
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

Type Your Matrices for Great Good
(Functional Pearl)

A Haskell library of typed matrices and applications

Anonymous Author(s)

Abstract
We study a simple inductive data type for representing correct-
by-construction matrices. Despite its simplicity, it can be
used to implementmatrix-manipulation algorithms efficiently
and safely, performing in some cases faster than existing al-
ternatives even though the algorithms are written in a direct
and purely functional style. A rich collection of laws makes
it possible to derive and optimise these algorithms using
equational reasoning, avoiding the notorious off-by-one in-
dexing errors when fiddling with matrix dimensions. We
demonstrate the usefulness of the data type on several exam-
ples, and highlight connections to related topics in category
theory.

Keywords Haskell, Linear Algebra of Programming, Ma-
trices, Probabilistic Programming, Quantum Programming,
Data Analysis

1 Introduction
Matrices are central to mathematics and computer science,
from linear algebra and probability theory to machine learn-
ing and computer graphics. Matrices play an important role
in problem specification as well as in finding efficient so-
lutions, for which exists specialised hardware processing
units [Sato et al. 2017; Volkov and Demmel 2008].

But what is a matrix really? A matrix is commonly viewed
as an array of elements arranged in rows and columns. In
textbooks, a matrix 𝐴 with 𝑐 columns and 𝑟 rows is typi-
cally pictured as a rectangular area whose elements 𝑎𝑖 𝑗 are
numbers (or expressions denoting them):

𝐴 =

𝑎11 . . . 𝑎1𝑐
...

. . .
...

𝑎𝑟1 . . . 𝑎𝑟𝑐

It is not surprising that software developers often trans-

late this array-based matrix representation directly into code
when implementing matrix algorithms. For dense matrices,
this can give excellent results in terms of performance, but
programming against such a low-level representation is chal-
lenging and ill-suited for purely functional programming
languages.

Haskell’20, August 27-28, 2020, New Jersey, United States
2020. ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00

On the other hand, matrix manipulation very often oper-
ates over blocks rather than over individual cell values, for
instance over the three blocks of matrix 𝐴 =

[
𝐵 𝐶

𝐷

]
. In

such cases, awkward, error-prone index calculations could
remain implicit if smart matrix-block combinators were used.

This paper views matrices as inductive structures that can
be constructed from simple primitives, as captured by the
following data type1:

data Matrix e c r where
One :: e -> Matrix e () ()
Join :: Matrix e a r -> Matrix e b r

-> Matrix e (Either a b) r
Fork :: Matrix e c a -> Matrix e c b

-> Matrix e c (Either a b)

Here the type variable e stands for the type of the matrix
elements, while c (columns) and r (rows) specify the dimen-
sions. This data type will be discussed in more detail in §3;
for now, we would like to emphasise that matrix dimensions
appear only at the type level, i.e. it is impossible to make any
dimension or indexing errors while constructing a value of
type Matrix e c r.
This data type is matrix-block-oriented and particularly

suitable to express block operations which, as will be seen
soon, are very common and rely on a sound mathematical
basis.

1.1 Contributions
This paper presents a type safe inductive matrix data structure
definition, exposing its biproduct architecture and equipped
with amatrix programming library inHaskell, that stands out
from the rest for having an inductive definition that enables
writing statically typed matrix manipulation functions in a
more elegant, calculational and efficient way.

The main goal of this paper is to demonstrate that by tak-
ing advantage of a strongly typed functional programming
language, one can write and reason about elegant and com-
posable linear algebra programs. Our specific contributions
are:

• We develop a library for transforming and manipulat-
ing matrices and demonstrate its composability and
flexibility.

1This paper uses Haskell but the presented ideas can be adapted to other
functional programming languages.

1

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

Haskell’20, August 27-28, 2020, New Jersey, United States Anon.

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

• Compared to current libraries, ours is more compo-
sitional and polymorphic and does not have partial
matrix manipulation functions (hence less chances for
usage errors).

• Our implementation of matrices enables simple manip-
ulation of submatrices, making it particularly suitable
for formal verification and equation reasoning, using
themathematical framework defined by the linear alge-
bra of programming [Oliveira 2012]. Furthermore, the
data type constructors ensure that the matrices of this
kind are sound, i.e. malformed matrices with incorrect
dimensions of the sort, can not be constructed.

• Some practical examples that use the proposed matrix
library in several application domains (e.g. probabilis-
tic programming, quantum programming) are given
and show how functional programming blends natu-
rally with linear algebra.

1.2 Layout of the paper
The rest of the paper is structured as follows. A brief overview
of theMat category is given in §2.1 showing the rich alge-
bra of matrices that emerges from the categorical notion of
biproduct. The core representation of the proposed inductive
matrix type unfolds in §3, followed by a concise explana-
tion of how to write matrix manipulation functions around
it (§4 to §7). Finally, some practical examples in the areas
of probabilistic programming, quantum programming are
given in §9, including evaluation. Related work, analysis of
the proposed approach and directions for future research are
discussed in sections §10 and §11, respectively.

2 Background
Category theory [Awodey 2010; MacLane 1971] is often re-
ferred to as a "theory of everything" because it is a frame-
work where a lot of mathematical structures fit in. It has,
in particular, a strong presence in functional programming
[Hinze 2013; Milewski 2018]. Such an abstract approach is
relevant because abstraction plays a major role in computing
[Kramer 2007]. Category theory uses arrows as a generic
notation able to cope with very distinct problem domains.
These arrows, also called morphisms, are typed with source
and target objects and need to satisfy certain properties in
order to form a category.

A standard way to achieve typed functional programming
is to use the category Set of sets to type functions. For in-
stance, in addition to the function definition

𝑓 𝑥 = 𝑥 + 1

an arrow between sets is added in order to constraint the
scope of the function application:

𝑓 :: N −→ N
𝑓 𝑥 = 𝑥 + 1

This makes sure that 𝑓 can only be applied to arguments
that are natural numbers. If by any chance this function is
applied to a real number instead, this will be regarded as a
wrong sentence and discarded by type checking.

The aphorism functions are special cases of relations means
that a function 𝑓 :: 𝐴 −→ 𝐵 can also be typed in the wider
category of binary relations, the Rel category. In general, a
morphism 𝑅 :: 𝐴 −→ 𝐵 in Rel is a relation 𝑅 ⊆ 𝐴 × 𝐵, for
instance:

𝑅 :: 𝑂𝑏 𝑗𝑒𝑐𝑡 −→ 𝐶𝑜𝑙𝑜𝑢𝑟

𝑜 𝑅 𝑐 = 𝑐 is a colour of 𝑜

A function 𝑓 :: 𝐴 −→ 𝐵 is viewed as a relation wherever one
writes the input/output relationship 𝑏 = 𝑓 (𝑎).

Both functions and relations have advanced type systems
supported by the underlying categories. What about matri-
ces? Matrices generalise relations into quantified ones, also
termed labelled or weighted relations, leading into the cate-
goryMat of typed matrices.2 Amatrix𝑀 with 𝑐 columns and
𝑟 rows can be regarded as a function𝑀 (𝑛,𝑚) that tells the
quantity occupying each cell (𝑛,𝑚), for 1 ≤ 𝑛 ≤ 𝑟 , 1 ≤ 𝑚 ≤ 𝑐 .
From a categorical perspective,𝑀 can be regarded as a mor-
phism 𝑐

𝑀−→ 𝑟 indicating that matrix𝑀 is of type 𝑐 −→ 𝑟 . In
this setting, matrix-matrix multiplication can be expressed
by arrow composition:

𝑟 𝑐 𝑝
𝑀 𝑁

𝑀 ·𝑁

(1)

It has been shown that other interesting combinators arise
from so-called biproducts in the Mat category, which cap-
ture block-matrix operations in a natural way [Macedo and
Oliveira 2013].

2.1 Structure of Mat
The structure of theMat category is described below. Figure
1 provides a reference guide containing the main algebraic
laws.

2.1.1 Basic structure
For every dimension 𝑑 there is a matrix 𝑑 −→ 𝑑 which is the
unit of composition, i.e. the (square) identity matrix of size
𝑑 :

𝑚 𝑚

𝑛 𝑛

𝑀

𝑖𝑑𝑚

𝑀
𝑀

𝑖𝑑𝑛

𝑖𝑑𝑛 ·𝑀 = 𝑀 = 𝑀 · 𝑖𝑑𝑚 (2)

Under composition (1) matrices form a category whose
objects are matrix dimensions and whose morphism 𝑛

𝑀−→𝑚,
𝑘

𝑁−→ 𝑛, etc are thematrices themselves [Macedo andOliveira
2See e.g. [Macedo and Oliveira 2013]. Strictly speaking, there is one such
categoryMat𝑘 per cell-type 𝑘 , but ignoring this detail will not harm this
summary of the overall theory.

2

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

Haskell’20, August 27-28, 2020, New Jersey, United States

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

2013; MacLane 1971]. Vectors are special cases of matrices in
which one of the dimensions is 1, for instance:

𝑣 =

𝑣1
...

𝑣𝑟

 and𝑤 =
[
𝑤1 . . . 𝑤𝑐

]
Column vector 𝑣 is of type 1 −→ 𝑟 (1 column and 𝑟 rows)
and row vector𝑤 is of type 𝑐 −→ 1 (1 row and 𝑐 columns).
The convention is that lowercase letters denote vectors and
uppercase letters denote matrices.

Mat is a “dagger category" in the sense that every ma-
trix𝑀 can be transposed by swapping rows with columns.
We denote the transposition (converse) of matrix 𝑐

𝑀−→ 𝑟

by 𝑟
𝑀◦
−−→ 𝑐 . As expected, the idempotence law (5) and the

contravariance law (6) hold.

2.1.2 Bilinearity

Given two matrices 𝑐
𝑀,𝑁−−−→ 𝑟 of the same type, it makes sense

to add them entry-wise to obtain the matrix𝑀 + 𝑁 , where
the symbol + promotes the underlying cell-level additive
operator to the matrix-level. Likewise, the additive unit cell
value 0 is lifted to the matrix 0 fully filled with 0s.

Matrix 0 is the unit element of matrix addition (8) and the
zero (absorbent) element of matrix composition (9). The fact
that composition is bilinear relative to +, as given by laws
(10,11), is central to linear algebra as a whole.

In the sameway that𝑀+𝑁 promotes the addition ofmatrix
cells to the addition of the matrices themselves, the same
promotion may take place with respect to the whole cell-
level algebra. For example, cell value multiplication results
in a matrix multiplication, denoted by𝑀×𝑁 (for𝑀 and 𝑁 of
the same type), also known as the Hadamard product, which
is commutative, associative and distributive over addition
(i.e. bilinear).

2.1.3 Products and co-products
From law (12) on-wards, Fig. 1 presents the basic algebra
of matrix-block combinators that will be used throughout
the rest of the paper. The concept of a biproduct is central to
their characterisation, combining categorical products and
co-products into a single construction.

The diagram below shows how biproducts relate to prod-
ucts and co-products in theMat category, compare with (16)
and (17) in Figure 1.

𝑑

𝑎 𝑎 + 𝑏 𝑏

𝑐

𝑖1

𝐴

[𝐴 |𝐵]

𝜋1 𝜋2

𝑖2

𝐵

[𝐶
𝐷]

𝐶 𝐷

Expressions [𝐴 | 𝐵] and
[
𝐶
𝐷

]
will be read "A join B" and

"C fork D", respectively. These operators purport the effect
of putting matrices side by side and on top of one another,
respectively. Using such operators, projections 𝜋1, 𝜋2 and
injections 𝑖1, 𝑖2 "decompose" the identity matrix through the
so-called reflection laws (14,15).

The well-formedness of matrix block construction is there-
fore ensured by static type checking. To ensure correct typ-
ing, typed linear algebra practitioners are encouraged to
draw the type diagrams associated to the expressions and
equations in mind.
The laws of Figure 1 enable one to calculate standard

linear algebra rules and algorithms. See as example the cal-
culation alongside of the divide-and-conquer law of matrix
multiplication (23), also known as block-multiplication.

[𝐴|𝐵] ·
[
𝐶
𝐷

]
= { fork definition (17) }
[𝐴|𝐵] · (𝑖1 ·𝐶 + 𝑖2 · 𝐷)

= { bilinearity (10) }
[𝐴|𝐵] · 𝑖1 ·𝐶 + [𝐴|𝐵] · 𝑖2 · 𝐷

= { cancellation (21) }
𝐴 ·𝐶 + 𝐵 · 𝐷

Looking at matri-
ces as lists of lists, or
arrays, or graphs is a
rather poor perspec-
tive on linear algebra.
Somewhat more use-
ful is to focus on how
matrices are built or
partitioned and on
which formal rules are there for handling their internal struc-
ture, as seen above. Explicit, painful, low-level matrix ma-
nipulation is a source of dubious code, which is error-prone
and difficult to analyse. Looking at it from a higher, abstract
point of view that relies on a sound mathematical theory
provides both simplicity and reliability benefits.

3 Matrix data type
Putting theory into practice, a safe and minimalist induc-
tive matrix data type is encoded in Haskell. This data type
takes into account certain conditions needed in order to ac-
commodate the advantages that a good type system and the
quantitative extension of the algebra of programming have
to offer: be polymorphic, have statically typed dimensions,
be type-inference friendly, be correct-by-construction and
amenable to elegant and calculational manipulation.
As already mentioned, matrices are typed according to

their dimensions and dealing with natural numbers at the
type level is something that is possible in some of the most
recent functional typed languages [Bove et al. 2009; Brady
2013], including Haskell. Thus, a first approach to designing
the inductive type could be:

data Matrix e (c :: Nat) (r :: Nat) where
One :: e -> Matrix e 1 1
Join :: Matrix e a r -> Matrix e b r

-> Matrix e (a + b) r
Fork :: Matrix e c a -> Matrix e c b

-> Matrix e c (a + b)

However, when dealing with type families that are responsi-
ble for calculating simple natural number arithmetics such as

3

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

Haskell’20, August 27-28, 2020, New Jersey, United States Anon.

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

Composition

𝑀 · (𝑁 ·𝑄) = (𝑀 · 𝑁) ·𝑄 (3)
𝑀 · 𝑖𝑑 = 𝑀 = 𝑖𝑑 ·𝑀 (4)

Converse (transposition)

(𝑀◦)◦ = 𝑀 (5)
(𝑀 · 𝑁)◦ = 𝑁 ◦ ·𝑀◦ (6)

Additivity

𝑀 + (𝑁 +𝑄) = (𝑀 + 𝑁) +𝑄 (7)
𝑀 + 0 = 𝑀 = 0 +𝑀 (8)
𝑀 · 0 = 0 = 0 ·𝑀 (9)

Bilinearity

𝑀 · (𝑁 + 𝑃) = 𝑀 · 𝑁 +𝑀 ·𝐶 (10)
(𝑁 + 𝑃) ·𝑀 = 𝑁 ·𝑀 + 𝑃 ·𝑀 (11)

Universal properties

𝑋 =
[
𝐴 𝐵

]
⇐⇒

{
𝑋 · 𝑖1 = 𝐴

𝑋 · 𝑖2 = 𝐵
(12)

𝑋 =

[
𝐶

𝐷

]
⇐⇒

{
𝜋1 · 𝑋 = 𝐶

𝜋2 · 𝑋 = 𝐷
(13)

Reflection

[𝑖1 |𝑖2] = 𝑖𝑑 (14)[
𝜋1
𝜋2

]
= 𝑖𝑑 (15)

Join and Fork

[𝐴|𝐵] = 𝐴 · 𝜋1 + 𝐵 · 𝜋2 (16)[
𝐶

𝐷

]
= 𝑖1 ·𝐶 + 𝑖2 · 𝐷 (17)

Fusion

𝑃 · [𝐴|𝐵] = [𝑃 · 𝐴|𝑃 · 𝐵] (18)[
𝐴

𝐵

]
· 𝑃 =

[
𝐴 · 𝑃
𝐵 · 𝑃

]
(19)

Absorption

[𝐴 | 𝐵] · (𝐶 ⊕ 𝐷) = 𝐴 ·𝐶 + 𝐵 · 𝐷 (20)

Cancellation

[𝐴 | 𝐵] · 𝑖1 = 𝐴 , [𝐴 | 𝐵] · 𝑖2 = 𝐵 (21)

𝜋1 ·
[
𝐴

𝐵

]
= 𝐴 , 𝜋2 ·

[
𝐴

𝐵

]
= 𝐵 (22)

Divide and conquer

[𝐴 | 𝐵] ·
[
𝐶

𝐷

]
= 𝐴 ·𝐶 + 𝐵 · 𝐷 (23)

Converse duality

[𝐴 | 𝐵]◦ =

[
𝐴◦

𝐵◦

]
(24)

Exchange ("abide") law[[
𝐴

𝐶

]
|
[
𝐵

𝐷

]]
=

[
[𝐴|𝐵]
[𝐶 |𝐷]

]
(25)

Blocked addition

[𝐴 | 𝐵] + [𝐶 | 𝐷] = [𝐴 +𝐶 | 𝐵 + 𝐷] (26)[
𝐴

𝐵

]
+
[
𝐶

𝐷

]
=

[
𝐴 +𝐶
𝐵 + 𝐷

]
(27)

Structural equality

[𝐴 | 𝐵] = [𝐶 | 𝐷] ⇐⇒ 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 (28)[
𝐴

𝐵

]
=

[
𝐶

𝐷

]
⇐⇒ 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 (29)

Figure 1. Summary of the laws of block-linear-algebra enabled by biproducts. (Valid only if over the same biproduct.)

(+), the compiler has a very hard time inferring the correct
types when writing algorithms via pattern-matching, for
example, given that addition is not injective [Stolarek et al.
2015]. The approach followed in this paper is then based on
the following GADT [Peyton Jones et al. 2006]:

data Matrix e c r where
One :: e -> Matrix e () ()
Join :: Matrix e a r -> Matrix e b r

-> Matrix e (Either a b) r
Fork :: Matrix e c a -> Matrix e c b

-> Matrix e c (Either a b)

Here One is the inductive base case that construct the
one-element matrix; Join and Fork are the two basic binary
constructors available for building matrices out of other
matrices as you can see in Fig. 2.
These simple four constructors provide a type safe in-

ductive definition where it is not possible to construct a

Figure 2. One-Join-Fork matrix constructors.

malformed matrix such as

Matrix { matrix = [[1,0],[0,1]], dimensions = (4,4) }

for example.
The trick is to define a recursive data type in which di-

mensions are typed by algebraic data types and use a GADT
4

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

Haskell’20, August 27-28, 2020, New Jersey, United States

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

in order to control the output type dimensions and main-
tain the Join and Fork dimension invariants across the data
structure.

3.1 Constructing matrices
This solutionwas built on the notion that algebraic data types
are isomorphic to their cardinality, e.g. |Void| � 0, |()| � 1,
|Either a b| � |𝑎 | + |𝑏 | and so on. Furthermore, this GADT
guarantees that a matrix will always have valid dimensions,
i.e. is type-correct by construction. For instance, the 2 × 2
identity matrix

[1
0

��� 0
1

]
can be expressed by:

iden2x2 :: Num e
=> Matrix e (Either () ()) (Either () ())

iden2x2 = Fork (Join (One 1) (One 0))
(Join (One 0) (One 1))

For larger matrices, declaring type signatures by hand
becomes troublesome. So, two type families were created to
make it easier to work with matrix dimension definition:

type family Count (d :: Type) :: Nat where
Count Void = 0
Count () = 1
Count (Either a b) = (+) (Count a) (Count b)
Count (a, b) = (*) (Count a) (Count b)
-- Generics
-- (...)

type family FromNat (n :: Nat) :: Type where
FromNat 0 = Void
FromNat 1 = ()
FromNat n = FromNat' (Mod n 2 == 0)

(FromNat (Div n 2))

type family FromNat' (b :: Bool) (m :: Type) where
FromNat' 'True m = Either m m
FromNat' 'False m = Either () (Either m m)

The purpose of the Count type family will be used to com-
pute the normalised dimension types, as will be seen in §7.1.
If one wants to be able to have matrix typed by generic arbi-
trary data types (as we’ll see in §9), one needs to add support
for generic types. We leave the trivial implementation out
of the paperfor simplicity. The FromNat type family builds a
balanced tree of Eithers at the type-level, from a type-level
natural, that is supposed to be the matrix dimension.
These type families take advantage of the algebraic data

type cardinality isomorphism and provide a conversionmech-
anism from and to data types/type-level naturals. So the same
2 × 2 identity matrix can now be defined as:

iden2x2 :: Num e => Matrix e (FromNat 2) (FromNat 2)
iden2x2 = Fork (Join (One 1) (One 0))

(Join (One 0) (One 1))

Notice that type families can be seen as type-level func-
tions that are called at compile-time. So a type-level de-
manding program will take longer to compile, specially if
it declares several large matrices. Thankfully, FromNat takes
advantage of the possibility of reducing the number of com-
putations needed to calculate the normalised dimension type
that provides a significant speedup.

4 Matrix manipulation and
transformation

The proposed inductive matrix data type enables the use
of pattern matching and the laws of the linear algebra of
programming (§2.1.3) to write total, efficient and statically
typed manipulation and transformation functions. In view of
this, matrix composition (aka matrix-matrix multiplication)
can be defined elegantly and in a more calculational way,
in contrast with the partial, (ugly) low-level nested for-loop
implementation, which can be found in most imperative
languages:

comp :: Num e => Matrix e cr rows
-> Matrix e cols cr -> Matrix e cols rows

comp (One a) (One b) = One (a * b)
comp (Join a b) (Fork c d) = comp a c + comp b d
comp (Fork a b) c =

Fork (comp a c) (comp b c)
comp c (Join a b) =

Join (comp c a) (comp c b)

Like matrix multiplication, other common operations, such
as matrix transposition, benefit from a block-oriented struc-
ture that leads to a simple and natural divide-and-conquer
algorithmic solution. Performancewise, this means that with-
out much effort we can obtain optimal cache-oblivious algo-
rithms3 [Frigo et al. 1999]. The basic philosophy in designing
a cache-oblivious algorithm is to use a recursive approach
that repeatedly divides the dataset until it eventually be-
comes cache resident and thus cache optimal, as we can see
from the definition of the comp function above.
In the type-class mechanics of Haskell [Hall et al. 1996],

matrix entry-wise addition, multiplication and subtraction
fit nicely by defining a Num instance, as well as entry-wise
matrix comparison and equality, by defining Ord and Eq in-
stances, respectively. Sadly, there are no fusion laws that
help defining an appropriate inductive definition of matrix
equality when the two matrices have different valid permuta-
tions of Joins and Forks, for example. This can still be done,
however, by taking advantage of the exchange (“abide") law
(25):

-- Abide Join-Fork
abideJF :: Matrix e cols rows -> Matrix e cols rows
abideJF (Join (Fork a c) (Fork b d)) =

3A cache-oblivious algorithm is such that no variables that depend on
hardware parameters, such as the size of the cache and the length of the
cache-line, need to be tuned to achieve optimality.

5

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

Haskell’20, August 27-28, 2020, New Jersey, United States Anon.

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

Fork
(Join (abideJF a) (abideJF b))
(Join (abideJF c) (abideJF d))

abideJF (One e) = One e
abideJF (Join a b) = Join (abideJF a) (abideJF b)
abideJF (Fork a b) = Fork (abideJF a) (abideJF b)

instance Eq e => Eq (Matrix e cols rows) where
(One a) == (One b) = a == b
(Join a b) == (Join c d) = a == c && b == d
(Fork a b) == (Fork c d) = a == c && b == d
x@(Fork _ _) == y@(Join _ _) = x == abideJF y
x@(Join _ _) == y@(Fork _ _) = abideJF x == y

It is worth noting that one major downside of this en-
coding is that Either (Either () ()) () is different from
Either () (Either () ()), for example, even though both
represent 3. This implies that two matrices with the same
dimension can have different types, and thus, for example,
they can not be tested for equality. One way to address this
downside is shown in §7.1, by introducing a new-type ma-
trix wrapper with generic arbitrary dimensions. Another
approach is to manually write an identity matrix that ex-
poses this isomorphism and use it to obtain a matrix of the
same dimensions.

5 Matrix construction
It is not possible to construct typed matrices depending on
the type of the dimensions desired, because GHC is not
able to infer the correct GADT types. One way to achieve
this is by using type-classes. Type-classes can be seen as
functions from types to values and they are the solution for
writing methods that allow building matrices from other
representations (e.g. list of lists of elements) in the same
inductive way, as is the case of class FromLists.

class FromLists e cols rows where
fromLists :: [[e]] -> Matrix e cols rows

Note that fromLists can fail at run-time if the input list is
not complacent with the desired matrix dimensions. It is
possible to offer wrapper functions around it that guaran-
tee it won’t fail at compile time. However, an alternative
way of building matrices from other representations, that
is fully type-safe, exists thanks to the linear map semantics
of matrices, although we leave this out of the scope of the
paper.

6 Category instance
In §1 we showed howmatrices form a category where objects
are dimensions and morphisms are the matrices themselves.

The proposed inductive structure arranges its type param-
eters in order to be able to provide a type-class instance for
Category. It helps the end-user to make better use of code
and reason about it, by using more readable notation and by
allowing the compiler to infer which type-class instances to
use. Throughout the rest of the paper we will use id and (.)

interchangeably to mean either function or matrix composi-
tion/identity.
Given that the identity matrix needs certain type con-

strains on the dimension types, only a constrained version
of the Category type-class can be offered.4 In this context,
the following instance is given:

class Category k where
type Object k o :: Constraint
type Object k o = ()
id :: Object k a => k a a
(.) :: k b c -> k a b -> k a c

instance Category (Matrix e) where
type Object (Matrix e) a =

(FromLists e a a, Countable a)
id = iden
(.) = comp

Note that Countable = KnowNat (Count a).

7 End-user interface
As one can imagine, working with very large matrices at
the type level can be an unpleasant experience. This section
presents two new-type wrappers around the canonical data
type that aim to improve end-user interfacing, also giving an
overview of the available library API and how error messages
look like when using it.

7.1 Matrix new type wrappers
It is possible to abstract the use of the FromNat type family,
obtaining a new-type matrix wrapper which dimensions are
type level naturals (provided by the TypeLits library).

import qualified Matrix.Internal as I

newtype Matrix e (cols :: Nat) (rows :: Nat) =
M (I.Matrix e

(I.FromNat cols)
(I.FromNat rows))

Thanks to the type family defined below, it is possible to
attain a matrix typed by arbitrary generic data types. This
will be the new type wrapper used throughout the rest of
the paper.

type family Normalize (d :: Type) :: Type where
Normalize (Either a b) = Either (Normalize a)

(Normalize b)
Normalize d = FromNat (Count d)

newtype Matrix e (cols :: Type) (rows :: Type) =
M (I.Matrix e

(I.Normalize cols)
(I.Normalize rows))

4Note that this limitation also happens when trying to implement idiomatic
instances of the Functor hierarchy in Haskell.

6

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

Haskell’20, August 27-28, 2020, New Jersey, United States

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

Normalize needs to preserve the Either-based structure to
comply with the type signature of Join and Fork, balancing
the tree in all other cases.
This new-type captures the matrix type generalisation

proposed by Oliveira [2012]. In short, objects in categories
of matrices can be generalised from numeric dimensions
(𝑛,𝑚 ∈ N0) to arbitrary denumerable types (𝐴, 𝐵), taking
disjoint union 𝐴 + 𝐵 for𝑚 + 𝑛, Cartesian product 𝐴 × 𝐵 for
𝑚 × 𝑛, unit type () for number 1, etc.

7.2 Algebra of Programming API
The Matrix data type and the aforementioned new-type
wrappers are a part of the LAoP programming library de-
veloped in Haskell.5 This library provides an API for con-
struction and manipulation of these types. The API offers
the main combinators of the linear algebra of programming
wherefrom other linear algebra operations can be derived.

Listing 1 presents the set of most important function sig-
natures that are part of the generalised dimensions module
API. As an example of using this API to write matrix opera-
tions, the following function provides a join/fork version of
matrix entry-wise addition:

addition :: (...) => Matrix e cols rows
-> Matrix e cols rows -> Matrix e cols rows

addition a b =
(join id id) . (a -|- b) . (fork id id)

This expresses the relationship between the underlying ad-
ditive operator and direct sum. The correctness of addition
is granted by the absorption law (20), among others:

(join id id) . (a -|- b) . (fork id id)

= { absorption law (20) ; identity (2) }

(join a b) . (fork id id)

= { divide-and-conquer - (23); identity (2) }

(a + b)

Note that all the combinators on dimension types are
polymorphic. This is a feature that does not exist or is rather
fragile in other programming matrix libraries. However, the
expected type constraints and type-level mechanisms (type-
level natural and type-families) that make the type polymor-
phism work can make the type-signatures convoluted. For
space economy, these are omitted from the above-mentioned
API and throughout the paper. Nonetheless, this downside
is minimised by providing a set of aliases of type in order to
reduce the length and improve the readability and, in some
cases, reasoning of the required restrictions. For illustrative
purposes, we give the full type signature of the addition

function presented above with and without the syntactic
sugar:

addition ::
(Num e, FromLists c c, FromLists m m,
KnownNat (Count c), KnownNat (Count m))

5LAoP stands for “Linear Algebra of Programming".

=> Matrix e m c -> Matrix e m c -> Matrix e m c

addition ::
(Num e, FL c c, FL m m, CountableDims c m)
=> Matrix e m c -> Matrix e m c -> Matrix e m c

When doing type-level programming error messages eas-
ily become cumbersome and hard to read. By using typed
matrices and a strongly typed language most dimension
check errors can be caught at compile time however, if the
error messages are not clear, this fact does not impose any
benefit. Gladly, error messages in our library do not suffer
from the type-level machinery involved as we can see from
the simple example, where we try to join to matrices with
different row types:

-- x :: Matrix Float Bool Bool
-- y :: Matrix Float Bool Ordering
error:
- Couldn't match type 'Ordering' with 'Bool'
Expected type: Matrix Float Bool Bool
Actual type: Matrix Float Bool Ordering
- In the second argument of 'join', namely 'y'
In the expression: join x y
In an equation for 'it': it = join x y

The matrix programming library developed in the scope
of this paper can be found in the Hackage repository along
with its API documentation6.

8 Equational reasoning
This section shows how to use equational reasoning and the
laws of the linear algebra of programming to prove proper-
ties of functions on matrices and/or to obtain more efficient
programs.
A good example of this is the select operator inspired

by the Selective interface. Selective Functors are a recent
abstraction in functional programming. The argument in
favour of these Selective Functors advocates them as solv-
ing the limitation of Applicatives and Monads in the con-
text of static analysis, allowing over-approximation and
under-approximation of effects in a circuit with conditional
branches [Mokhov et al. 2019]. From a linear algebra per-
spective, this abstraction allows the study of conditional
probability calculations when dealing with left stochastic
matrices [Santos 2020].

𝑏

𝑎 𝑎 + 𝑏 𝑏

𝑐

𝑖1

𝑦

[𝑦 | 𝑖𝑑]
𝑖2

𝑖𝑑

𝑚

From an abstract point-
of-view, the diagram along-
side corresponds to the
ArrowChoice implementa-
tion of select where, in
the case of stochastic ma-
trices, m can be seen as a probability distribution that outputs
either a or b, and y is only computed for values of type a, all
others are skipped.
6https://hackage.haskell.org/package/xxxxx/. NB: package name removed
for the sake of anonymity.

7

https://hackage.haskell.org/package/xxxxx/

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

Haskell’20, August 27-28, 2020, New Jersey, United States Anon.

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

one :: e -> Matrix e () () -- Unit constructor
join :: Matrix e a r -> Matrix e b r -> Matrix e (Either a b) r -- Join constructor
fork :: Matrix e c a -> Matrix e c b -> Matrix e c (Either a b) -- Fork constructor
matrixBuilder :: (...) => ((a, b) -> e) -> Matrix e a b -- Builder function
fromF :: (...) => (a -> b) -> Matrix e a b -- Lifts functions
point :: (...) => a -> Matrix e () a -- Point vector
comp :: Num e => Matrix e cr r -> Matrix e c cr -> Matrix e c r -- Composition (MMM)
(.|) :: Num e => e -> Matrix e c r -> Matrix e c r -- Scalar multiplication
(./) :: Fractional e => Matrix e c r -> e -> Matrix e c r -- Scalar division
iden :: (...) => Matrix e c c -- Identity matrix
tr :: Matrix e c r -> Matrix e r c -- Transposition
abideJF :: Matrix e c r -> Matrix e c r -- Join-Fork exchange
abideFJ :: Matrix e c r -> Matrix e c r -- Fork-Join exchange
p1 :: (...) => Matrix e (Either m n) m -- First projection
p2 :: (...) => Matrix e (Either m n) n -- Second projection
i1 :: (...) => Matrix e m (Either m n) -- First injection
i2 :: (...) => Matrix e n (Either m n) -- Second injection
fstM :: (...) => Matrix e (m, k) m -- Pairing first projection
sndM :: (...) => Matrix e (m, k) k -- Pairing second projection
kr :: (...) => Matrix e c a -> Matrix e c b -> Matrix e c (a, b)

-- Pairing (Khatri-Rao Product)
(-|-) :: (...) => Matrix e n k -> Matrix e m j -> Matrix e (Either n m) (Either k j)

-- Co-product bi-functor (Direct Sum)
(><) :: (...)

=> Matrix e m p -> Matrix e n q -> Matrix e (m, n) (p, q)
-- Product bi-functor (Kronecker)

Listing 1. LAoP API

This leads to a straightforward implementation of select
in terms of matrices:

select :: (...) => Matrix e c (Either a b)
-> Matrix e a b -> Matrix e c b

select m y = join y id . m

We know upfront from the definition that a (possibly) expen-
sive computation is taking place where one of the matrices
is the identity. But, from the type of mwe know that it can be
m = Fork x z for some x and z (12) and the implementation
can take advantage of this:

join y id . m

= { m = Fork x z }

join y id . Fork x z

= { divide-and-conquer (23) }

y . x + id . z

= { identity law (2) }
y . x + z

Thus one gets
select (Fork x z) y = y . x + z

gaining in efficiency because x is necessarily smaller than
the original m. Note that x and z above can be, on their own,
joins. In this case, by the abide law (25) one gets
m = Join (Fork x c) (Fork z d)which lets us patternmatch
one level deeper and, benefiting from the divide-and-conquer

law, end up with:

join y id . m

= { m = Join (Fork x c) (Fork z d) }

join y id . Join (Fork x c) (Fork z d)

= { fusion (18) }

Join (join y id . Fork x c) (join y id . Fork z d)

= { divide-and-conquer (23) twice; identity (2) twice }

Join (y . x + c) (y . z + d)

Putting everything together, one gets the following more
efficient implementation:

select :: (...) => Matrix e c (Either a b)
-> Matrix e a b -> Matrix e c b

select (Fork x z) y = y . x + z
select (Join (Fork x c) (Fork z d)) y =

join (y . x + c) (y . z + d)
select m y =

join y id . m

By exploring linear algebra properties, the compiler can ac-
tually be instructed to optimise the program by defining
correct rewrite rules [Jones et al. 2001]. GHC’s rewrite rules
allow the programmer to directly communicate to the com-
piler ways of optimising a program that is not obvious to it,
for instance:

8

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

Haskell’20, August 27-28, 2020, New Jersey, United States

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

{-# RULES
"prod/cancel1" forall a b. p1 . (fork a b) = a;
"co-p/cancel1" forall a b. (join a b) . i1 = a;

#-}

This tells the compiler to skip computations wherever it en-
counters an instance of the cancellation laws (21,22). Other
useful laws such as converse duality (24) or fusion (18,19)
can be used for the same purpose. In possession of such rules,
the compiler becomes aware of possible non trivial optimi-
sations and applies a certain degree of equational reasoning
to produce more efficient code.

9 Applications and benchmarks
This section starts by giving two simple examples of appli-
cation of the LAoP library.

9.1 Probabilistic programming
Probabilistic programming arises naturally from functional
programming once we replace “sharp" functions by proba-
bilistic ones, represented by stochastic matrices, also known
as Markov chains [Oliveira 2012]. Let us show this taking an
example from the Wikipedia [2020]. Suppose we define the
following predicates modelling the behaviour of a sprinkler,
where S (sprinkler on/off), R (raining or not) and G (grass wet
or not) are Booleans:

sprinkler :: R -> S

sprinkler r = not r

grass :: (S, R) -> G

grass (s,r) = s || r

The second predicate tells that the grass will be wet if and
only if either it is raining or the sprinkler is on. The first tells
that the sprinkler is on iff it is not raining. Composing these
two predicates we see that rain completely determines the
state of the grass:

grass (sprinkler s, rain) = not rain || rain

∴ True

(𝐺, (𝑆, 𝑅))

(𝑆, 𝑅)
𝑔𝑟𝑎𝑠𝑠▽𝑖𝑑

OO

𝑅

𝑠𝑝𝑟𝑖𝑛𝑘𝑙𝑒𝑟▽𝑖𝑑
OO

()
𝑟𝑎𝑖𝑛

OO

Looking at the diagram alongside,
where (▽) can be seen as equal to
(&&&)7, we see that the system has
two possible states in (G, (S, R))

— either (True, (True, False)) or
(True, (False, True)) — the grass
being wet in both. So it will melt be-
cause of being wet all the time.

Clearly, this deterministic interpre-
tation of the diagram does not correspond to reality, but its
stochastic interpretation will do. For this, we just need to
regard the arrows as denoting stochastic matrices and not

7From Control.Arrow, specialised to (->)

pure functions, for instance8

𝑅
𝑠𝑝𝑟𝑖𝑛𝑘𝑙𝑒𝑟 // 𝑆 =

[0.60
0.40

��� 0.99
0.01

]
(𝑆, 𝑅)

𝑔𝑟𝑎𝑠𝑠 // 𝐺 =

[
1.00 0.20 0.10 0.01
0 0.80 0.90 0.99

]
This describes a probabilistic system reactive to the rain.
Once its distribution becomes known, eg.

1 𝑟𝑎𝑖𝑛 // 𝑅 =

[
0.80
0.20

]
one immediately gets the distribution of the overall state,
given by column vector

1 𝑠𝑡𝑎𝑡𝑒 // (𝐺, (𝑆, 𝑅)) =

𝐺 𝑆 𝑅

dry
off 𝑛𝑜 0.4800

𝑦𝑒𝑠 0.0396

on 𝑛𝑜 0.0320
𝑦𝑒𝑠 0.0000

wet
off 𝑛𝑜 0.0000

𝑦𝑒𝑠 0.1584

on 𝑛𝑜 0.2880
𝑦𝑒𝑠 0.0020

(30)

which is calculated following the diagram. Consider the fol-
lowing matrices

rain :: Matrix Prob () R
sprinkler :: Matrix Prob R S
grass :: Matrix Prob (S, R) G

(where type Prob = Double) encoded in the LAoP library,
where we also free the types involved from the strict Boolean
model, already visible in (30).9 The distribution of the overall
state displayed above is given by the expression

state = compose grass sprinkler rain

where
compose :: (...)

=> Matrix e (c, d) b
-> Matrix e d c
-> Matrix e a d
-> Matrix e a (b, (c, d))

compose g s r = tag g . tag s . r

tag :: (...) => Matrix e a b -> Matrix e a (b, a)
tag f = kr f id

Note the role of the 𝑡𝑎𝑔 operation, which for functions amounts
to tag f x = (f x, x), that is, the output of 𝑓 is paired with
its input. Combinator compose iterates this operation across
compositions so as to get an account of all inputs and outputs,
as is usual in Bayesian networks.10

8For easy reference we follow the Wikipedia example closely.
9So instead of G = Bool we have G = Dry | Wet and so on.
10This generic combinator is inspired in the left tagging relational operator
of [Bussche 2001].

9

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

Haskell’20, August 27-28, 2020, New Jersey, United States Anon.

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

Let wet :: Matrix Prob () G, dry :: Matrix Prob () G,
dry :: Matrix Prob () R (and so on) be the points of the
data types involved in the model. Also remember projections
fstM and sndM, introduced in Listing 1. Evaluating the overall
probability of the grass being wet is given by the scalar11

grass_wet = tr wet . fstM . state -- = 44.84%

9.2 Reversible (quantum) programming
The main purpose of this brief example is to show the role
of parametricity in reversible computing, with application
to quantum programming. It is well-known that quantum
circuits are denoted by unitary, complex matrices. Classic
quantum gates are the unitary 0, 1-matrices, that is, matrices
representing bijections.
The standard way of building quantum circuits proceeds

by composing so-called universal gates, typically the Toffoli
gate, the C-NOT gate, the Hadamard gate and so on. Such
universal gates are given as primitive, but in fact they can
be derived from more elementary units via a generic process
called minimal complementation [Oliveira 2018].

Let us express this using our LAoP library. Suppose one is
given a binary function 𝑓 :: (𝐴, 𝐵) → 𝐵 that is not injective
— and therefore not reversible — but it is such that

𝑓 (𝑎, 𝑏) = 𝑓 (𝑎, 𝑏 ′) ⇒ 𝑏 = 𝑏 ′

holds. That is, 𝑓 is injective on the second argument once
the first is fixed (i.e. 𝑓 is a left-cancelative function). Many
functions are of this kind. For instance, multiplication is not
injective (cf. 0∗𝑎 = 𝑏∗0 = 0 for different 𝑎, 𝑏) but the function
𝑓 (𝑥) = 𝑎 ∗ 𝑥 (fixing the first multiplicand to 𝑎) is injective.
Take the exclusive-or Boolean operator as another example,
represented by the usual matrix:

(𝐵𝑜𝑜𝑙, 𝐵𝑜𝑜𝑙) 𝑥𝑜𝑟 // 𝐵𝑜𝑜𝑙 =

[
1 0 0 1
0 1 1 0

]
This is not injective (cf. e.g. 𝑥𝑜𝑟 (𝐹𝑎𝑙𝑠𝑒,𝑇𝑟𝑢𝑒) =

𝑥𝑜𝑟 (𝑇𝑟𝑢𝑒, 𝐹𝑎𝑙𝑠𝑒)) but, should the first input be restricted to
𝐹𝑎𝑙𝑠𝑒 it behaves like the identity on the other input; and if
restricted to 𝑇𝑟𝑢𝑒 the behaviour is that of logical negation,
cf. in Haskell:

xor :: (Bool, Bool) -> Bool
xor (False, b) = b
xor (True, b) = not b

So xor is also left-cancelative.
As it can be easily shown below, pairing an arbitrary left-

cancellative function 𝑓 :: (𝐴, 𝐵) → 𝐵 with projection 𝑓 𝑠𝑡 ::
(𝐴, 𝐵) → 𝐴 yields an injective (reversible) function. So we
define the following generic matrix combinator, where fstc

abbreviates first-complement:
fstc :: (...)

=> Matrix e (a, b) b

11Recall that scalars are matrices of type () → () .

𝑎′

𝑏 ′

𝑎

𝑏

ti 𝑎 𝑎′

𝑏 ′

𝑐 ′

𝑏

𝑐

tti
(a) C-NOT gate (b) Toffoli gate

Figure 3. Circuit depictions of the C-NOT and Toffoli gates.

-> Matrix e (a,b) (a,b)
fstc m = kr fstM m

By applying fstc to xorM = fromF xorwe obtain the reversible
matrix

(𝐵𝑜𝑜𝑙, 𝐵𝑜𝑜𝑙) fstc xorM // (𝐵𝑜𝑜𝑙, 𝐵𝑜𝑜𝑙) =

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

which is nothing but the so-called C-NOT gate (for "controlled
not") which is ubiquitous in quantum programming and is
usually depicted as in Fig. 3a. Likewise, the so-called Toffoli
gate (Fig. 3b) arises from applying fstc to the circuit below.

𝑎

𝑏

𝑐
𝑧

The following piece of code defines both gates in LAoP syn-
tax:

toffoli :: (Num e, Ord e)
=> Matrix e ((Bool, Bool), Bool)

((Bool, Bool), Bool)
toffoli = fstc f

where
f = xor . (uncurry (&&) >< id)
f >< g (a,b) = (f a, g b)

cnot :: (Num e, Ord e)
=> Matrix e (Bool, Bool) (Bool, Bool)

cnot = fstc (fromF xor)

Note the constructive approach here: instead of postulat-
ing the (universal quantum) gates and then showing how to
use them to implement other logic functions, we start from
such logic functions in the first place and then wrap them
into a reversible “envelope" using minimal complements.
Also note the numeric parameter e free in both gates to

be instantiated as needed — typically in the complex num-
bers, in quantum programming. This is what happens when
generating so-called Bell states,

bell :: Matrix (Complex Double)
(Bool, Bool)

10

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

Haskell’20, August 27-28, 2020, New Jersey, United States

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

(Bool, Bool)
bell = cnot . (had >< id)

where had is the Hadamard gate:
had :: Matrix (Complex Double) Bool Bool
had = (1/sqrt 2) .| matrixBuilder f

where
f (False, _) = 1
f (True, m) = bool (-1) 1 m

9.3 Evaluation
To check whether the inductive approach brings any kind of
efficiency benefits, we compared the performance of matrix
multiplication algorithms presented in other Haskell libraries
and the one proposed in this paper.

By analysing the current ecosystem at the time of writing,
namely by filtering data obtained from the Hackage repos-
itory, three libraries providing efficient matrix implemen-
tations stand out as the most embraced by the community:
hmatrix, matrix and linear. The Criterion library was used to
benchmark the different algorithms on randomly generated
square matrices with dimensions ranging between 10 and
1600.

Fig. 4 shows the key features of the testbed environment.

Model Intel(R) Core(TM)2 Duo CPU P8600
Base clock freq 2.40GHz
L1 cache 64 KiB
L2 cache 3 MiB
RAM 2 x 4096MB (DDR3)
OS Arch Linux

Figure 4. Testbed environment

report10x10

Page 1

hmatrix matrix
10 2.50E-06 1.70E-05
25 2.28E-05 2.09E-04
50 1.71E-04 1.51E-03
75 5.96E-04 4.81E-03

100 1.36E-03 1.08E-02
200 1.10E-02 9.43E-02
400 0.242017304920015 1.11944668629169
800 2.78943718179166 8.70263921893748

1600 32.8934531634164 85.7578889051251

0 200 400 600 800 1000 1200 1400 1600 1800
1.00E-06

1.00E-05

1.00E-04

1.00E-03

1.00E-02

1.00E-01

1.00E+00

1.00E+01

1.00E+02

1.00E+03

1.00E+04

Matrix composition (multiplication) benchmarks

hmatrix

matrix

linear

laop

matrix dimensions

se
co

n
d

s

-

Figure 5. Matrix composition benchmarks

As can be seen in the plot of Figure 5, the hmatrix andma-
trix libraries are those that perform better. By observing their
internal structure, one realises that they are a suitable repre-
sentation for BLAS/LAPACK computations [Anderson et al.
1999], that is, they have been designed to efficiently exploit
caches on modern cache-based architectures. A matrix in the

linear library is defined as Vector cols (Vector rows Double)

and does not take into account cache lengths or sizes, so it
behaves much worse than the previous ones. Our structure
does not take into account any low-level optimisations either,
being unable to compete with those that do. Nevertheless,
the implementation is performant for a cache-oblivious ap-
proach and behaves better (almost one order of magnitude
better) than other types of simpler definitions.

10 Related Work
Algebraic graphs [Mokhov 2017] were developed as an al-
ternative to traditional graph representations, such as adja-
cency lists, with a focus on making it impossible to describe
“malformed graphs” where an edge refers to a non-existing
vertex. Algebraic graphs come with the following inductive
definition:

data Graph a where
Empty :: Graph a
Vertex :: a -> Graph a
Overlay :: Graph a -> Graph a -> Graph a
Connect :: Graph a -> Graph a -> Graph a

This data type is remarkably similar to our data type Matrix:
both have the “singleton” primitives, as well as a pair of
binary operations. The resulting algebraic structures, how-
ever, are very different; instead of relations, algebraic graphs
correspond to endo-relations, i.e. relations whose domain
and codomain coincide. As such, algebraic graphs are not
directly applicable to our purposes. Interestingly, in the other
direction one can use Matrix e c r for representing weighted
bipartite graphs, i.e. graphs whose vertices are split into two
parts c and r and edges have weights e.
Speaking of graphs and their relation to matrices, it is

worth mentioning a functional pearl by Dolan [2013] that
describes how classic techniques from linear algebra can be
used to solve a variety of graph (and non-graph) problems
by formulating them as problems on matrices over semirings.
The paper mostly focuses on semirings and the reuse of
ideas across multiple problem domains, making use of a very
simple matrix representation:

data Matrix a = Scalar a | Matrix [[a]]

What is particularly relevant to our work is that the algo-
rithms used in the paper rely on the decomposition of matri-
ces into so-called “block matrices”:

type BlockMatrix a = (Matrix a, Matrix a,
Matrix a, Matrix a)

msplit :: Matrix a -> BlockMatrix a

Since matrix dimensions are untyped, the implementation of
msplit and other matrix-manipulating functions described
in the paper requires a great deal of care. By switching to our
matrix representation, one can benefit from static correctness
guarantees, as well as exploit the inductive matrix definition
whenever it needs to be decomposed into blocks.

11

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

Haskell’20, August 27-28, 2020, New Jersey, United States Anon.

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

As far as typed matrices are concerned, Augustsson and
Ågren [2016] and Shaikhha and Parreaux [2019] suggest
approaches with similar objectives to ours. The results pre-
sented are in the form of a relational algebra library around
a C++ library and a Scala matrix DSL that is polymorphic
only in the content of the matrix. Relations can be seen as
matrices and thus can be represented in our library as well,
with all the advantages that are to be expected from using the
inductive structure. The DSL approach allows one to provide
several definitions of the semiring/ring operation relative
to the contents of the matrices, but they do not manipulate
the matrices inductively, nor are their matrices dimensions
polymorphic and statically typed.
Elliott [2018] presents a vocabulary of matrices that in-

troduces a minimal set of rules to build “arbitrary matrices".
This vocabulary is consistent with our inductive matrix struc-
ture. According to [Elliott 2018], the vocabulary needed from
generalised linear maps is exactly that of classes Category,
Cartesian, Cocartesian and Scalable. Our API could evolve
in this direction too.

11 Conclusions and Future Work
This paper proposes an inductive, block-oriented matrix def-
inition that can be elegantly manipulated thanks to the al-
gebraic laws of typed linear algebra. A solid, polymorphic,
type-safe abstract API is provided that, thanks to the under-
lying theory, shows that one can create robust and efficient
programs that rely on complex matrix manipulations. The
examples show how well typed linear algebra blends with
the functional programming style, providing an overall type-
safe framework for the increased need in linear algebra based
applications of our days, in areas such as data analysis and
machine learning.
The proposed typed inductive matrix definition leads to

efficient, cache-oblivious algorithms, such as matrix compo-
sition and transposition, allowing one to reason about code
and write it in an elegant, type correct way.
We conclude that, although our encoding does not turn

out to be better in terms of performance compared to more
efficient libraries, it does not fall short of expectations and
the expressiveness and simplicity that it offers justify its
adoption.

In future work we plan to fine-tune the implementation in
several directions. The block-oriented matrix type brings to
mind quadtrees [Samet 1984] and their savingswrt. repetitive
cells (pixels). For sparse matrices, which have large blocks
of zeros, an improved matrix definition catering for sparsity
could be more efficient. Inspired by some of the limitations
of the proposed inductive structure, such as the inability
to have an unrestricted instance of Category and to express
large repetitive blocks, alternative formulations are to be
explored.

A possible approach could be based on making the type
constructors more polymorphic. A new Identity constructor
could be added and One could represent constant blocks of
arbitrary sizes, by changing the unit type for polymorphic
ones. Since the identity matrix should no longer possess
associated dimension type restrictions, it should be possible
to implement an unconstrained Category instance offering
a more efficient composition operation. While we prefer
our approach for its simplicity, a more complex inductive
type promises advantages in type-safeness and space/time
complexity.
Further to researching on a possibly extended encoding,

studying how to take advantage of the linear map semantics
or parallelization strategies to improve performance is also
an interesting future direction.

References
Edward Anderson, Zhaojun Bai, Christian Bischof, Susan Blackford, Jack

Dongarra, Jeremy Du Croz, Anne Greenbaum, Sven Hammarling, Alan
McKenney, and Danny Sorensen. 1999. LAPACK Users’ guide. Vol. 9.
Siam.

Lennart Augustsson and Mårten Ågren. 2016. Experience report: types for
a relational algebra library. In ACM SIGPLAN Notices. ACM, 127–132.
https://doi.org/10.1145/2976002.2976016

Steve Awodey. 2010. Category Theory (2nd ed.). Oxford University Press,
Inc., New York, NY, USA.

Ana Bove, Peter Dybjer, and Ulf Norell. 2009. A brief overview of Agda–a
functional language with dependent types. In International Conference
on Theorem Proving in Higher Order Logics. Springer, 73–78.

Edwin Brady. 2013. Idris, a general-purpose dependently typed program-
ming language: Design and implementation. Journal of functional pro-
gramming 23, 5 (2013), 552–593.

Jan Van den Bussche. 2001. Applications of Alfred Tarski’s Ideas in Database
Theory. In CSL’01. Springer-Verlag, London, UK, 20–37.

Stephen Dolan. 2013. Fun with semirings: a functional pearl on the abuse
of linear algebra. In ICFP’13, Boston. ACM SIGPLAN Notices, 101–110.

Conal Elliott. 2018. The simple essence of automatic differentiation. PACMPL
2, ICFP (2018), 70:1–70:29. https://doi.org/10.1145/3236765

Matteo Frigo, Charles E Leiserson, Harald Prokop, and Sridhar Ramachan-
dran. 1999. Cache-oblivious algorithms. In 40th Annual Symposium on
Foundations of Computer Science (Cat. No. 99CB37039). IEEE, 285–297.

Cordelia V. Hall, Kevin Hammond, Simon L Peyton Jones, and Philip L
Wadler. 1996. Type classes in Haskell. ACM Transactions on Programming
Languages and Systems (TOPLAS) 18, 2 (1996), 109–138.

Ralf Hinze. 2013. Adjoint folds and unfolds — An extended study. Science of
Computer Programming 78, 11 (2013), 2108–2159.

Simon Peyton Jones, Andrew Tolmach, and Tony Hoare. 2001. Playing by
the rules: rewriting as a practical optimisation technique in GHC. In
Haskell workshop, Vol. 1. ACM, 203–233.

Jeff Kramer. 2007. Is Abstraction the Key to Computing? Commun. ACM
50, 4 (April 2007), 37–42.

Hugo D. Macedo and José N. Oliveira. 2013. Typing linear algebra: A
biproduct-oriented approach. SCP 78, 11 (2013), 2160–2191. https:
//doi.org/10.1016/j.scico.2012.07.012

Saunders MacLane. 1971. Categories for the Working Mathematician.
Springer-Verlag.

Bartosz Milewski. 2018. Category theory for programmers. Textbook
available on-line: http://tiny.cc/5letkz.

Andrey Mokhov. 2017. Algebraic Graphs with Class (Functional Pearl). In
Haskell 2017. ACM, New York, NY, USA, 2–13. https://doi.org/10.1145/
3122955.3122956

12

https://doi.org/10.1145/2976002.2976016
https://doi.org/10.1145/3236765
https://doi.org/10.1016/j.scico.2012.07.012
https://doi.org/10.1016/j.scico.2012.07.012
http://tiny.cc/5letkz
https://doi.org/10.1145/3122955.3122956
https://doi.org/10.1145/3122955.3122956

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

Haskell’20, August 27-28, 2020, New Jersey, United States

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

Andrey Mokhov, Georgy Lukyanov, Simon Marlow, and Jeremie Dimino.
2019. Selective Applicative Functors. Proc. ACM Program. Lang. 3, ICFP,
Article 90 (July 2019), 29 pages. https://doi.org/10.1145/3341694

José N. Oliveira. 2012. Towards a linear algebra of programming. Formal
Aspects of Computing 24, 4-6 (2012), 433–458.

José N. Oliveira. 2018. Compiling quantamorphisms for the IBM Q-
Experience. Talk at the IFIP WG 2.1 #77 Meeting, Brandenburg (Ger-
many). Joint work with A. Neri and R.S. Barbosa.

Simon Peyton Jones, Dimitrios Vytiniotis, Stephanie Weirich, and Geoffrey
Washburn. 2006. Simple unification-based type inference for GADTs.
ACM SIGPLAN Notices 41, 9 (2006), 50–61.

Hanan Samet. 1984. The quadtree and related hierarchical data structures.
ACM Computing Surveys (CSUR) 16, 2 (1984), 187–260.

Armando Santos. 2020. Selective Functors & Probabilistic Programming.
https://github.com/bolt12/master-thesis. (In progress).

Kaz Sato, Cliff Young, and David Patterson. 2017. An in-depth look at
Google’s first Tensor Processing Unit (TPU). In Google Cloud Big Data
and Machine Learning Blog. Access date: May 16, 2020.

Amir Shaikhha and Lionel Parreaux. 2019. Finally, a polymorphic linear
algebra language. (2019).

Jan Stolarek, Simon Peyton Jones, and Richard A Eisenberg. 2015. Injective
type families for Haskell. ACM SIGPLAN Notices 50, 12 (2015), 118–128.

Vasily Volkov and James Demmel. 2008. Benchmarking GPUs to tune dense
linear algebra. In Proc. SC 2008 ACM/IEEE Conf. on High Performance
Computing. IEEE/ACM, 31. https://doi.org/10.1109/SC.2008.5214359

Wikipedia. 2020. Bayesian network. https://en.wikipedia.org/wiki/
Bayesian_network (Accessed: 2020-02-16).

13

https://doi.org/10.1145/3341694
https://github.com/bolt12/master-thesis
https://cloud.google.com/blog/products/gcp/an-in-depth-look-at-googles-first-tensor-processing-unit-tpu
https://cloud.google.com/blog/products/gcp/an-in-depth-look-at-googles-first-tensor-processing-unit-tpu
https://doi.org/10.1109/SC.2008.5214359
https://en.wikipedia.org/wiki/Bayesian_network
https://en.wikipedia.org/wiki/Bayesian_network

	Abstract
	1 Introduction
	1.1 Contributions
	1.2 Layout of the paper

	2 Background
	2.1 Structure of Mat

	3 Matrix data type
	3.1 Constructing matrices

	4 Matrix manipulation and transformation
	5 Matrix construction
	6 Category instance
	7 End-user interface
	7.1 Matrix new type wrappers
	7.2 Algebra of Programming API

	8 Equational reasoning
	9 Applications and benchmarks
	9.1 Probabilistic programming
	9.2 Reversible (quantum) programming
	9.3 Evaluation

	10 Related Work
	11 Conclusions and Future Work
	References

