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ABSTRACT 
 
In this study machine learning methods were applied to RGB data 

obtained by an unmanned aerial vehicle (UAV) to assess this 
effectiveness in vineyard classification. The very high-resolution 
UAV-based imagery was subjected to a photogrammetric 
processing allowing the generation of different outcomes: 
orthophoto mosaic, crop surface model and five vegetation indices. 
The orthophoto mosaic was used in an object-based image analysis 
approach to group pixels with similar values into objects. Three 
machine learning techniques—support vector machine (SVM), 

random forest (RF) and artificial neural network (ANN)—were 
applied to classify the data into four classes: grapevine, shadow, soil 
and other vegetation. The data were divided with 22% (n=240, 60 
per class) for training purposes and 78% (n = 850) for testing 
purposes. The mean value of the objects from each feature were used 
to create a dataset for prediction. The results demonstrated that both 
RF and ANN models showed a good performance, yet the RF 
classifier achieved better results. 

 
Index Terms— Precision viticulture, object-based image 

analysis, artificial neural networks, random forests, support vector 
machines 
 

1. INTRODUCTION 
 
Grapevine segmentation and classification of different features in a 
vineyard represents a key-task for optimal management of the 
parcel. The use of high-resolution imagery acquired from unmanned 

aerial vehicles (UAVs) provide different approaches to achieve this 
goal. The most commonly used methods are based on the use of 
image segmentation techniques [1], or by filtering the grapevine 
height [2], [3]. More recently, unsupervised or supervised machine 
learning techniques [4] are taking more prominence. However, most 
of the studies in the literature refers to very well managed 
commercial vineyards  with good contrast between the vineyard and 
the ground, in which, very few or no missing plants are presented 
[4]. Moreover, studies that use very-high resolution imagery for 

similar purposes, generally rely in the usage of more expensive 

sensors for data acquisition [1], [5], as multispectral imagery. 

In this study, a cost-effective light-weight UAV was used to 
acquire RGB imagery aiming the classification of grapevine 
vegetation and other features usually presented within a vineyard 
plot. Three machine learning approaches were assessed: support 
vector machines (SVM), artificial neural networks (ANN), and 

random forests (RF). Furthermore, an object-based image analysis 

(OBIA) approach was used to predict the distribution of the different 
classes on the different machine learning techniques used in this 
study. 
 

2. MATERIAL AND METHODS 
 

2.1. Study area description 
 
The vineyard plot used in this study (Fig. 1) is located in the 
geographical area of the Douro Demarcated Region, within the 
campus of the University of Trás-os-Montes e Alto Douro (Vila 
Real, Portugal). The grapevine plants (cv. Malvasia Fina) are 1.20 

m apart and the space between its 22 rows is 1.80 m. This vineyard 
plot is affected by grapevine trunk diseases which caused a high 
number of missing grapevine plants along the vine rows. 
 

 
Fig. 1. Overview of the studied vineyard plot. 

2.2. Data acquisition and photogrammetric processing 
 
A multi-rotor DJI Phantom 4 UAV (DJI, Shenzhen, China), 
equipped with an RGB sensor (12.4 MP) was used to acquire the 
aerial imagery. The flight mission consisted in a crosshatch pattern 
at 40 m flight height, being the front and side overlap of 80% and 
70%, respectively. The flight was performed on 24 July 2019, close 
to solar noon and under clear skies. The flight mission took 

approximately five minutes and a total of 88 images were acquired, 
covering an area of approximately 2 ha with a spatial resolution of 
less than 2 cm (0.0185 m). 

The photogrammetric processing of the acquired UAV-based 
RGB imagery was conducted using the Pix4Dmapper Pro (Pix4D 
SA, Lausanne, Switzerland). The dense point cloud was computed 
with a high point density (total of 21 million points, with an average 
density of 1771 points per m3). As outcomes, an orthophoto mosaic, 
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a Digital Surface Model (DSM) and a Digital Terrain Model (DTM) 
were generated. 

The orthophoto mosaic was clipped to the region of interest using 
QGIS software. Then, several vegetation indices were computed, as 
presented in TABLE I. The DSM and the DTM were used to 

compute a Crop Surface Model (CSM), by subtracting the altitude 
values of the DTM to the DSM. 

TABLE I.  VEGETATION INDICES USED IN THIS STUDY. 

Vegetation index Equation Reference 

Green-Red 

Vegetation Index 
𝐺𝑅𝑉𝐼 =  

𝐺 − 𝑅

𝐺 + 𝑅
 [6] 

Green-Blue 

Vegetation Index 
GBVI =  

G − B

G + B
 [7] 

Red Green Blue 

Vegetation Index RGBVI =  
G2 − R × B

G2 + R × B
 [8] 

Excess Green ExG =  2g − r − b [9] 

Visible 

Atmospherically 

Resistant Index 
VARI =  

G − R

G + R − B
 [10] 

where r =  
R

R+G+B
, g =  

G

R+G+B
, and b =  

B

R+G+B
; R, G and B are the pixel values of the Red, Green 

and Blue bands, respectively. 

 

2.3. Object-based image analysis 
 
The object-based image analysis was performed in QGIS using the 
Orfeo ToolBox (OTB) [11]. For this purpose, large-scale 

segmentation using the mean shift [12] was applied through the use 
of the “LargeScaleMeanShift” function. By providing as input a 
raster image of the study area, a vector data file was generated using 
the MeanShift algorithm. In this study, the orthophoto mosaic was 
used as input and the spatial and range radius were set to, 12 and 18, 
respectively. Moreover, the minimum segment size was defined to 
200, thus ensuring that regions smaller than this parameter are 
merged into similar neighbouring regions. 
 

2.4. Vineyard classification 
 
The following classes were defined, according to the characteristics 
of the surveyed vineyard: (1) soil—areas without vegetation, mainly 
composed by bare soil, small rocks and dry vegetation; (2) 
shadow—casted by grapevines, vineyard posts and trees in the 
surroundings of the vineyard plot; (3) other vegetation—composed 
by other type of vegetation than grapevines, as inter-row vegetation 
and weeds; and (4) grapevine—composed by the vegetation 
belonging to grapevines. 

For classification purposes, three machine learning algorithms 
were used: SVM, RF, and ANN. Since the evaluated methods are 
supervised, a set of training and testing samples are required. 
Therefore, a set of 400 squares with 20 × 20 cm area were spread 
throughout the study area, evenly distributed through the four 
defined classes, representing a total of 100 samples per class. The 
number and size of the squares was selected to both cover the 
majority of different cases and to minimise the inclusion of multiple 

classes in a single square. From the 400 sample squares, 240 were 
used for training. The trained models were then tested using the 
remaining 160 squares. Apart from the 160 squares, three transects 
were also considered for testing the classifiers (location in Fig. 1.), 
being one in a vine row (68 m), and two between rows (42 m and 27 
m). The transects were divided and buffered to create 20 × 20 cm 
square samples (total of 690) and were classified according to one 

of the analysed classes. The models obtained from each classifier 
were used to predict upon the objects created using the mean shift 
algorithm.  

Following the creation and division of the samples, different 
features were estimated for the objects and squares, which rely on 

the mean values of the vegetation indices presented in TABLE I. 
Along with the vegetation indices, the mean value of the red, green 
and blue bands, their normalized values (r, g and b) and the height 
values from CSM were also used. 

For training and validation purposes, the 
“TrainVectorClassifier” function and the “VectorClassifier” 
function of the OTB toolbox were used. The SVM model, based in 
the LIBSVM [13], used a linear kernel, being the penalty set using 

the cost parameters C with a value of one. The used ANN and RF 
classifiers are both based in the OpenCV machine learning library. 
The RF model values were configured as following: five of 
maximum tree depth, 10 as minimum number of samples in each 
note, 100 as maximum number of trees in the forest and an out-of-
bag (OOB) error of 0.01. Regarding the ANN, it was trained with a 
resilient back-propagation algorithm with four neurons in each 
intermediate layer, a symmetrical sigmoid function for neuron 

activation with alpha and beta parameters set to one and a maximum 
number of 1000 of iterations. 
 

2.5. Accuracy verification 
 
To evaluate the classification of the models obtained from the 
machine learning classifiers the resultant confusion matrices were 
analysed. To provide a general perspective of the model behaviour, 
the f1-score, kappa coefficient and the overall accuracy were 
computed. While the overall accuracy indicates the proportion of 

correct classifications in the total number of samples, the kappa 
coefficient evaluates the performed classification, considering the 
possibility of the agreement occurring by chance.  Moreover, the 
area estimated for each class was also evaluated. 
 

3. EXPERIMENTAL RESULTS 
 

3.1. Data characterization 
 
A data analysis was performed to assess the behaviour of each class 
of the features used in this study. Fig. 2 presents the mean values of 
each feature, per class, where the soil class presents highest overall 

values in the RGB bands (Fig. 2a). On the contrary, the shadow class 
presents the lowest values. The remaining classes show similar 
values for green band, but the grapevine class presents lower values 
for red and blue bands, when compared to other vegetation class. 
When analysing band’s normalized values (Fig. 2b), the normalized 
green band stands out in the grapevine vegetation, being that the 
same tendency verified for the vegetation indices (Fig. 2c). 
Moreover, the grapevine class present higher mean values than the 

remaining classes, followed by the other vegetation. These values 
can be explained by the greener colour from its leaves. Contrary to 
the grapevine class, the shadow class present lower mean values 
than the other classes, where, this can be related to its darker 
characteristics. Regarding the soil class, it present negative values 
for GRVI and VARI. Concerning the mean height values extracted 
from the CSM (Fig. 2d), values above zero were only observed in 
shadow and grapevine classes, where, height values present in 
shadow can be related to the presence of shadows in the grapevine 

canopy. 
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Fig. 2. Mean values, per class, of each feature: (a) bands of the orthophoto 

mosaic; (b) normalized bands; (c) vegeation indices; and (d) crop 

surface model (CSM). Values obtained from the 240 sample squares, 

used for training. 1: soil; 2: shadow; 3: other vegeation; 4: grapevine; 
5: overall mean values. 

3.2. Vineyard classification accuracy 
 

Regarding the overall accuracy, the results of the testing phase of 
the three tested classifiers (SVM, RF and ANN) showed different 
performances (Table II). The higher overall accuracy was achieved 
by RF classifier (88%), followed by ANN (86%) and SVM with the 
lowest performance (45%). Both ANN and RF had similar Kappa 
value (0.80 and 0.82, respectively), meaning that the classification 
is not likely to occur by chance. 

Concerning the classification by class type, while all methods 
were able to successfully classify the soil with a good accuracy, the 

other vegetation class was the least performant in the RF and ANN. 
As for the misclassifications, in the SVM classifier, only three 
samples were wrongly classified in the soil and shadow classes. 
However, other vegetation and grapevine classes presented wrong 
classifications in soil and shadow classes, respectively. The RF 
classifier presents the best overall f1-score in the classification of 
grapevines and other vegetation, while the ANN presented the best 
results for soil and shadow classes. 

The area predicted in each class per model, in the analysed 0.34 
ha vineyard plot is presented in Fig. 3. The prediction from the ANN 
showed and higher area for soil, shadow and grapevine classes, 
when compared to the area predicted by the other two classifiers. As 
for the other vegetation class, the SVM classifier predicted a higher 
area while the lower area was predicted by the ANN (1280 m2 and 
945 m2, respectively). Moreover, the SVM showed the lowest 
estimated area of soil with 1633 m2.  

 

 
Fig. 3. Area of each class per model from the grapevine classification. 

 

TABLE II.  CONFUSION MATRICES, F1-SCORE (F1) AND OVERALL 

ACCURACY (OA) OF THE TESTED CLASSIFIERS IN VINEYARD 

CLASSIFICATION. 1: SOIL; 2: SHADOW; 3: OTHER VEGEATION; 4: GRAPEVINE. 

Class 1 2 3 4 F1 OA (%) 

Support Vector Machine 

1 229 3 0 0 0.77 

45.29 
2 3 82 0 0 0.33 

3 89 27 34 5 0.36 

4 39 299 0 40 0.19 

Random Forest 

1 198 0 34 0 0.87 

87.76 
2 3 63 16 3 0.83 

3 23 1 125 6 0.72 

4 0 2 16 360 0.96 

Artificial Neural Network 

1 214 1 17 0 0.89 

86.12 
2 1 69 9 6 0.88 

3 33 1 117 4 0.68 

4 1 1 44 332 0.92 

 

Therefore, through the analysis of the results, it is possible to 
state that both RF and ANN classifiers, were able to perform 

vineyard classification with a good performance. However, the 
prediction stage performed on the whole vineyard, resulted in 
distinct results. Thus, it is necessary to perform further experiments 
to study the classification errors. Lastly, the results obtained by the 
SVM classifier were not satisfactory, providing misclassifications 
on the grapevine class, being classified as shadow. 

The final classified maps can help the farmers/winegrowers into 
obtaining a general overall context of the vineyard. Fig. 4. shows 

part of the vineyard classification from the objects generated from 
OBIA. 
 

 
Fig. 4. Part of the classification results of the models in the objects from the 

object-based image analysis procedure. 
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4. CONCLUSIONS 
 
In this study UAV-based outcomes from photogrammetric 
processing were used to evaluate three machine learning approaches 
for classification purposes. Regarding the four classes defined, the 
SVM was the least performant method. Contrary to the SVM, the 
grapevine vegetation detection presented good results in RF and 

ANN classifiers, which, the RF classifier presented the best 
performance. However, given the small differences in kappa and 
overall accuracy between these two methods, more experiments are 
needed. 

Considering that this study only relied in a low-cost RGB sensor, 
the obtained results are promising. However, the investigation must 
be performed in other vineyards, with different levels of bare soil 
and shadow presence, in order to study the behaviour of the 

classifiers in different contexts. Moreover, the use of UAV-based 
data from other sensors (thermal infrared and multi-spectral) could 
be explored to infer the improvements in vineyard classification 
accuracy. Also comparing unsupervised data clustering approaches 
and pixel-based approaches should be considered. 
 

ACKNOWLEDGMENTS 

 
Financial support provided by the Portuguese Foundation for 
Science and Technology FCT to Pedro Marques 
(PD/BD/150260/2019), under the Doctoral Programme 
“Agricultural Production Chains – from fork to farm” 

(PD/00122/2012) and to Luís Pádua (SFRH/BD/139702/2018). 

 

5. REFERENCES 
 
[1] A. Nolan, S. Park, S. Fuentes, D. Ryu, and H. Chung, 

“Automated detection and segmentation of vine rows using 
high resolution UAS imagery in a commercial vineyard,” 
presented at the Proceedings of the 21st International 
Congress on Modelling and Simulation, Gold Coast, 
Australia, 2015, vol. 29, pp. 1406–1412. 

 

[2] L. Comba, A. Biglia, D. Ricauda Aimonino, and P. Gay, 
“Unsupervised detection of vineyards by 3D point-cloud 
UAV photogrammetry for precision agriculture,” 
Computers and Electronics in Agriculture, vol. 155, pp. 84–
95, Dec. 2018, doi: 10.1016/j.compag.2018.10.005. 

 
[3] I. Kalisperakis, C. Stentoumis, L. Grammatikopoulos, and 

K. Karantzalos, “Leaf area index estimation in vineyards 
from UAV hyperspectral data, 2D image mosaics and 3D 

canopy surface models,” The International Archives of 
Photogrammetry, Remote Sensing and Spatial Information 
Sciences, vol. 40, no. 1, p. 299, 2015. 

 
[4] C. Poblete-Echeverría, G. F. Olmedo, B. Ingram, and M. 

Bardeen, “Detection and Segmentation of Vine Canopy in 
Ultra-High Spatial Resolution RGB Imagery Obtained from 

Unmanned Aerial Vehicle (UAV): A Case Study in a 
Commercial Vineyard,” Remote Sensing, vol. 9, no. 3, p. 
268, Mar. 2017, doi: 10.3390/rs9030268. 

 
[5] L. Comba, P. Gay, J. Primicerio, and D. Ricauda Aimonino, 

“Vineyard detection from unmanned aerial systems 
images,” Computers and Electronics in Agriculture, vol. 
114, pp. 78–87, Jun. 2015, doi: 
10.1016/j.compag.2015.03.011. 

 
[6] C. J. Tucker, “Red and photographic infrared linear 

combinations for monitoring vegetation,” Remote Sensing 
of Environment, vol. 8, no. 2, pp. 127–150, May 1979, doi: 

10.1016/0034-4257(79)90013-0. 
 
[7] S. Kawashima and M. Nakatani, “An Algorithm for 

Estimating Chlorophyll Content in Leaves Using a Video 
Camera,” Ann Bot, vol. 81, no. 1, pp. 49–54, Jan. 1998, doi: 
10.1006/anbo.1997.0544. 

 
[8] J. Bendig et al., “Combining UAV-based plant height from 

crop surface models, visible, and near infrared vegetation 
indices for biomass monitoring in barley,” International 
Journal of Applied Earth Observation and Geoinformation, 
vol. 39, no. Supplement C, pp. 79–87, Jul. 2015, doi: 
10.1016/j.jag.2015.02.012. 

 
[9] D. M. Woebbecke, G. E. Meyer, K. Von Bargen, and D. A. 

Mortensen, “Color Indices for Weed Identification Under 
Various Soil, Residue, and Lighting Conditions,” 

Transactions of the ASAE, vol. 38, no. 1, p. 259, 1995, doi: 
10.13031/2013.27838. 

 
[10] A. A. Gitelson, Y. J. Kaufman, R. Stark, and D. Rundquist, 

“Novel algorithms for remote estimation of vegetation 
fraction,” Remote Sensing of Environment, vol. 80, no. 1, 
pp. 76–87, Apr. 2002, doi: 10.1016/S0034-4257(01)00289-
9. 

 
[11] J. Inglada and E. Christophe, “The Orfeo Toolbox remote 

sensing image processing software,” in 2009 IEEE 
International Geoscience and Remote Sensing Symposium, 
Jul. 2009, vol. 4, pp. IV-733-IV–736, doi: 
10.1109/IGARSS.2009.5417481. 

 
[12] J. Michel, D. Youssefi, and M. Grizonnet, “Stable mean-

shift algorithm and its application to the segmentation of 
arbitrarily large remote sensing images,” IEEE Transactions 
on Geoscience and Remote Sensing, vol. 53, no. 2, pp. 952–
964, 2014. 

 
[13] C.-C. Chang and C.-J. Lin, “LIBSVM: A library for support 

vector machines,” ACM Trans. Intell. Syst. Technol., vol. 2, 
no. 3, pp. 1–27, Apr. 2011, doi: 10.1145/1961189.1961199. 

 

6312

Authorized licensed use limited to: b-on: Universidade de Trás-os-Montes e Alto Douro. Downloaded on February 18,2021 at 06:59:03 UTC from IEEE Xplore.  Restrictions apply. 


