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Abstract—Formal verification has become increasingly crucial
in ensuring the accurate and secure functioning of modern
software systems. Given a specification of the desired behaviour,
i.e. a contract, a program is considered to be correct when
all possible executions guarantee the specification. Should the
software fail to behave as expected, then a bug is present.
Most existing research assumes that the bug is present in the
implementation, but it is also often the case that the specified
expectations are incorrect, meaning that it is the specification that
must be repaired. Research and tools for providing alternative
specifications that fix details missing during contract definition,
considering that the implementation is correct, are scarce.

This paper presents a preliminary tool, focused on Dafny
programs, for automatic specification repair in contract pro-
gramming. Given a Dafny program that fails to verify, the tool
suggests corrections that repair the specification. Our approach is
inspired by a technique previously proposed for another contract
programming language and relies on Daikon for dynamic invari-
ant inference. Although the tool is focused on Dafny, it makes use
of specification repair techniques that are generally applicable to
programming languages that support contracts. Such a tool can
be valuable in various scenarios, such as when programmers have
a reference implementation and need to analyse their contract
options, or in educational contexts, where it can provide students
with hints to correct their contracts.

The results of the evaluation show that the approach is
feasible in Dafny and that the overall process has reasonable
performance but that there are stages of the process that need
further improvements.

Index Terms—contract programming, automatic program re-
pair, contract repair, Dafny

I. INTRODUCTION

As software becomes increasingly pervasive in our daily
lives — from the ubiquitous presence of mobile phones to the
vital role of medical equipment in diagnosing and treating
medical problems — the dependency on its correct functioning
grows. It is more important than ever to design software
with its correctness in mind, i.e. following approaches that
guarantee that the software is free from bugs.

Contract programming, also known as design by con-
tract [1]], [2] or DbC, is a way of programming based on
the idea of precisely and formally specifying the expected
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behaviour of software components by providing assertions
(also known as contracts). Created with reliability in mind,
contract programming aids programmers in achieving correct
and robust software.

Contracts serve as a means to specify what obligations and
guarantees are provided by a software component. Program-
ming languages that support contracts provide verifiers for
checking if the contracts are followed by the implementation,
forcing the programmer to implement a program that satisfies
the specified contract. A program that is verified can be trusted
to follow its specification. However, when a program fails to
verify, it can mean one of two things: either the specification
is correct and the implementation is not, or vice versa— the
implementation is correct, but the specification is not. Most
current research, however, assumes that the specification is
correct, focusing on repairing the implementation. Yet, it is
known that many issues with software stem from incorrect
specifications that provide a false sense of security [3]]. In this
work, we aim to improve the research in the other direction
by shifting the focus towards fixing the specification.

Research on repairing specifications is valuable in scenarios
where verification fails but we can assume the implementation
to be correct. A good example is when programmers have
a reference implementation of an algorithm and are still
analysing their contract options. In such cases, when the pro-
grammers trust the implementation to be correct, suggestions
to change the contracts based on it would be helpful. Once the
contract is sound according to the reference implementation,
it can then be used in the verification of more advanced and
optimized implementations. This type of work can also be
useful in precisely documenting (in the form of specifications)
the assumptions and guarantees of the environment in which
the software component will be deployed, by suggesting
appropriate specifications for the software. A last scenario
where contract repair may prove useful is in the educational
context, where exercises may expect students to write contracts
for implementations provided by the instructors. Students are
known to struggle when writing formal specifications [4]], and
automated repair techniques can be used to provide hints to
help students autonomously correct their contracts.

In this paper we present a tool, focused on Dafny pro-



grams [3]], for automatically fixing specifications in contract
programming. Given a Dafny program that fails to verify, the
tool suggests and applies relevant contract fixes that repair the
bug — in the sense that the program is verified. Our approach
is inspired by a technique previously proposed for contracts in
Eiffel programs [6]. Although our tool is focused on Dafny, it
makes use of specification repair techniques that are generally
applicable to programming languages that support contracts.

We also present the results of our experimental evaluation,
which shows that the approach is feasible in Dafny but also
that the overall process can benefit from improvements to its
efficacy and performance, in particular in what concerns the
invariant detection phase.

The rest of this paper is structured as follows. Section
presents a motivating example and an overview of the ap-
proach. Section [[II] explores related work relevant for this
work. Section presents the proposed approach and its
implementation, whose experimental evaluation is shown in
Section [V] Lastly, Section wraps up the paper and points
directions for future work.

II. MOTIVATION AND OVERVIEW

Dafny is a high-level verification-aware programming lan-
guage that is widely used in teaching and has significant
adoption in industry, with several companies using it to
develop highly-reliable software. For example, at Amazon
Web Services, Dafny is used to write and prove a variety
of security-critical libraries such as encryption librarie at
Consensys, the leading Ethereum software company, Dafny is
used, amongst several other Dafny projects, to verify smart
contracts [7] and consensus protocols.

Dafny programs can be written in a combination of func-
tional and imperative paradigmsﬂ and includes built-in con-
structs for writing specifications and reasoning about pro-
grams. Functions (and predicates) are written in a functional
style and must be free of side effects. Methods are written in
an imperative style, and can contain loops and side effects.
Following design by contract principles, functions, and meth-
ods can be assigned contracts, i.e. formal specifications of an
agreement between a client and a supplier of a component (in
this context, a function/method), where the supplier expects
that certain conditions are met by the client before using the
component (pre-conditions, keyword requires), maintains
certain properties from entry to the component to exit (invari-
ants, keyword invariant), and guarantees certain properties
on exit (post-conditions, keyword ensures). Methods are
used to provide the implementation of the program and are
usually assigned contracts that can call functions that specify
the expected behaviour. During compilation, proof obligations
are generated that test whether the implementations conform
to the contracts. Dafny tries to automatically discharge such
proof obligations by relying on Satisfiability Modulo Theories

Uhttps://github.com/aws/aws-encryption-sdk-dafny

’Dafny also supports object-oriented features, such as classes and class
invariants, but these are still not fully supported by our prototype and will
not be explored in this paper.

function abs (n int

{

int)

if n < 0 then —n else n

method divRem (d int, n int)
returns (g int, r int)
requires d > 0
requires n > 0
ensures r + g » n = d
{
r := d;
var m := abs(n);
g := 0;
while r > m
invariant r + g *» m = d
invariant g > 0
invariant m = abs (n)
{
q:=qg+ 1;
r = r - m;
}
if n < 0 {
q = -
}
}
method rem (d int, n int)
returns (r : int)
requires d > 0
requires n # 0
{
var s_;
s_, r := divRem(d, n);

Fig. 1. An example Dafny program with a bug, with possible contract fix
locations highlighted in red.

(SMT) solvers, guaranteeing the executables obey the contracts
(which are discarded after the verification process).

Figure [I] presents a simple example of a Dafny program that
happens to fail the verification process. The method divRem
simultaneously calculates the quotient g and the remainder r
of two integers d and n using a simple algorithm based on
repeated subtractions. The contract states that given a non-
negative dividend and a positive divisor, divRem returns the
correct quotient and remainder. During compilation, Dafny is
able to verify that divRem obeys that contract. A second
method rem is also defined, which calls divRem and retains
only the remainder of the division. However, either by dis-
traction or by being unaware of the divRem contract, the
contract assigned to rem allows the divisor to be negative. At
this point, Dafny finds an error during compilation, stating that
it cannot guarantee that the pre-condition of divRem holds



when called in rem. This means that either the pre-condition
of rem is too weak, or that the one of divRem is too strong.
Inspecting divRem more closely, it becomes clear that its
implementation actually also supports negative divisors, so its
pre-condition can be relaxed.

The tool we propose in this paper automatically explores
possible fixes to the contracts that result in a correct program,
assuming that the implementation is correct. In this particular
case, the tool proposes either strengthening the pre-condition
of rem to forbid negative numbers or weakening the pre-
condition of divRem to also allow negative divisors.

Figure [2] shows an overview of the proposed approach,
inspired by previous work on contract repair for Eiffel [6].
A set of test cases is executed in the incorrect program, so
that, from the resulting traces, invariants can be dynamically
inferred to characterize the states before and after the execution
of each method. These invariants are then used to strengthen
or weaken contracts that result in a correct program. For the
context of this work, we are mostly focused on the repair
generation stage. We leave the automatic generation of test
cases and the integration in an IDE to support the application
of repairs as future work. For dynamic invariant inference, we
rely on Daikon [8].

ITI. RELATED WORK
A. Automated Software Repair

There is a large body of knowledge addressing the auto-
matic repair of programs (as opposed to the repair of their
contracts or formal specifications) [9]], [10]. Such automatic
repair techniques can be roughly divided into two classes:
generate-and-validate (or heuristic) — which explore a search-
space for repair candidates which are subsequently tested for
correctness —and constraint-based (or semantics-driven)—
where constraints representing a correct repair are derived, and
solvers deployed to generate correct-by-construction repairs.
Automated repair techniques require that an oracle is provided,
specifying the correct behaviour of a program. For most of ex-
isting work, this oracle takes the shape of a test suite, but a few
techniques consider program contracts or formal specifications
as oracles, such as the work by Gopinath et al. for repairing
Java programs with associated Alloy specifications [[11]], or
AutoFix to repair Eiffel programs with contracts [[12]. In the
educational context, there are also works that use a reference
implementation of a program as an oracle to fix students’
submissions [[13]].

To the best of our knowledge, only one technique has been
proposed to automatically repair program contracts, SpeciFix,
for fixing contracts in Eiffel programs [6]. SpeciFix assumes
that the program implementation is correct and uses it as the
oracle. Other work has focused on repairing formal specifi-
cations but without considering implementations as oracles,
including for repairing OCL constraints given inconsistent
information bases [[14] and for repairing faulty Alloy specifi-
cations using test cases [15] and reference specifications [16]—
[18]]. As far as we are aware, no work has focused on the repair
of Dafny, either program implementations or their contracts.

B. Invariant Inference

An invariant is an expression that is always true at particular
program points during execution. Invariants are useful for,
e.g., software verification, repair, and fault localization [19].
They are also useful in software evolution, as, with explicit
invariants in the code, programmers can be alerted to any
changes that violate assumptions necessary for ensuring the
correctness of a program. They act as constraints that must be
preserved during the program’s execution, regardless of any
modifications or changes made to the code. However, despite
their advantages and uses, most programmers do not annotate
their code with invariants.

A way to increase the existence of invariants in code,
is to automatically infer them. There are several existing
approaches for invariant inference, which are divided mainly
into two main classes: static and dynamic. Static approaches
involve analysing the source code of a program and deriving
information without executing it. Dynamic approaches, on the
other hand, involve observing and evaluating the behaviour of
software while it is executing [20]. The accuracy of dynamic
detection is dependent on the coverage and quality of the
tests [21] and it can be a computationally expensive process.
Combining dynamic invariant detection with static verification
of those detected expressions may be desirable [22].

A well-known example of an invariant detection program,
and the pioneer in dynamic invariant inference, is Daikon [8]].
With the help of a test suite that exercises the functionality of
a program, Daikon receives as input an execution trace and
generates a set of invariants that are statistically justified by
the trace. There is no formal assurance that these invariants are
correct, but they match the observed program executions and
there is statistical evidence that their occurrence is meaningful
and relevant to the program’s behaviour. Also, as with any dy-
namic analysis, there is the possibility of reporting redundant
invariants and properties that are true for certain execution
traces but not in general. Although Daikon will still report
invariants that are not useful, efforts have been made to make
the inferred invariants more relevant [8], [23].

Several tools make use of, and improve on, Daikon. For
example, iDiscovery [24] uses symbolic execution to improve
the quality of invariants computed by Daikon by following a
feedback loop of instrumenting the generated invariants into
the code, symbolically executing the code to generate new
tests, and feeding the new tests into Daikon to refine the
results. Daikon has been used and extended in many other
contexts which include the detection of logic vulnerabilities in
web applications [25], invariants for relational databases [26]],
distributed systems [27]], robotic systems [28]], and Ethereum
smart contracts [29].

Although Daikon appears to be the most widely adopted,
there are other works available on dynamic invariant inference.
For example, DySy [30]], a tool created with the goal of
increasing the relevance of inferred invariants when compared
with Daikon, which combines the concrete execution of actual
test cases with a simultaneous symbolic execution of the same



)

Incorrect

e A A
program Vo ——— — 1 5 o
o e O Q
Traces Invariants Specification Correct
program invariant repair fixes repair program
execution detection generation application
Test
cases

Fig. 2. Overview of the proposed approach, highlighting the main step addressed in this work.

tests. Another example is DIDUCE [31]], which dynamically
extracts invariants from program executions, starting with
the strictest invariants and gradually relaxing them when it
detects a violation from continually checking the program’s
behaviour against them. Also, in the context of hardware
design, IODINE [32] uses dynamic analysis to infer likely
invariants based on design simulations.

IV. CONTRACT REPAIR FOR DAFNY
A. Automated Contract Repair

As shown in Section SpeciFix (6] is the only technique
that has thus far been proposed for repairing contracts of
programs, namely of Eiffel programs. As a first step towards a
technique to repair Dafny contracts, this work mainly explores
whether that approach can be applied to the Dafny context.
Here we describe how our procedure works, inspired by the
SpeciFix approach. Roughly, given a program with contracts,
test cases are automatically generated, executed, and tested
against the contracts. From the set of passing and failing test
cases, invariants are inferred to both strengthen and weaken
the contracts. The candidates are then validated against the
tests, those that pass being ranked and presented to the user.

More formally, let a fest case (or simply a fest) t =
r(ay,...,a;) be defined by a method r being applied to a
sequence of m arguments ai,...,a,,. From the outermost
method r call, other methods may be called, and so on
recursively. We denote the call sequence of a test t by
K¢ = T1T2...T,, With r; = r if there are n nested method
calls. Each method is called from a particular pre-state and
produces a post-state. We denote the frace of a test t as
Pt = S1T182T283 . . . SpTn, Where s; denotes a program state.

Each method r; may be annotated with a pre- and post-
condition, which are denoted by P,, and (), respectively.
Given one such assertion A, we denote the fact that it holds
in a state s; as s; = A. A test is said to be valid if the pre-
condition of its outermost method P, holds in its initial state
s1; invalid tests do not represent acceptable executions and are
not even considered during repair. A valid test ¢ is said to be
passing if all states s; in its trace p; pass the pre-condition
of the succeeding method call P,, and the post-condition of
the preceding method call ), , (for ¢ # 1); it is said to be
failing otherwise. We assume that the execution of a failing
test terminates as soon as an inconsistent state is found, and

thus, for failing tests, r,, denotes the routine whose contract
has been broken (either its pre- or post-condition). For our
example, a test rem(20,0) is invalid, since it breaks the pre-
condition of rem that n # 0, rem(20, —10) is a failing test
since it fails the pre-condition of divRem that n > 0 when
called from rem, and rem(20, 10) is a passing test.

Whenever a failing test ¢ is found, contracts can be fixed
in two ways: either strengthening the pre-condition of the
outermost method r, making the test invalid; or weakening
the contract (pre- or post-condition) of the failing method 7,,.
Strengthening is always a valid fix, but may break other calls
to . In our example, the pre-condition of rem could simply be
strengthened ton > 0, but this would disallow calculating the
remainder of a negative divisor, which is actually possible in
the current implementation. Weakening may not always work,
as it may result in incorrect executions. In our example, the
pre-condition of divRem can be relaxed to n # 0 because
the reference implementation actually works correctly for
negative divisors; if that was not the case, it would not be
possible to fix the contracts by weakening. In [6] the authors
argue that to generate fixes that are consistent with the way
the API is used, strengthening fixes should actually be applied
along the complete trace, and not just to the outermost method.
Moreover, they also use the strength of proposed fixes when
ranking them to be presented to the user; here we leave fix
ranking for future work.

Given this background, the generation of candidate fixes
works as follows, generating weakening and strengthening
candidate fixes (and their combination).

Trace generation: Execute all test cases, and identify
a fault to be fixed, i.e., a set of test cases with the same
call sequence that break assertion A,, (either a pre- or post-
condition) of method r,. Let P, be the set of passing test
cases with the outermost method r, and F,. the set of failing
tests for that fault. In our example, A,, is a pre-condition of
divRem, d > 0.

Generating weakening fixes: The result of this stage is a
set of weakening fixes ®yy and a set of candidate weakening
fixes U that will be combined with strengthening candidates
in the next stage.

e Let 7, be a version of method r,, with the broken asser-

tion A,, relaxed to true, and create new sets of passing

and failing tests, P, and F,.. From those sets, infer the



invariants Z¥ and Z7. Let W = {p | p € ZF Ap ¢ T7},
the set of minimal weakening assertions required for 7,
to pass. In our example, n # 0 is a possible weakening
assertion for divRem.

» For each weakening assertion p € W U {false} create
a candidate fix that replaces A, with A, V p and add it
to a set of weakening fix candidates ¥. Dummy assertion
false allows the generation of purely strengthening
candidates in the next stage. In our example, we would
endup withn > 0 Vn # Oandn > 0 V false,
which simplify to n # 0 and n > 0 respectively.

e Add every weakening candidate fix f € W that now
passes tests P, U F,. to @y and let ¥ = U\ Pyy. In our
example, candidate n # 0 would make all tests pass.
Generating strengthening fixes: Since it is not always

possible to fix a contract by simply weakening, this stage
combines invalid weakening fixes with strengthening fixes. To
keep the program API consistent, it tries to strengthen all pre-
conditions in the trace, rather than just the outermost method.

« For every invalid weakening candidate f € ¥, determine
ZF and Z7 as the invariants for the tests currently
passing and failing the pre-condition of each method r;
in the trace, with ¢ < n. For each r;, let S; = {p; |
p; € IF Ap; ¢ I7}, the set of minimal strengthening
assertions that make r; pass. In our simple example,
there is a single method call before the failing assertion,
rem, and a strengthening assertion such as n > 0 could
be generated associated with the remaining weakening
candidate in ¥ (which was actually false, leaving the
pre-condition of divRem unchanged).

o For all combinations of strengthening assertions p € S; x
... X S,_1 for a weakening candidate fix f € U, create
a fix that replaces P, by P, A p; and add it to the set
of strengthening candidates, ¥, along with weakening fix
f. For our example, this would create the strengthening
candidate for rem and leave divRem unchanged.

o Add every strengthening candidate fix f € ¥ that now
passes tests P, U F,. to ®g.

The fixes presented to the user are those in the set $yy U $g.

B. Implementation

The implementation of the contract repair technique is built
on top of the Dafny official releas which is developed in
C#. In particular, our tool relies on the Dafny library to parse
Dafny programs and manipulate their AST.

To extract the execution trace of each test case, we rely
on a compilation of Dafny into Python. This translation was
adapted to wrap the Python-version of the Dafny methods with
a decorator that registers the state of the program in a trace
logger before and after each function call, including cases
when a Python exception occurs (e.g., division by zero and
infinite recursion) and this is marked in the trace. Python.NET
is then used to retrieve the resulting trace information back
into the C# module. Note that execution traces are obtained

3https://github.com/dafny-lang/dafny

without testing for the contracts, so they always completely run
regardless of failing the assertions. This allows us to reuse the
same execution traces in different stages of the process.

Once the execution trace of a program is retrieved, it is then
enhanced with information indicating whether the contracts are
holding at each state. To that purpose, the main C# module
evaluates the contracts (i.e., pre- and post-conditions) at each
state of the traces. This evaluation is very effective since it is
only evaluating an assertion over a specific program state.

Execution traces, along with that contract passing informa-
tion, are then passed to Daikon to infer the dynamic invariants.
By having information regarding passing contracts as a trace
variables, Daikon is able to determine sufficient and necessary
conditions for a contract to hold. The header of the Daikon
trace format, dtrace, contains the trace point definitions. Fig-
ure [3] shows an example of a declaration for the entering state
of rem from our running example. It contains the name of the
point (with the method’s qualified name and argument types,
along with information about the point type), its type (either
enter or subexit), and for each variable, its name, kind (either
field, function, array, variable or return value), how its value is
represented in the trace, and its comparability value (Daikon
only creates comparison invariants for variables with the same
comparability value). Here, there are two variables for the
rem arguments d and n, and a Boolean pre_condition,
registering whether the pre-condition passed. An identical
variable post_condition would occur in exit trace points,
together with a variable that indicates if, during its execution,
any other contract was broken.

To detect conditional invariants, Daikon requires a splitter,
which can be manually provided by the user. This is done by
indicating which Boolean variables the invariants should be
split on depending on their value. For our context, we define
the invariant splitter on the variables that identify whether
contracts pass or fail, namely on the values of variables
pre_condition and post_condition.

The actual body of a dtrace file contains the trace it-
self, conforming to the point declarations. Each trace point
contains concrete values for the variables declared for that
point, representing a concrete state of the trace. Currently,
our tool supports only variables of primitive types in the
states of the traces. Figure [4] shows a particular trace point
from the execution of test case for rem, identifying the point
name, a unique identifier (repeated only in the exit point
for the same call), and a list of the point’s variable state,
with their names, concrete values, and whether they were
changed or not. In the example, we have d = 5, n = -3
and pre_condition = 1 since the pre-condition of rem
holds for those arguments.

After Daikon executes, the provided invariants are processed
back into the repair module and converted into Dafny ex-
pressions. Daikon generates invariants for all entry points and
variables, many of which are not relevant to the repair process,
so they are filtered before being considered as fix candidates.
In particular, an invariant A is considered relevant if:
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ppt module_.default___ .rem() :::ENTER

ppt-type enter

variable d
var-kind variable
dec-type int
rep-type int
comparability 2

variable n
var-kind variable
dec-type int
rep—-type int
comparability 2

variable pre_condition
var-kind variable
dec-type boolean
rep—-type boolean
comparability 1

Fig. 3. Entry point declaration for rem in the dtrace format.

module_.default_ .rem() :: :ENTER
this_invocation_nonce

192

pre_condition
1
0

Fig. 4. Entry point example for test case rem (5, -3) in the dtrace format.

e A is in the format (<contract variable> ==
<boolean value>) <==> <expression>;

« the right-hand <expression> in A refers to variables
other than contract variables;

o A is not structurally equivalent to others;

o when calculating fixes for pre-conditions, A cannot refer
to return values;

« in the weakening phase, A cannot refer to methods other
than the faulty call r,.

V. EXPERIMENTAL EVALUATION

For the evaluation of the developed prototype, we developed
a few simple Dafny programs with faulty contracts:

o Catalan numbers, composed by a single recursive
method that calculates the n™ Catalan number;

o DivRem, composed by divRem running example that
receives two integers and calculates their integer division
and respective remainder, which is called by rem that
discards the quotient and returns the remainder only;

o« Harmonic Sum, composed by HarmonicSum, a
method that calculates the sum of the n'" and (n +
1) harmonic terms, which are obtained by a call to
NthHarmonic, a method that requires a positive num-
ber, wrongly disallowing its argument to be 0;

o Inverse Sign, having a method Enter that receives an
integer n and calls div which calculates 1/sgn(n) using
a method inverse for the calculation of this division;

o Opaque Keyword, having a single empty method with
a post-condition that is only valid when its argument is
in the interval [0, 100);

o Two Requires, having a method Enter that calls an
empty method with a strict pre-condition, allowing it to
only be called with 0 as an argument.

The repair generation process requires a set of test cases
from which to retrieve the execution traces. These tests ideally
should be generated automatically for the program to be fixed,
but that has been left as future work. To have access to a large
set of test cases to perform the evaluation, we have manually
implemented a script to generate test cases within a certain
range for each example program defined above.

The repair procedure was run 20 times for each example
and execution times averaged. All tests were run on an En-
deavourOS 2022.06.23 machine with 12 GiB of memory and
a 2.1 GHz AMD Ryzen 5 4-core CPU. When running Daikon,
the confidence level was set to 0 in order to obtain a maximum
number of invariants, and the splitter was set on the contract
passing variables as explained in Section Results are
presented in Table [l with detailed information about the
various stages of the process. Note that the strengthening
stage must be run for each invalid weakening candidate in ¥’;
the presented values refer to the sum of all those iterations.
After execution, we manually inspected the produced fixes and
realized many were actually logically equivalent. To discuss
that issue, we also added to the table the number of fixes we
found to be effectively unique (i.e., not logically equivalent).

Our prototype was able to generate fixes for all the
faulty examples except for opaqueKeyword. This partic-
ular example required a strengthening assertion of the shape
0 < x < 100 but Daikon was only able to detect invari-
ant 0 < x despite our configuration efforts. For divRem,
harmonicSum, and twoRequires our tool found both
weakening and strengthening fixes, and for the remainder
examples only strengthening fixes, which was expected. Inter-
estingly, we also detected a case where the returned strength-
ening fix was stronger than required, namely for the divRem
program. Rather than just forcing n > 0 in the pre-condition
of rem, the weakest strengthening fix, Daikon actually inferred
that n > d, which associated with the other pre-condition
d > 0 is stronger thann > 0 (e.g.,d = 9andn = 3 is
not accepted by the stronger pre-condition).

Regarding execution times, evaluation shows that our tool
takes from 6s to 12s to generate the fixes for our examples.
While we feel such times are acceptable to a tool of this
nature, it must be noted that our benchmark consists of
very simple programs. Looking at the different stages of the



TABLE I
EXPERIMENTAL EVALUATION RESULTS.

divRem catalanNumber harmonicSum inverseSign opaqueKeyword twoRequires
Trace Number of test cases 225 15 15 15 170 15
Test execution (ms) 1114 1216 1107 1062 1083 1347
Weakening fixes generation (ms) 2631 2807 2543 2717 2424 2520
Invariant detection (ms) 2571 2631 2527 2699 2405 2510
Weakenin Invariant detection relative weight 97.7% 93.7% 99.3% 99.3% 99.2% 99.6%
g Weakening candidate fixes (# V) 3 3 3 3 1 2
Valid pure-weakening fixes (#Pw ) 2 0 2 0 0 1
Unique pure-weakening fixes 1 0 1 0 0 1
Tterations (# (")) 1 3 1 3 1 1
Strengthening fixes generation (ms) 2723 8294 2523 8174 2433 2569
Invariant detection (ms) 2639 8072 2514 8131 2420 2565
Strengthening  Invariant detection relative weight 96.9% 97.3% 99.6% 99.5% 99.5% 99.8%
Strengthening candidate fixes (#X) 6 6 4 12 1 3
Valid strengthening fixes (#®Ps) 2 6 2 12 0 2
Unique strengthening fixes 1 1 1 2 0 1
Runtime (ms) 5913 12154 6469 15557 6127 7431
Total Invariant detection relative weight 88.1% 88.1% 77.9% 69.6% 78.8% 68.3%
Fixes (#(®w U ®s)) 4 6 4 12 0 3
Unique fixes 2 1 2 2 0 2
procedure, the evaluation shows that, perhaps as expected, method NthHarmonic (x int)
most of the time is spent during invariant detection using returns (c int)
Daikon, followed by the time spent initially executing the test requires x > 1
cases to retrieve the traces. This indicates that future effort {
should focus on this stage of the process, either fine-tuning if x < 0 {
the Daikon configuration or exploring alternative approaches. return 1 / 0;
It is also worth noting that the tool is generating equivalent }
fixes due to equivalent assertions being provided by the return 1 / (x + 1);
invariant detection stage, meaning additional costly, but irrel- }
evant, iterations of the strengthening stage (besides possibly
encumbering the user with spurious repair candidates). For method HarmonicSum (n int)

instance, for the divRem program, Daikon returns n # O returns (r int)
and - (n = 0) as weakening assertions, and d < n and requires n > 0
—(d > n) as strengthening assertions. It may also be worth {
to employ techniques for the detection of equivalent assertions var n0 := NthHarmonic (n);
to reduce the number of candidate assertions. var nl := NthHarmonic(n + 1);
To further illustrate the fixes suggested by the tool, we r := n0 + nl;
present in Figure [5] a simple example, the Harmonic Sum, }
used in our evaluation. In this example, the pre-condition of the
method NthHarmonic incorrectly requires its argument to be Fig. 5. The faulty Harmonic Sum example used in the evaluation, with

a positive number, but a value of zero should also be accepted.
The tool proposes four fixes, two for each method. For the
NthHarmonic, it suggests the weakening assertions x > 0
and - (x < -1), both equivalent; for the HarmonicSum, it
suggests strengthening fixesn > 1 and -~ (n < 0), both also
equivalent. Although fixing the NthHarmonic by weakening
its pre-conditions would likely be the most desirable fix, the
suggestions for the HarmonicSum also results in a program
that verifies and, as such, corresponds to a valid repair.

VI. CONCLUSIONS AND FUTURE WORK

This paper presents a prototype tool for the repair of faulty
contracts in Dafny programs, assuming the correctness of a
reference implementation. We were inspired by a technique
previously proposed for another contract programming lan-

possible contract fix locations highlighted in red.

guage [6]], and currently rely on a third-party tool for dynamic
invariant inference [_].

Our preliminary evaluation shows that the procedure is
feasible in Dafny for our simple examples. It also shows
that the steps performed by our tool take reasonable time to
execute, but the overall process suffers from some efficacy
and performance issues that stem from the invariant detec-
tion phase performed by Daikon. Although some fine-tuning
of Daikon’s input parameters may improve its performance,
scaling the procedure for more complex programs will likely
require further research on this topic.

There is still substantial work to be done before the tool
can be deployed in the development of Dafny programs. For



example, language features such as mutable elements and
classes have not yet been addressed. Also, the evaluation must
be expanded to consider more complex and realistic programs.
In addition, user-studies must be carried out to explore how
helpful users find the generated fixes and if these fixes do
contribute positively to produce a program that verifies.

Although previous work suggests that inferred contracts
are important to complement contracts written by program-
mers [33]], work on human factors that affect the use of inferred
contracts is lacking. Further work in this area should be carried
out, for example, to support programmers with determining the
relevance and validity of the inferred invariants, as previous
studies have shown that users have difficulty deciding if the
invariants inferred by Daikon are true [34].

Moreover, techniques for automated test generation should
be employed to create the test cases, and there is some work
on this topic for Dafny [35], [36]. To be useful for the
community, such a repair technique should integrate the Dafny
IDE, namely its plug-in for VS Code. Lastly, as part of our
future work, we aim to build a large dataset of faulty Dafny
programs that will be made available to the community to
foster further research in the area of Dafny program repair.
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