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Abstract: The combination of top-K network representation of the data stream with community detection is a novel
approach to streaming networks sampling. Keeping an always up-to-date sample of the full network, the
advantage of this method, compared to previous, is that it preserves larger communities and original network
distribution. Empirically, it will also be shown that these techniques, in conjunction with community detection,
provide effective ways to perform sampling and analysis of large scale streaming networks with power law
distributions.

1 Introduction

Large Scale Social Networks (LSSN) sampling
has emerged as a hot research topic during the recent
years. Approaches using full network data revealed to
be ineffective, not only due to its computational con-
straints, but also because of the inherent difficulties
to analyze huge networks and draw conclusions by its
results observation. In social network analysis, the
goal is to get more information from the data, with
the least dissociation possible from the nodes of the
network.

This work contribution is the outline of a method
for large-scale online network sampling, focusing on
the node level and for the most influential nodes on
the network. We demonstrate that the proposed sam-
pling preserves the same distribution of the original
network. Additionally, the method is very efficient
due to existing and novel algorithms either for sam-
pling or analysis. We empirically demonstrate that
the proposed sampling method can be used to repre-
sent global community structure of large networks in
a summarized fashion. The results are empirically ob-
tained by simulation of data streaming from databases
and with a common commodity computer.

After presenting related work regarding methods
for large scale networks sampling, we introduce our
top-K Method. In the Case Study we use our method
in a LSSN dataset to demonstrate the effectiveness of
our method. After highlighting major contributions,
in the Conclusions, we propose some further work to

enhance this method.

2 Related Work

2.1 Sampling Large Static Networks

Random sampling and snowball sampling are two of
the most used strategies to perform sampling on static
networks.

(Hu and Lau, 2013) present a survey on static
graph sampling methods and a throughout theoreti-
cal overview. This work in progress is continuously
updated and is an important reference for researchers
in this field.

In snowball sampling (Goodman, 1961) a start-
ing node is chosen. After getting the start node, its
1st, 2nd, to n order connections are gathered until the
network reaches the chosen size for analysis. This
approach, while easy to implement, has known prob-
lems: it is biased toward the part of the network sam-
pled, and may miss other features. Nevertheless it is
one of the most common sampling approaches.

The random sampling (Granovetter, 1976), ran-
domly selects a certain percentage of nodes and keeps
all edges between them. As alternative, randomly se-
lects a certain percentage of edges and keeps all nodes
that are mentioned. The main problem with this ap-
proach is that edge sampling is biased towards high
degree nodes, while node sampling might loose some



structural characteristics of the network. Again, this
is an easy method to implement.

The task, therefore, must be to sample a sub-graph
in such a way that the sub-graph is representative of
the original graph. A major question is what it means
for a sample to be representative of the original net-
work. Existing works consider such measures as sim-
ilarity in degree distributions and clustering coeffi-
cients (Hübler et al., 2008; Leskovec and Faloutsos,
2006). Leskovec and Faloutsos present a large va-
riety of graph sampling algorithms. They conclude
that methods combining random node selection and
some vicinity exploration give best network samples
(Leskovec and Faloutsos, 2006). They show that a
15% sample is usually enough, to match the proper-
ties of the original graph and that no list of network
properties serving as basis for sampling evaluation
will ever be perfect.

2.2 Sampling Large Streaming
Networks

Several approaches have been proposed to gather in-
formation from streaming graphs. Typical Social
Networks analysis problems like counting of trian-
gles, degree measurements, page rank and community
detection, among others, have been already imple-
mented following a data stream approach. Network
sampling of streaming graphs is still an area open for
further research. Ahmed et al. (Ahmed et al., 2012)
presents a novel approach to graph streaming sam-
pling. According to the authors, there was no previ-
ous contribution to streaming graphs sampling. The
authors propose a novel sampling algorithm, PIES,
based on edge sampling and partial induction by se-
lecting the edges that connect sampled nodes.

Papagelis (Papagelis et al., 2013) introduces
sampling-based algorithms that quickly obtains a
near-uniform random sample of nodes in its neighbor-
hood, given a selected node in the social network. The
authors also introduce and analyze variants of these
basic sampling schemes, aiming the minimization of
the total number of nodes in the visited network, by
exploring correlations across samples.

Recently, Ahmed et al. propose a generic stream
sampling framework for big-graph analytics, called
Graph Sample and Hold (gSH). It samples from mas-
sive graphs sequentially in a single pass, one edge at
a time, while maintaining a small state in memory
(Ahmed et al., 2014).

Most of these approaches achieve node random
sampling through graph streaming. Our objective is
diverse. We aim to achieve sampling for specific
nodes with high degree. Ahmed et al. provide means

for doing such a sampling with their method focus-
ing on edge sampling and uniform sampling of edges
at random (Ahmed et al., 2014). Thus, the sampling
method might lead to the selection of a large number
of higher-degree nodes but it was not tested on re-
sulting network communities which is the aim of our
work.

3 Top-K Method

Scientific community has been trying to achieve
efficient ways of doing data streams and graph sum-
marization. The exact solution implies the knowl-
edge of all the nodes and edges frequency, therefore
this exact solution might be impossible to achieve in
large scale networks. The proposed method aims the
summarization by filtering out less connected nodes.
Thus, the proposed sampling approach is biased to-
wards high frequent nodes in the stream. This differ-
entiates the proposed method from previous attempts
mentioned in the Related Work section that focus on
getting non-biased sampling methods.

3.1 Top-K itemsets

The problem of finding the most frequent items in
a data stream S of size N is mainly how to dis-
cover the elements ei whose relative frequency fi
is higher than a user specified support φN, with
0 ≤ φ ≤ 1 (Gama, 2010). Given the space require-
ments that exact algorithms addressing this problem
would need (Charikar et al., 2002), several algorithms
were already proposed to find the top-k frequent el-
ements, being roughly classified into counter-based
and sketch-based (Metwally et al., 2005). Counter-
based techniques keep counters for each individual
element in the monitored set, which is usually a lot
smaller than the entire set of elements. When an el-
ement is identified as not currently being monitored,
various algorithms take different actions to adapt the
monitored set accordingly. Sketch-based techniques
provide less rigid guarantees, but they do not monitor
a subset of elements, providing frequency estimators
for the entire set.

Simple counter-based algorithms, such as Sticky
Sampling and Lossy Counting, were proposed
in (Manku and Motwani, 2002), which process the
stream in compressed size. Yet, they have the disad-
vantage of keeping a large amount of irrelevant coun-
ters. Frequent (Demaine et al., 2002) keeps only
k counters for monitoring k elements, incrementing
each element counter when it is observed, and decre-
menting all counters when a unmonitored element is



observed. Zeroed-counted elements are replaced by
new unmonitored element. This strategy is similar
to the one applied by Space-Saving (Metwally et al.,
2005), which gives guarantees for the top-m most fre-
quent elements. Sketch-based algorithms usually fo-
cus on families of hash functions which project the
counters into a new space, keeping frequency estima-
tors for all elements. The guarantees are less strict but
all elements are monitored. The CountSketch algo-
rithm (Charikar et al., 2002) solves the problem with
a given success probability, estimating the frequency
of the element by finding the median of its represen-
tative counters, which implies sorting the counters.
Also, GroupTest method (Cormode and Muthukrish-
nan, 2005) employs expensive probabilistic calcula-
tions to keep the majority elements within a given
probability of error. Despite the fact of being gen-
erally accurate, its space requirements are large and
no information is given about frequencies or ranking.

3.2 Sampling Algorithm for Top-K
Networks

Algorithm 1 represents the proposed top-K Method
application using Space-Saving algorithm. This
type of application is based on Landmark Windows
(Gama, 2010), it implies a crescent number of in-
spected events in the ever growing time window. This
landmark application is useful also in other contexts,
e.g., when the network is relatively small and the user
wants to check all events in it.

Basic Landmark Windows experiments proved to
suffer from the problems we wished to avoid, like sur-
passing memory limits. This happens when the num-
ber of nodes and edges exceeds dozens of thousands
of nodes. The top-K algorithm application, based on
Landmark Window, enables an efficient approach for
large scale data. It focus on the influential nodes and
discards less connected nodes, which are the most fre-
quent for power law distribution. The alternative op-
tion for Sliding Windows (Gama, 2010) would not be
proper for the top-K approach, since it may remove
less recent graph nodes. Those nodes might yet be
included in the top-K list we wish to maintain.

In our scenario, top-K representation of data
streams implies knowing the K elements of the simu-
lated data stream from the database. Network nodes
that have higher frequency of outgoing connections,
incoming connections, or even specific connections
between any node A and B, may be included in the
graph, as well as their connections.

For this application, the user can insert as input
a start date and hour and also the maximum num-
ber of top-K nodes to be represented (the K param-

eter) along with their connections. With the inserted
start date and hour, the top-K application is expected
to return the evolving network of the top-K nodes.
Functions getTopKNodes and updateTopNodesList in
Algorithm 1 implement the Space-Saving algorithm.
As the network evolves over time, new top-K nodes
are added to the graph. Nodes that exit top-K list of
numbers are removed from the top-K list and, thus,
removed from the graph along with their connections.

Algorithm 1 top-K Pseudo-Code for outgoing con-
nections
Input: start, k param, tinc . start timestamp, k

parameter and time increment
Output: edges

1: R←{} . data rows
2: E←{} . edges currently in the graph
3: R← getRowsFromDB (start)
4: new time← start
5: while (R <> 0) do
6: for all edge ∈ R do
7: be f ore← GETTOPKNODES(k param)
8: UPDATETOPNODESLIST(edge) . update

node list counters
9: a f ter← GETTOPKNODES(k param)

10: maintained← be f ore
⋂

a f ter
11: removed← be f ore\maintained
12: for all node ∈ a f ter do . add top-K

edges
13: if node⊂ edge then
14: ADDEDGETOGRAPH(edge)
15: E← E

⋃
{edge}

16: end if
17: end for
18: for all node ∈ removed do . remove non

top-K nodes and edges
19: REMOVENODEFROMGRAPH(node)
20: for all edge ∈ node do
21: E← E \{edge}
22: end for
23: end for
24: end for
25: new time← new time+ tinc
26: R← getRowsFromDB (new time)
27: end while
28: edges← E

3.3 Communities of Top-K nodes

The top-K communities in the scope of this work are
detected considering only the top-K nodes and their
1st and 2nd order connections. Our method samples
the original network with a method aiming to keep the
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Figure 1: The original Louvain algorithm steps.

characteristics and community structure of the origi-
nal network. We apply top-K sampling to obtain the
nodes that belong to the top-K group. To retrieve their
network we do a query to the database collecting all
connections/edges representing the network with the
neighbors of the top-K nodes. After having the sam-
pled networks, the Louvain Method (Blondel et al.,
2008) is applied to find the communities.

Figure 1 briefly explains how the Louvain algo-
rithm works. In this figure the sequences describe the
individual steps that the algorithm performs for de-
tecting communities. It is non deterministic and per-
forms a greedy optimization method to maximize the
modularity of all the network partitions. A two step
optimization is performed for each iteration. In step
1, the algorithm seeks for small communities by lo-
cally optimizing the modularity. Only local changes
of communities are allowed. In step 2, nodes belong-
ing to the same community are aggregated in a single
node representing that community in order to build a
new aggregated network of communities. Steps are
repeated iteratively until no increase of modularity is
possible and a hierarchy of communities is produced.
Figure 1(a) represents the initial network; Figure 1(b)
represents initial individual node communities; Fig-
ure 1(c) represents local modularity optimization after
first step; Figure 1(d) represents community aggrega-
tion results and the new initial communities; Figure
1(e) and Figure 1(f), are the two Louvain steps, where
the local modularity optimization and community ag-
gregation for the second iteration are presented; The
algorithm stops at the 2nd iteration, once increasing
modularity is no longer possible.

4 Case Study

Telecommunication networks generate large
amount of continuous data from users and network
equipment. In this particular case study we use Call
Detail Records (CDR) log files, retrieved from equip-
ment distributed geographically. CDR implicitly
define a network, where nodes are clients. An edge

corresponds to a call between two clients. The stream
of phone calls defines a network stream. Considering
the large amount of calls occurred per second, we
classify this particular dataset as large scale network
data. The network data has, on average 10 million
calls per day. The phone numbers were changed
to different identifiers to preserve users anonymity.
A call between A and B phones is represented
as an edge in the social network. Because some
individuals receive and make more than one call, the
full networks has an average of 6 million of unique
users/nodes per day. The dataset contains anonymous
data for 135 days. For each edge/call, timestamp
information shows the date and hour of the beginning
of the call. The number of calls made per second
varies from around 10 at mid-night and reaches its
peak at mid-day with 280.

Our goal with this case study was to test if we
can use the proposed top-K method on large scale
telecommunications networks. We started by inspect-
ing the distribution of the data. We then applied the
method and expected the distribution to be maintained
for the different top-K scenarios with different set-
tings for the K parameter.

After this initial study we wanted to investigate if
the larger communities obtained from top-K networks
were representative of the original data, focusing on
the larger communities. Moreover, we also needed to
evaluate if the communities were coherent as the data
streaming evolved over time.

4.1 Data Distribution

To study the distribution of the available data, we ag-
gregate the data in two different ways:
1. Count the number of calls, per day, from phone A

to B i.e. A→B
2. Count the number of calls, per day, from each

caller phone
After the previous operation we observed the dis-

tribution of the aggregated data and there is some ev-
idence these representations have a power law distri-
bution (Barabasi, 2005) as can be seen in Figure 2(a)
and Figure 3(a). These figures illustrate that, regard-
ing a day period, it is expected a high amount of single
calls between some A→B phones and a low amount
of many calls between A→B phones. Moreover, we
can expect a lower amount of highly active callers
and a larger amount of low activity callers. We also
plotted the distribution of the daily aggregated data
with a log-log representation as seen in Figure 2(b)
and Figure 3(b). These illustrations show a monomial
approximation which lead to evidence of both being
derived from power law distributions.
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Figure 2: A→B Calls Distribution (a) and log-log plot (b).

((a)) ((b))

Figure 3: Distribution of the Caller Calls (a) and log-log
plot (b).

The power law hypothesis was tested with the
poweRlaw R package, that follows applications of
power laws hypothesis testing and generation from
(Clauset et al., 2009), and the method described in
(Gillespie, 2014). Figure 4 illustrates the hypothesis
test for power law distribution presenting the mean
estimate of parameters xmin, α and the p-value, being
xmin the lower bound of the power law distribution.
Estimation parameter α is the scaling parameter (”Par
1” in Figure 4, Figure 7 and Figure 8) and α > 1.
The dashed-lines give approximate 95% confidence
intervals. The observed p-value when testing the null
hypothesis H0 that the original data is generated from
a power law distribution is 0.1. Thus, H0 cannot be
rejected because the p-value is superior to 0.05. Af-
ter proving that the data has power law distribution,
there was evidence that the proposed top-K sampling
method is a good approach for this dataset. The next
section regards the distribution and characteristics of
the top-K method application.

Figure 4: Original Network - Caller power law Distribution
hypothesis Test

Figure 5: Density comparison between original network
and Top-K Space Saving Sampling

Figure 6: Clustering Coefficient comparison between origi-
nal network and Top-K Space Saving Sampling

4.2 Top-K Sampling Distributions and
Characteristics

As the majority of data concerns isolated calls be-
tween two phones, our goal is to get a sampled version
of the data that represents the network of most active
users in the network. The Space Saving algorithm is
applied with different settings and different k param-
eter, i.e. 10000, 50000 and 100000. The respective
top-K networks were then extracted from querying the
database. Finally, these networks density and cluster-
ing coefficients were compared with the original data
network values (Figure 5 and Figure 6 ).

Figure 7: Top-10000 Network - Caller power law Distribu-
tion hypothesis Test

Figure 8: Top-50000 Network - Caller power law Distribu-
tion hypothesis Test

The analysis of Figure 5 and Figure 6 leads to
conclude that: i) the density of sampling generated
networks lowers as the K parameter of Space Sav-



ing Sampling algorithm increases; ii) the clustering
coefficient of sampling generated networks is more
than two times the clustering coefficient of the orig-
inal network, even though, still low value; iii) as the
K parameter of Space Saving sampling algorithm in-
creases, the clustering coefficient does not seem to
have a significant variation. Figure 7 represents the
hypothesis test for power law distribution regarding
the top-10000 network and for the most active callers.
The observed p-value is 0.82. Thus, we cannot reject
the hypothesis H0 because the p-value is higher than
0.05.

Continuing the tests, Figure 8 represents the hy-
pothesis test for power law distribution regarding the
top-50000 network and for the 50000 most active
callers. The observed p-value is 0.16. Therefore we
cannot reject the hypothesis H0. We also did the hy-
pothesis test for power law distribution for the top-
100000 network regarding 100000 most active caller
numbers. Testing the null hypothesis H0 that the top-
100000 network for the callers is generated from a
power law distribution the observed p-value is 0 so
we cannot accept it because it is inferior to 0.05.

4.3 Original and Sampled Top-K
Communities Comparison

For the community detection task, both for the origi-
nal network and the top-K networks, we selected the
Louvain Method described in (Blondel et al., 2008).
Figure 9 represents the matching between community
elements taken from the top-10000 network and for
the original network communities without sampling.
This task was done for an entire day of data streaming.
The matching of communities between both Louvain
Method results is done by retrieving the percentage of
matching elements between any top-k network com-
munity and the original network communities.

Further analysis of Figure 9 shows the matching
of the 100 largest communities for the sampled net-
work and the 20 largest original network’s commu-
nities. The value of element matching varies with a
color gradient between 0 (yellow) and 1 (blue). There
is considerable matching of the top-10000 sampling
communities and the 20 largest communities of the
caller original network. These highly active callers
and the communities they belong to are therefore rep-
resented in the top-K sampling as we expected.

Other days in the dataset were also analysed. The
results are very similar and consistent throughout full
day data comparisons and for the complete dataset of
more than 100 days. In all comparisons it is visible
that larger original dataset communities are matched
by communities retrieved with the proposed top-K

Figure 10: Consecutive days community elements matching

sampling method.

4.4 Communities of Consecutive Days
Samples

Figure 10 represents the matching between commu-
nity elements taken from the top-10000 network com-
munities on consecutive days of the week. The match-
ing in this case corresponds to the percentage of
matching elements between any top-k network com-
munity of one day and all the top-k network commu-
nities of the following day data.

The matching of the 20 largest communities for
consecutive days of daily sampled networks is intu-
itive with this representation. There is considerable
matching of the top-10000 sampling communities on
consecutive days. This leads to conclude that there
is high stability of larger communities as time pro-
gresses throughout the week. Similar results were ob-
tained with several combinations of consecutive days
over the 135 days of the available data. We also ob-
served that there was some decreasing of matching el-
ements when consecutive days represented transition
from workdays to weekend days or vice versa. This
is expected since the behavior of major actors in the
network favors higher activity in working days.

5 Conclusions

The top-k application is a suitable approach to our
data that presents a power law distribution. This en-
ables the focus on the influential individuals and dis-
card isolated connections. The use of Space-Saving
algorithm to sample top-K elements in a network is
able to keep the original network’s power law fea-
tures. The Louvain Method enables the generation of
representative communities with the most active ele-
ments in the network. This method for evolving net-
works sampling enables the use of a common com-
modity computer for massive network analysis. Fu-
ture work will use Ahmed et al. method and compare



Figure 9: Community elements matching for same day period

it with our method for community detection. We also
have the objective of testing the method with real-time
data streaming systems.
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