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Abstract — Index structures are fast-access methods. In the past, they were often used to minimise fetch operations to 

external storage devices (secondary memory). Nowadays, this also holds for increasingly large amounts of data residing 

in main-memory (primary memory). Examples of software that deals with this fact are in-memory databases and 

mobile device applications. Within this scope, this paper focuses on index structures to store, access and delete interval-

based time-dependent (temporal) data from very large datasets, in the most efficient way. Index structures for this 

domain have specific characteristics, given the nature of time and the requirement to index time intervals. This work 

presents an open-source time-efficiency focused variant of the original Interval B+ tree. We designate this variant 

Improved Interval B+ tree (I2B+ tree). Our contribution adds to the performance of the delete operation by reducing 

the amount of traversed nodes to access siblings. We performed an extensive analysis of insert, range queries and 

deletion operations, using multiple datasets with growing volumes of data, distinct temporal distributions and tree 

parameters (time-split and node order). Results of the experiments validate the logarithmic performance of these 

operations and propose the best-observed tree parameter ranges. 
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I.  INTRODUCTION 

When the majority of index structures emerged, databases were mostly stored in disk drives. Therefore, the 
classic performance analysis of index structures has its focus on disk access optimisation. Hence, the parameters 
evaluated are often related to the primary goal of minimising the number of disk access operations [1, 2]. However, 
nowadays, index structures are required by new and distinct application domains, usually involving large datasets. 
Its usage has evolved for being employed in a plethora of situations (e.g. client-side spatiotemporal applications, 
mobile applications that deal with temporal data) where high-speed access to information is mandatory. In these 
new circumstances, evaluating disk access optimisation might no longer make sense. Conversely, it becomes 
adequate to evaluate the performance of index structures as a function of the volume of data. 

The cost of both primary and secondary memory storage space has been consistently decreasing, thus allowing 
larger amounts of data to be captured and stored [3]. As a consequence, applications are required to deal with these 
larger amounts of data, making the space overhead related to the data structure less of a concern, with the time-
efficiency gathering a more prominent role. Hence, access to data from ever-growing datasets should maintain 
logarithmic performance. 

It is a known fact that the rate at which data is being generated nowadays supersedes any before [4]. Thereupon, 
for these large datasets, it is also necessary to have fast access methods that support the efficient management of 
information elements, while maintaining its indexed characteristics.  

In the widespread domain of spatiotemporal information, data is generally decomposed into spatial data and 
temporal data. The most common approach to handle data from this multidimensional domain is to employ two 
separate index structures: one for managing temporal data and the other for managing spatial data [5]. Hence, index 
structures for maintaining temporal data become relevant. However, a limited set of data structures has efficient 
support for managing the valid-time (the temporal range at which information is considered to be valid) associated 
with the handled information. 

The Interval B+ tree (IB+ tree) is a fast data access method and promising index structure for the efficient 
handling of interval-based valid-time information [6]. Our literature review concerned a broader problem regarding 
spatiotemporal data management, where fast access plays an important role. Therefore, within this scope, we 
reviewed fast access methods for time-dependent data, among which emerged the IB+ tree. Consequently, we 
examined more recent work employing this index structure [7, 8, 9]. However, we were unable to find  IB+ tree 
analyses with a focus on performance on growing volumes of data. The same can be stated about an evaluation 
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regarding time-efficiency on the use of the time-split operation: an optimisation presented by the Bozkaya and 
Ozsoyoglu that focus on improving the IB+ tree overall performance [6]. 

In this work, we present a time-efficiency focused variant to the IB+ tree, the Improved IB+ Tree (I2B+ tree). 
This variant differs from the original IB+ tree by reducing the number of nodes traversed in the deletion of a stored 
object. Moreover, we establish and describe an empirical evaluation of this index structure in scenarios with distinct 
dense and sparse temporal datasets. The goal is to analyse the I2B+ tree performance on growing volumes of data. 

A tested TypeScript open-source implementation of the I2B+ tree is provided with the purpose of using it in the 
experiments and making it available for client-side applications. This choice also took into consideration the current 
trend of platform-independent, browser-based applications and its increased access through mobile devices. 

The paper is organized as follows. Section II summarises different structures for indexing valid-time 
information and presents an analysis of the IB+ tree. Section III presents the I2B+ tree. Section IV describes the 
experiments performed, as well as the results obtained. Section V analyses the obtained results. Lastly, section VI 
provides conclusions and identifies future work. 

II. RELATED WORK 

In this section, we identify index structures that are capable of handling time intervals (valid-time domain). 
Then, of those, we describe in detail the index structure we identified as being the most promising for obtaining 
improved time-efficiency on growing volumes of data. 

A. Valid-time index structures 

Through a systematic literature review on valid-time index structures, we identified four main categories: spatial 
indexes storing bounding intervals in a single dimension; B+ tree variants; Interval tree augmentations; and others 
(e.g. MPB-tree [10]). 

The structure most commonly used to represent unidimensional spatial indexes of algorithms are one-
dimensional R-trees. Mahmood et al. [11] and Valdés and Güting [12] both use a one-dimensional R-tree for 
handling temporal data in their spatiotemporal frameworks. R-trees key idea consists of grouping objects together 
using a bounding interval (in one-dimensional data) and using that bounding interval to represent the group in lower 
depth nodes [13]. 

Regarding B+ trees, there are many variants for handling temporal data. Among others, we can highlight Time 
Index [14]; IB+ tree [6]; and MAP21 [15]. The Time Index comprises an access structure for temporal data, based 
on a versioning approach. The IB+ tree consists of augmenting the B+ tree so that the tree nodes manage interval 
information similarly to the Interval-tree. Moreover, Nascimento and Dunham [15], using the approach MAP21, 
show how a B+ tree can be adapted to support the indexing of intervals by mapping the two values constituting the 
range into a single value. 

Interval-tree [16] augmentations represent the adaptation of a balanced tree structure to support intervals in the 
manner defined by the Interval tree. Carvalho et al. [17] work is an example of augmentation by using a Red-Black 
Augment Interval Tree. Thus, the authors made a red-black tree capable of handling valid-time intervals. The IB+ 
tree, besides being a B+ tree variant, is also an example of an Interval-tree augmentation. 

In the above-mentioned others category, we include other structures that do not belong in any of the previous 
categories. The Multi-dimensional Parallel Binary Tree [10] is an example of such. In this spatiotemporal index 
structure, the temporal dimension is managed through a triangular binary tree using a triangular decomposition 
strategy to handle the representation of temporal intervals. 

Mahmood et al. [5], demonstrates that, for the majority of the structures, the temporal dimension is handled 
using a B+ tree variant. 

Regarding the comparison of some of the index structures presented before, Bozkaya and Ozsoyoglu present 
the benefits regarding node accesses when comparing the IB+ tree to the one-dimensional R-tree [6]. Henceforth, 
we provide a more in-depth analysis of the IB+ tree, since this index structure emerged, from our review, as the 
most promising for handling valid-time intervals. 

B. Interval B+ tree 

The IB+ tree consists of a time-efficient index structure that merges the principles of both B+ trees [18] and 
Interval-trees [16]. In more detail, it consists of an augmentation of the B+ tree (an N-ary tree), where each node 
contains the same kind of information as on Interval-trees. In this structure, there are two types of nodes: internal 
nodes, whose children are other nodes, and leaf nodes, whose children are intervals. Each node stores three lists: 
one list containing its children, another containing the ordered node keys and the last containing the maximums. 
Within this context, according to Bozkaya and Ozsoyoglu [6], a key is the smallest lower bound of the respective 
children of the first list. Similarly, a maximum is the highest upper bound of the respective children of the first list. 
The order imposed by the keys sorts all lists. 



Since the underlying structure is a B+ tree, each leaf node will contain a pointer to the right sibling. Intermediate 
nodes contain no pointers for any of the siblings. In the context of the B+ tree, a key represents a 
literal.  Furthermore, in B+ trees, the insertion and remotion of nodes can lead to readjustments on the overall 
structure of the tree.  

In the case of insertions, if a node is accommodating a new key, but the accommodation leads to the number of 
keys exceeding the number of allowed keys per node, the node splits. Splits are operations that consist of dividing 
the keys of a node into two new nodes. Therefore, each new node is expected to contain half the keys from the 
original node. After, the tree proceeds with the insertion of the new key in the node that should save it.  

Reversely, the removal of a node can also trigger a rebalance of the tree. When a key is removed from a node, 
if the number of keys stored in the node is not bigger than half of the maximum number of keys it can store, then 
the tree must readjust. First, the node tries to borrow a key from one of its siblings. The borrowing happens if 
either one of the siblings contains more than half of the maximum number of keys it can store. Otherwise, the 
borrowing would lead to one of the siblings being unable to satisfy the minimum of stored keys condition. In such 
cases, where no borrowing is possible, the nodes are merged with one of its siblings, creating a new node that 
contains the keys from the merged nodes. These are called borrow and merge operations. Consequently, other kinds 
of tree readjustments can occur, but we do not describe them since they do not add value to the current work. 
Comer's work [18] presents a more in-depth analysis of the entirety of these cases. 

We identified a problem in the node removal process that led to the deletion operation performance being slower 
than what was needed. We further detail this problem and our respective solution in the following section. 

The augmentation of the Interval-tree [16] follows some basic principles: 1) each node stores an interval, where 
the interval lower bound represents the key of the node - consequently, by travelling the tree in its in-order, we 
obtain the set of intervals, sorted by the lower bound; 2) each node also stores the maximum higher bound existent 
in its subtree. 

Bozkaya and Ozsoyoglu [6] also present an enhancement that allows the IB+ tree a more time-efficient 
performance. This enhancement is the time-split operations of intervals. This time-split enhancement consists of 
finding an optimum upper bound (the split point) from the intervals managed by a leaf node and split the children 
intervals which upper bound surpasses the split point, at that split point. For instance, consider an interval [a, c] and 
a split point b, where a < b < c. Then, interval [a, c] would split and generate intervals [a, b] and [b, c], with [b, c] 
being reinserted in the structure. The motive behind time-splits is to avoid long intervals that negatively impact 
structure performance. 

The IB+ tree has two user-definable parameters: the nodes' order and the time-split alpha. The order parameter 
defines the maximum number of children that a node can have. The alpha parameter is an empirical factor (0 < 
alpha < 1) that influences the choice of the split point for the children intervals of a leaf node. This parameter 
adjusts the space/query-time tradeoff. Higher alpha values lead to higher split point values and, consequently, fewer 
time-splits occur, thus leading to less storage and decreased query-efficiency. Conversely, smaller alpha values 
lead to smaller split point values and, therefore, to the occurrence of more time-splits and an increase in both storage 

Figure 2.  Visual representation of dataset in Figure 1 using 

the I2B+ tree. 

Figure 1.  Original Visual representation of an IB+tree example. 



and query-efficiency. Bozkaya and Ozsoyoglu [6] present a more detailed explanation of the time-split algorithm 
and the impact of the alpha factor. 

III. IMPROVEMENTS ON THE IB+ TREE 

 In this section, we present our proposed improvements with respect to the original implementation of the IB+ 
tree. Next, we analyse other implementation details, such as the tree mechanism for handling time-split intervals. 

A. I2B+ tree main differences 

In section II, we presented the borrow and merge operations and the respective inner workings. As described, 
these operations require the access of a node to its siblings. Consider Figure 1, where a possible IB+ tree is visually 
represented. In the original structure, in the event of a deletion of the interval with lower bound 26 and upper bound 
31, the leaf node containing it would try and borrow a node from its left sibling. To do so, considering the pointers 
between nodes of B+ trees, the application would have to travel to the ancestor node spawning a sub-tree containing 
both nodes. In Figure 1, this would imply travelling to the root and back from the root to the left sibling node. 

With the goal of making these scenarios more efficient, and since our primary focus is time-efficiency (rather 
than storage space efficiency), we propose to modify the pointers to the sibling nodes that each node manages. 
Figure 2 visually represents the same scenario presented in Figure 1, but with our modified version of the IB+ tree. 
In our adaptation, a node, be it a leaf or an intermediary, always stores pointers for its siblings. Therefore, in borrow 
and merge operations, the process of accessing a sibling node becomes more straightforward. Furthermore, these 
pointers are easily maintainable, given the circumstances in which a node can appear or disappear. 

B. Other nuances 

An index structure should always abstract its external interface from the adopted inner data structure and internal 
data representation. Therefore, even though in the IB+ tree the inputted time intervals are possibly time-split, when 
a query is performed over the index structure, the result should contain the original input intervals that match the 
search criteria. 

To satisfy this requirement, we propose the adoption of the Composite design pattern [19] for managing the 
internal representation of the inputted intervals. With this adoption, we consider two possible types of intervals: the 
FlatIntervals and the CompoundIntervals. FlatIntervals are the original intervals, used in insert operations. 
CompoundIntervals are the result of the application of a time-split operation to an Interval (be it a FlatInterval or a 
CompoundInterval). Hence, a CompoundInterval saves a pointer referring to the original interval that was subjected 
to the time-split operation. Figure 3 presents a visual representation of the different existent Interval types. Only 
the original FlatIntervals are returned when retrieving results as part of a query operation, using the pointer stored 
by the CompoundIntervals. 

Figure 3.  Simplified UML of the used Interval types. 

Figure 4.  Example of a distribution of the durations of the intervals. 



IV. EXPERIMENTS AND RESULTS 

This section starts by describing the datasets used in the experiments. Afterwards, it describes the performed 
experiments, followed by the results obtained by the I2B+ tree. The discussion on these results will be presented 
in the next section. 

A. Synthetic Datasets 

To evaluate the performance of the IB+ tree variant, we proceeded with the generation of synthetic datasets. To 
assure that the generated datasets constituted viable test scenarios, we followed the norms presented by Theodoridis 
et al. [20], meaning that we make use of mathematical data distributions for generating the datasets. Each dataset 
stores a fixed number of intervals. Each interval is created using two data distributions: one for computing the 
starting timestamp of the interval and the other for the interval duration. For creating the initial timestamps, the 
synthetic generator makes use of a uniform distribution, and for the duration, it uses a Poisson distribution [21]. 

Two main scenarios, with different characteristics, were created and subsequently analysed. In both scenarios, 
the same uniform distribution was kept for the initial timestamps: on average, at each time unit (an instant at which 
a time interval might begin), 10 new intervals start. However, regarding intervals duration, the two scenarios differ. 
In the first scenario, intervals have an average duration of 7 time units and a standard deviation of 2 time units. In 
the second scenario, the average duration is 1095 time units, and the standard deviation is 200 time units. What we 
try to accomplish with this configuration is to obtain two different scenarios where the number of concurrent 
intervals differs significantly. Hence, obtaining a first scenario containing sparse data and a second scenario 
containing dense data. Given the respective characteristics of each scenario, we named them accordingly: small 
intervals scenario in the first case and big intervals scenario for the second one. 

For each of these scenarios, we generate ten datasets of sequential doubling size: we start at a dataset with 1k 
intervals, then 2k, then 4k, and so on up until 512k intervals. Figure 4 presents, as an example, a visual representation 
of the distribution of the interval durations, for the dataset with 512k entries in the big intervals scenario. The 
horizontal axis presents interval durations while the vertical axis presents the number of items. 

B. Experimentation 

Experiments were conducted for the three basic operations: insertions, range queries and deletions. Regarding 
insertions, two different  analyses were performed. The first insertion analysis, named tree insertion, consists of 
evaluating the average time it takes to construct the totality of the tree, given a test dataset.  The second insertion 
analysis consists of evaluating the average time it takes to insert 100 randomly chosen intervals pertaining to the 
same test dataset. The range query experiment consists of evaluating the average time it takes to find the stored 
intervals that belong to a query range. Hence, it is an analysis of the range query performance. We chose to test 
with range query rather than single query, with the intent of integrating the analysis of an operation over a range. 
Lastly, the deletion analysis consists of evaluating the time it takes to delete 100 randomly chosen intervals stored 
in the tree. In order to be statistically significant, we use Benchmark.js1. With this tool, each test ran between 
approximately 50 and 100 times (being non-deterministic as it depends on the test performance). 

The experiments ran in a Node.js2 environment and were done in a laptop running a macOS distribution, 
powered by a 2,3 GHz Dual-Core Intel Core i5 and 8GB of RAM. 

C. Tuning the order parameter 

After running our I2B+ tree, in a multitude of distinct situations, crossing different characteristics, we proceeded 
with the comparison of the performance. Figure 5 shows the results for the tree insertion test regarding the two 
512k datasets of both the small intervals scenario and big intervals scenario. We chose to present the largest dataset 
as being the most representative since the performance behaviour achieved across the datasets with other sizes is 
identical. In Figure 5 and for the following presented figures, the a label stands for the alpha parameter value (as 
described in section II.B). The T in the labels of the plots stands for the tree insertion test. 

From the analysis of the plots present in Figure 5, we verify that independently of the dataset size, the structure 
with alpha set to 0, is always the fastest when it comes to the insertion operation of the entire dataset of intervals. 
Furthermore, from the line plots shapes in Figure 5, we observe that the order values ranging between 10 and 25 
outperform the remaining order values. Therefore, for the remaining of the experiments, we focus on analysing 
configurations with the order parameter within range 10 to 25.  



D. Tuning the alfa parameter 

We also tried to analyse the performance tests from a perspective that would allow the tuning of the alpha 
parameter. However, the identification of optimal values for the alpha parameter is not as evident as in the order 
parameter. 

We verified, through the empirical evaluation of the obtained results, that on insertion operations, the 
configuration with the alpha parameter with value zero outperformed the remaining values. This performance 
advantage is more emphasised on datasets with a smaller number of intervals (in both scenarios). In the remaining 
operations (although more obvious on deletions), when the alpha parameter is set to zero the structure seems to 
have slightly worse performance. Regarding the comparison of the other alpha values, from a general point of view, 
the alpha values of 0.2, 0.3 and 0.4 appear to be the most consistent and time efficient. Further results are shown in 
the GitHub referenced in section VI. 

Figure 6 shows the performance results achieved with the insertion tests and with the 512k dataset, in the small 
intervals scenario, that highlights the characteristics of these alpha parameters. In Figure 6, and for the following 
presented figures, the o label stands for the order parameter value (as described in section II.B). The I in the labels 
of the plots stands for the insertion test.  

E. Performance analysis 

In this section, we analyse the time complexity of the proposed I2B+ tree, using the Big O notation, by 
evaluating the performance when varying the sizes of the test datasets. Since our improvement to the IB+ tree 
focuses on improving the deletion operation performance, the results obtained for insertions and range queries are 
also valid for the original structure. Figure 7 shows the performance of insertions, range queries and deletions over 
different increasing dataset sizes. In this set of tests, the selected alpha parameter was set to 0.2, on the two scenarios 
(small intervals and big intervals) and the different values of the order parameter belong to the identified optimum 
range. We restrain the configurations chosen in order to reduce visual clutter. In Figure 7, the SI and BI labels 

Figure 5.  Tree insertion test, on the dataset with 512k intervals, 

in the identified scenarios. 



identify, respectively, the small intervals and big intervals scenarios. The RS in the labels of the plots stands for the 
range query test. 

From the analysis of Figure 7, we can verify that range queries and deletion have logarithmic performance, 
independently of the scenario. Insertion performance appears to be independent of the scenario and is the overall 
fastest operation. Additionally, the dataset size impact on insertions performance is minimal when compared to the 
other operations. Indeed, insertion behaviour is closer to a constant performance rather than a logarithmic one, since 

a dataset 256 times bigger only represents an increment of 0.3 milliseconds on its performance, that corresponds to 
an increment of approximately 11.1% of the time spent. Range query is the more scenario-dependent operation. On 
the big intervals scenario, the range query operation is approximately fifty times slower than on its counterpart. 
Deletion operation performance also depends on the input interval duration, although not as heavily as range 
queries. On the big intervals scenario, the deletion operation is approximately four times slower than on the small 
intervals scenario. 

Figure 6.  Insertion test, on dataset with 512k intervals, in the 

small intervals scenario. 



V. DISCUSSION 

In this section, we interpret the results achieved from the experiments. We verified that the order choice has a 
higher impact on performance than alpha does. Furthermore, the identified optimum range of order values can be 
explained by the consequences of choosing less-balanced values. Smaller order values lead to worse performances 
because of an increase of the tree depth and respective overhead for managing rebalancing tasks. Higher order 
values lead to worse performances because of the process of linearly iterating over more extensive lists of elements 
stored in a node. On the other hand, smaller alpha values (excluding zero) having better performances are justified 
by Bozkaya and Ozsoyoglu [6]: ‘Higher values will lead to fewer splits and hence less storage expansion, but also 
to worse query efficiency. Smaller values will lead to better query efficiency but increase storage requirements’. 
Regarding the performance of configurations with the value of the alpha parameter set to 0, the performance on 
insertions is better since there is not the overhead of handling time-splits and consequent insertions (of the time-
split intervals) that will occur.  

The overhead of creating and managing time-splits is also the motive why configurations with the alpha 
parameter set to zero have better performance on smaller datasets. However, the inexistence of time-splits also 
explains the disadvantage of these trees with the query and deletion operations. The verified logarithmic time-
efficiency of the IB+ tree is explained by the underlying structure: the B+ tree. The B+ tree also performs the 
mentioned operations with similar time-efficiency thanks to the branching-factor and rebalancing techniques [18]. 



VI. CONCLUSION 

In this work, we presented a time-efficiency focused IB+ tree variant, the Improved IB+ tree (I2B+ tree). Our 
structure differs from the original one by maintaining pointers to the siblings of each node. To evaluate the I2B+ 
tree performance, we tested it with distinct test scenarios, characterized by different characteristics and using 
synthetically generated datasets. From the results, we empirically verified and demonstrated that the I2B+ tree 
behaves logarithmically on searches and deletions and, with the insertion operation tending to a quasi-constant 
performance.  From our experiments, we determined appropriate boundaries for the order and alpha parameters 
and provided justifications for the behaviours achieved. We consider the current study an improvement on the 
knowledge and performance regarding IB+ trees. The open-source implementation of the structure, as well as a 
more detailed analysis of the experiments developed, is available at https://github.com/EdgarACarneiro/I2Bplus-
tree. Future work includes benchmarking the IB+ tree variant with other valid-time index structures and try and 
ascertain if there is any structure that excels. Furthermore, we expect to evaluate the behaviour of the index structure 
in a context oriented to in-memory databases and continuous data generation (e.g. data streams). 
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