing threshold vs intensity
functions. For the mesopic values (between scotopic and
photopic conditions), a step is taken to combine the scotopic
and photopic luminance values according to a constant k that
works as a scale factor that ranges from 0 to 1 according to
the scotopic adaptation level. The final step of the TMO is to
normalise the output values taking into account the maximum
luminance of the display device.

6) EXPOSURE FUSION
Unlike the previously mentioned HDR to LDR mapping
techniques, this method [20] combines a bracketed exposure
sequence which would generate an HDR image, into an
LDR image without actually generating the HDR image.
This simplifies the processing pipeline when the goal is to
directly obtain the compressed LDR image as it saves all the
processing needed for the HDR generation. To achieve the
dynamic range compression, the method selects the richest
content of each exposure based on a scalar-valued weight
map. To determine such regions, the contrast, saturation and
well-exposedness of the image are considered. The contrast
is evaluated by using Laplacian filters to detect edges and
texture; the saturation is evaluated by computing the standard
deviation of the RGB channels; and the well-exposedness
considers the raw intensities of each image channel that are
close to 0.5 after applying a Gauss curve. Each parameter
generates a weight value that is used to fuse the image
sequence. To avoid the image having artefacts introduced
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FIGURE 2. Schematic diagram of the two main approaches to object detection. Figure 2a demonstrates the region proposal based approach while
Figure 2b demonstrates the unified framework approach.

by the fact that the different regions have different absolute
intensities, a multi-resolution blending based on Laplacian
decomposition is applied.

7) IMAGE APPEARANCE MODEL OF HDR RENDERING
(iCAM06)
Kuang et al. [21] proposed a new image appearance model,
designated iCAM06, designed specifically for HDR image
rendering. Based on the iCAM framework [22], the new
model incorporates the spatial processing models in the
HVS for contrast enhancement and photo-receptor light
adaptation functions that enhance local details in highlights
and shadows. The original HDR image is first converted
to the CIE-XYZ [23] colour space and subsequently
decomposed into a base and a detail layer wherein the
base layer is obtained using an edge-preserving bilateral
filter [24] and the detail layer is obtained by subtracting
the base layer from the original image. The base layer
first undergoes chromatic adaptation which is achieved by
converting the CIE-XYZ image to a spectrally sharpened
RGB image using the MCAT02 transformation matrix [22].
The incomplete adaptation factor is computed as a function of
adaptation luminance and the surround factor. Subsequently,
the spectrally sharpened RGB image is converted from the
CAT02 space to the Hunt–Pointer–Estevez fundamentals
which is where the resultant RGB signal undergoes a
non-linear tone compression using a non-linear response
function for both rods and cones derived from the Hunt
Model [25]. The tone-compressed RGB image is then
converted to the perceptually uniform colour opponent
space IPT [26], which is desired because image attribute
adjustments do not affect other attributes. To preserve the
naturalness of the rendered tone-compressed image, the detail
layer is enhanced to predict the Stevens effect and the P&T
channels of the base layer are enhanced to predict the Hunt
effect [25]. Finally, the enhanced base and detail layers
are combined to produce an enhanced perceptually uniform
output image. This is displayed on the target device by
converting the IPT image to an RGB signal followed by an
inverse chromatic adaptation.

B. CNN BASED OBJECT DETECTION
State-of-the-art CNN based object detection algorithms
may be classified into two categories i.e. a) two-stage or
regional-proposal based algorithms and b) single stage or
unified framework algorithms, as illustrated in Figure 2.

1) TWO-STAGE OBJECT DETECTION
Also known as Region proposal based detectors, these
methods first generate category agnostic region proposals
from the entire image followed by feature extraction from
the proposed regions. Subsequently, the proposed regions
are indexed and fed to two network heads composed
of fully connected layers. The first (classification) head
consists of a softmax layer which determines the object
category ‘C’ (labels) along with confidence scores ‘S’ ∈
[0, 1]. The second (regression) head is a bounding box
regressor which determines the spatial location ‘BBox’ of the
object of interest. Finally, the indexes are matched and the
corresponding labels, confidence scores, and bounding boxes
are passed to a threshold algorithm known as non-maximal
suppression (NMS). This discards themodel predictions (‘C’,
‘S’ and ‘BBox’) with lower confidence scores than the chosen
value, typically ≥> 0.5. Noteworthy examples of regional
proposal algorithms include the R-CNN family of object
detectors [2], [27]–[29] and R-FCN [30].

2) ONE-STAGE OBJECT DETECTION
Also known as unified framework, this approach consists
of a single end-to-end feed forward network performing
classification and regression in a monolithic setting that does
not require regional proposal or post classification. This
design encapsulates all computations in a single feed-forward
network which can be trained and optimised end-to-end,
thereby reducing inference time significantly, making them
ideal for real-time detection purposes. Important examples of
this approach include, but not limited to, YouOnly LookOnce
(YOLO) [31]–[33], Single ShotMultiboxDetector (SSD) [3],
and the recently proposed paired keypoint based detection
algorithm, such as Cornernet [4] and more recently, Objects
as Points [5].
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FIGURE 3. Schematic diagram of the proposed methodology for backward compatible HDR object detection.HDR/WCG 16-bits/pixel/channel images are
fed to a selected HDR to LDR mapping technique. The resultant 8-bits/pixel/channel LDR images (with sRGB colour gamut) are then passed to the
pre-trained detection model for inference. Final predictions for each image are matched with ground-truth annotations to calculate the AP per category
(see section III for details).

Excellent detailed surveys on the evolution of CNN based
object detection algorithms are given in [34]–[36]. Figures 2a
and 2b provide a simplified schematic representation of
the two different categories of CNN based object detection
algorithms.

In section III-B, we discuss three of the above mentioned
detectors which were chosen for the current work and provide
the necessary justification for the choice.

III. METHODOLOGY
In this section, we describe in detail, the proposed method-
ology to use existing CNN based detection heads for object
detection in HDR image/video content. This is achieved with-
out the expensive creation of large annotated HDR datasets
and computationally extensive training and hyper-parameter
search for the optimal performance of existing detectors on
the same HDR datasets. For the sake of brevity, we organised
this section into the following subsections, each describing
stages of the evaluation process. An overall schematic
diagram of the evaluation process is given in Figure 3.

A. CHOICE OF OBJECT DETECTION HEADS
In section II-B we outlined the two key techniques used in
object detection, namely region-proposal based CNNs and
unified framework based CNNs. From the region-proposal
family of object detectors, we chose Faster R-CNN [2] and
R-FCN [30]. This is because these two detection heads are
some of the first and seminal works on end-to-end trainable
detection heads from the R-CNN family and do not require
multi-stage progressive training such as R-CNN [27] and

Fast R-CNN [28]. Furthermore, prior research [29], [37], [38]
has demonstrated that region-proposal based detection heads
are typically more accurate than unified framework based
detection heads.

Amongst the unified-framework detection heads, two of
the most widely used are YOLO [31] and SSD [3]. However,
YOLO [31] is not particularly suitable for objects located in
close spatial proximity and objects with a strong variance
in size and aspect ratios as even the recent versions [32],
[33] of the detection head are limited to three scales. On the
other hand, SSD was specifically designed to predict object
locations across various scales (≈ 6-7) and aspect ratios
by appending additional convolution layers which gradually
decrease in size and computing a fixed number of predictions
in diverse aspect ratios resulting in prediction robustness
across various scales and object sizes. Thus, our final choice
was SSD.

To ensure the least amount of bias and variation, all three
detection heads consisted of the same feature extraction
backbone i.e. VGG 16 [39].

B. TRAINING OF OBJECT DETECTION HEADS
Firstly, to ensure the least amount of variation and jitter
in training detection heads, the VGG 16 backbone (for all
detection heads) was initialised with ImageNet [40] trained
weights. Furthermore, convolution layers in the detection
heads were initialised randomly using a fixed random seed
value.

Amongst the most widely used detection LDR datasets,
we chose the Pascal VOC dataset [41] which contains a total
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FIGURE 4. Sample images from the OOD dataset. Images tone-mapped for representation. Average dynamic range is ≈ 18 stops.

FIGURE 5. An example SSD training routine over 120 epochs showing
train and validation loss for classification, localization (single box) and
multi box.

of 20 object categories divided into two datasets VOC ’07 and
’12, respectively, with a combined total of 21,493 images
containing 52,090 annotations. We combined training and
validation sets of both VOC 2007 and 2012 for training and
use theVOC2007 test set for validation purposes (500 images
at a time). The final test was conducted over the entire test set.
To ensure the least amount of variation, we computed training
loss and testing accuracy for a total 120 epochs, with a batch
size of 32 on an Nvidia GTX 1080ti with 11 GB of virtual
memory. The inference speed was also computed on the same
GPU. The goal of the training procedure was to replicate the
results provided in the original literature.

An example training routine of SSD over 120 epochs is
given in Figure 5.

C. HDR DATASET CREATION
Unlike LDR, where a large number of computer vision
datasets in various domains are available [41]–[44], the num-
ber of native HDR image/video datasets is extremely limited.
A comprehensive search results in ≈ 3000-4000 native HDR
images and ≈ 40-50 video sequences (with a duration of ≈
10-15 seconds each). Out of the available datasets, only a
fraction can be used for practical object detection purposes
(containing more than one object).

Due to the limited availability of native HDR image/video
material and expensive manual annotation procedure, we first
shortlisted a total of ≈ 3500 images from multiple image
datasets and 8HDRvideo sequences. Subsequently, bymeans
of exhaustive manual check, the shortlisted 3500 images were
further pruned to a carefully curated set of 1289 images
(hereon referred to as the OOD dataset) based on the
following selection criterion: the dataset should contain
images captured by awide variety ofmedium to high dynamic
range imaging devices such as Digital SLRs [45], Spheron
VR [46], [47] and ARRI Alexa [48]) with an overall range of
≈ 17-21 stops.
The OOD dataset was subsequently downsampled to a

resolution of 1920 × 1080 pixels and manually annotated
by 4 annotators with an age range of ≈ 25 − 30 years.
The resultant dataset of 1289 images contains a total
of 8638 annotations spanning six different object categories.
The category-wise annotation histogram is given in Figure 6
and sample images from the OOD dataset are shown
in Figure 4.

D. CHOICE OF HDR TO LDR MAPPING TECHNIQUES
To date, a large number of HDR to LDR mapping techniques
have been proposed. An excellent review of these mapping
techniques is available in [6]. However, as mentioned
earlier in section II-A, the HDR mapping techniques are

VOLUME 8, 2020 142741



R. Mukherjee et al.: Backward Compatible Object Detection Using HDR Image Content

FIGURE 6. Salient features of the OOD dataset.

typically classified into a few categories, namely global
operators [10], [17], local operators [15], [49], exposure
fusion/blending [20], scene reproduction operators [12], and
Image/colour Appearance models [21].

The primary selection criteria of HDRmapping techniques
used in this work is that each of these mapping techniques are
not only widely used, but also representative of a particular
type of mapping technique. Furthermore, the selection was
also inspired by prior research in this area [50]–[53] where
the selected mapping techniques have outperformed other
mapping techniques belonging to the same category.

In addition, to ensure the least amount of variation between
the outputs of eachmapping techniques, the usage parameters
of each were set to the default values and fine-tuned in
accordance with the prior research. The fine-tuning was
carried out and validated by four experts (who each had at
least 5 years’ experience in HDR) to ensure which were
the best settings across all TMOs. Finally, the pure LDR
image (exposure) used in the selection, represents the middle
(0th) exposure of an HDR image based on the overall
luminance of the scene.

E. EVALUATION PROCEDURE
As shown in Figure 3, the evaluation procedure consists of
multiple steps which were conducted in parallel.

First, we trained the three detection heads using the
PASCAL VOC dataset following the procedure mentioned
in section III-B, resulting in three trained detection models.
In parallel, the OOD dataset with 1289 images was created
as mentioned in section III-C. Finally, we integrated the
evaluation pipeline. During the evaluation process, HDR
images are fed sequentially to each one of the seven HDR
to LDR mapping techniques. The resultant mapped LDRs
are then passed to the pre-trained detection heads (at full
resolution) with a batch size of 1. The detected images
along with the detection outputs (in XML format) are
stored for further accuracy calculation. Finally, the average
precision per category (six categories) as well as the mean

FIGURE 7. Heatmap of mean average precision - across all detection
models, HDR mapping techniques and traditional LDR).

average precision, number of True Positives (TP), False
Positives (FP), False Negatives (FNs) were computed using
the procedure mentioned in [27], [54]

IV. RESULTS
In this section, we present detailed as well as summary results
of the evaluation (see section III for details). First, Table 1,
shows the detailed detection accuracy (average precision)
results for each of the five categories present in test dataset
i.e. Bottle, Car, Chair, Dining Table, Person and Potted
Plant across the three detectors and seven HDR to LDR
mapping techniques. Additionally, Table 1 also contains the
per-object-category average precision (AP) results for each of
the three detection models folded across seven HDR to LDR
mapping techniques.

Table 1 not only presents a broad overview of the detection
quality obtained from each of the three detectors, but also
demonstrates the suitability of each of the seven HDR to
LDRmapping techniques for object detection purposes under
challenging lighting conditions.

Although Table 1 provides a detailed indication of the per-
formance of various mapping techniques for object detection
purposes, it does not provide a holistic and conclusive view
of the evaluation results. Therefore, in Figure 7, Figure 8,
and Figure 9 a summary of the detection results is presented
folded across seven HDR to LDR mapping techniques and
traditional HDR and three detection models.

Figure 7 shows a comparative heatmap of mAP values
obtained for the seven HDR to LDR mapping techniques and
traditional LDR across the three detection models used in this
evaluation. This allows us to directly compare and contrast
the suitability of each of the three detectors as well as the
seven HDR mapping techniques in detecting objects under
extreme lighting conditions, regardless of object category.
In contrast, Figure 8 demonstrates the average precision
results for each of the seven mapping techniques, folded
across three detectors. This allows us to study the suitability
of each mapping technique regardless of the detection model.
Finally, for the purposes of detection, apart from image
quality, Figure 9 looks at the overall inference time for
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TABLE 1. Average precision per object category for each of the three object detectors and mean average precision folded across seven HDR to LDR
mapping techniques and traditional LDR.

each of the seven mapping techniques (folded across the
three detection models), which helps us to determine the
speed of each mapping technique, regardless of the detection
model. However, the results demonstrated in Figure 9 are only
indicative, as neither the mapping techniques nor detection
models were optimised for the purposes of this study.

V. DISCUSSION
From Table 1, it becomes evidently clear that some of the
overall suitability of the HDR to LDR mapping techniques
are similar for detection purposes. This is corroborated by
the results demonstrated in Figure 8 where we see similar
accuracy across all mapping techniques apart from Ferwer-
daTMO. Also, from Figure 7, it can be observed that the
HDR to LDR mapping techniques significantly outperform
native LDR images in terms of detection accuracy. Hence,
we can conclude that for detection purposes, the local and
scene reproduction operators such as Ashikhmin, Mantiuk
and iCAM06 outperform others. The detection results are,
however, more interesting. Overall, both Faster RCNN and
SSD512 outperform R-FCN even though they have the same

VGG 16 [39] feature extraction backbone. As expected,
all detection models, regardless of the chosen mapping
technique, are fairly accurate in detecting larger objects such
as car, chair and dining tablewith accuracy dropping sharply
in case on smaller objects such as bottle and potted Plant.
Interestingly, the two-stage RPN basedmodels, such as Faster
RCNN and R-FCN, are marginally more accurate than SSD
in detecting smaller objects. However, an anomaly can be
seen in Table 1 where the category dining table is completely
missed by R-FCN, even though both Faster RCNN and SSD
512 are fairly accurate in this category. Considering the
similarity of Faster RCNN and R-FCN, this suboptimal result
for this category might be attributed to default anchor box
sizes and aspect ratios and might require further optimization
for better results.

Furthermore, the paired results Figures 8 and 9, exhibit that
even though Ferwerda has the lowest accuracy, the inference
time is the least, thereby providing high FPS performance at
the cost of image quality. Amongst the mapping techniques,
Ashikhmin delivers the best feature quality for the detection
models, thus facilitating high detection accuracy. This comes
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FIGURE 8. Mean Average Precision (mAP) results (folded across three
detection models).

FIGURE 9. Inference speed in frames/sec (folded across three detection
models).

at the cost of inference time. Since the eventual goal is find
a balance between ‘‘high accuracy’’ and ‘‘low inference time
(high FPS)’’, the paired results from Figures 8 and 9, seem to
suggest that photographic tone mapping operator (Reinhard
- global version) provides the best balance between both
parameters. Finally, the heatmap in Figure 7 demonstrates
that apart from Ferwerda, all mapping techniques typically
outperform the traditional middle (0th) exposure in terms of
detection accuracy.

VI. LIMITATIONS
Although this manuscript presents an exhaustive feasibility
study of several HDR to LDR mapping techniques for
the purpose of object detection in challenging lighting
conditions, there are a few limitations of this work.

First, in light of the recent proposals in object detection,
the detection heads used in this work have been superseded

by anchor-free detection heads such as CornerNet [4] and
Objects as Points [5] both of which eliminate the need for
anchor box design and optimization and thus could possibly
result in better detection accuracy on the OOD dataset.

Second, the FPS figures obtained in this evaluation were
overall turnaround per-frame which also includes I/O time.
Also, since most of the HDR mapping techniques are
implemented in an interpreted programming language i.e.
MATLAB, the rest of the pipeline was also implemented
in MATLAB to create a complete pipeline. A downside
of this strategy is that neither the mapping techniques nor
the detection framework are hardware/software optimised.
Therefore, the results shown in Figure 9 are indicative and
it can be expected that an optimised version of a reasonably
fast and relatively straightforward mapping technique, such
as Reinhard, when paired with an optimised detection model
preferably implemented using mainstream deep learning
frameworks [55], [56] would provide a more accurate
indication of the real-world inference times.

Third, the settings for the HDR to LDR mapping
techniques were in accordance to the previous studies in
this area. However, none of the prior research was for
detection purposes. As such, there might be better fine-tuned
parameters which could result in a better detection accuracy.

Finally, due to the lack of native HDR footage, the size
of the OOD dataset is a significant limiting factor for a
comprehensive evaluation.

VII. CONCLUSION
The primary goal of this work was to study the feasibility
of using existing HDR to LDR mapping techniques such
that current detection models can be used to detect relevant
objects under challenging lighting conditions. To that end,
the most important contribution of this work is the detailed
evaluation methodology presented in section III. In addition,
we also conducted a comprehensive evaluation of the
mapping techniques with three existing detection models
to study the suitability and accuracy of existing detection
models on tone-compressed HDR content (see section III-E
for details). Results suggest that, although the performance
of HDR to LDR mapping techniques are comparable,
the local mapping and scene reproduction operators along
with image appearance models tend to outperform other
mapping techniques in detection quality. On the other hand,
Faster RCNN and SSD 512 tend to outperform R-FCN with
SSD being the fastest (least inference time) amongst the three.
This is in accordance with the results presented in [35].

Comparing the HDR to LDR mapping techniques with the
traditional middle expose, one can see that some of them
outperform the middle exposure significantly. These results
were obtained without any optimization of the mapping
techniques for image detection. The results further suggest
that optimization of mapping techniques for image detection
could achieve even better results. Moreover, it is possible
to build new mapping techniques that can enhance images
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characteristics and make them more suitable for object
detection.

We believe that this work is one of the first steps towards
object detection using HDR content. An interesting future
work would be to train and use CNN based detection models
directly on HDR content. Also, the creation of a larger HDR
dataset is required before any further efforts to train detection
heads with HDR content can be meaningfully undertaken.
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