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Abstract. We study a dichotomous decision model, where individuals can
make the decision yes or no and can influence the decisions of others. We

characterize all decisions that form Nash equilibria. Taking into account the

way individuals influence the decisions of others, we construct the decision
tilings where the axes reflect the personal preferences of the individuals for

making the decision yes or no. These tilings characterize geometrically all

the pure and mixed Nash equilibria. We show, in these tilings, that Nash
equilibria form degenerated hystereses with respect to the replicator dynamics,

with the property that the pure Nash equilibria are asymptotically stable and
the strict mixed equilibria are unstable. These hystereses can help to explain

the sudden appearance of social, political and economic crises. We observe the

existence of limit cycles for the replicator dynamics associated to situations
where the individuals keep changing their decisions along time, but exhibiting
a periodic repetition in their decisions. We introduce the notion of altruist

and individualist leaders and study the way that the leader can affect the
individuals to make the decision that the leader pretends.

1. Introduction. The main goal in Planned Behavior or Reasoned Action theories,
as developed in the works of Ajzen (see [1]) and Baker (see [4]), is to understand
and predict the way individuals turn intentions into behaviors. Almeida-Cruz-
Ferreira-Pinto (see [2, 9]) developed a game theoretical model for reasoned action,
inspired by the works of J. Cownley and M. Wooders (see [7]). Here, we study the
Pinto’s dichotomous decision model (see [9, 11]), which is a simplified version of the
Almeida-Cruz-Ferreira-Pinto decision model. In this model, there are just two types
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t ∈ {t1, t2} of individuals and two possible decisions d that individuals can make.
In this case, they have to choose between yes or no, i.e. d ∈ {Y,N}. The yes-no
decision model incorporates, in the coordinates of the preference decision matrix
how much an individual with type t1 or with type t2 likes or dislikes, to make a
decision d ∈ {Y,N}. The yes-no decision model incorporates, in the coordinates of
the preference neighbors and no-neighbors matrices, the preference that individuals
with a certain type ti have for other individuals, with the same or a different type
tj , to make the same decision or the opposite decision as theirs (see [5, 10]). The
preference decision matrix and the neighbors and no-neighbors matrices can be very
complex to find explicitly in real cases because they encode, for instance, information
from economic, educational, political, psychological and social variables. However,
if we have a qualitative or rough knowledge of these matrices, we can obtain relevant
information on how individuals make decisions and why to make decisions can be
so complex.

We characterize all the pure Nash equilibria and we show that the pure Nash
equilibria are, in general, asymptotically stable with respect to the replicator dy-
namics. The pure Nash equilibria are either cohesive, i.e. all individuals with the
same preferences make the same decision, or disparate, i.e. there are individuals
with the same preferences that make opposite decisions. The disparate pure Nash
equilibria can correspond to conflicting decisions that divide a community. We
characterize all the strict mixed Nash equilibria and we prove that the strict mixed
Nash equilibria are, in general, unstable. Fixing the parameters of the preference
neighbors matrices we construct tilings in the plane, where the horizontal axis rep-
resent the relative preference of individuals with type t1 to make the decision yes or
no, the vertical axis represent the relative preference of individuals with type t2 to
make the decision yes or no and the pure and mixed Nash equilibria form the tiles.
We prove that the tilings give a full geometrically characterization of the pure and
mixed Nash equilibria.

We say that individuals with a certain type tj have a positive influence over
individuals with the same or other type ti if the individuals with type ti prefer to
make the same decision as the individuals with type tj and we say that individuals
with type tj have a negative influence over individuals with type ti if the individuals
with type ti prefer to make the opposite decision from the individuals with type tj .
If all the individuals have a positive influence over individuals with the same type
then there are no disparate Nash equilibria. However, if there are individuals with
a certain type tj that have a negative influence over individuals with the same type
tj then there are disparate Nash equilibria that are asymptotically stable.

The stable manifolds of the strict mixed Nash equilibria can be locally char-
acterized by appropriate symmetries of the model. They are the main reason for
certain decision strategies to persist for long periods of time before breaking down
and converge to quite different strategies of decision. They also explain, partially,
the complexity of the non-intuitive successive reversal of the individuals decisions
along time before converging to a stable equilibrium, i.e. a high number of individ-
uals have to keep modifying their decisions through the transient dynamics before
reaching the equilibrium. Furthermore, we observe the existence of stable periodic
orbits for the replicator dynamics, i.e. the individuals decisions keep changing along
time exhibiting a periodic pattern. The replicator dynamics equilibria form hystere-
ses that provide insight into how small changes in economic, educational, political,
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psychological or social variables can reverse abruptly individual and collective deci-
sions. These changes in the collective decisions can lead to serious political, social
or economic transformations in society.

Following [3], we introduce the notion of altruist and individualist leaders. The
altruist and individualist leaders offer, respectively, advantages or disadvantages to
the individuals of both type. The leader is biased if the leader offers advantages to
individuals with a certain type and disadvantages to individuals with the other type.
The individuals can increase or decrease the advantages or disadvantages offered by
the leader depending upon their own abilities characterized by their type. We study
the way that the leader can affect the individuals (potential followers) to make the
decision that the leader pretends.

2. Yes-No Decision Model. As in [11], the yes-no decision model has two types
T = {t1, t2} of individuals. Let I1 = {1, . . . , n1} be the set of all individuals with
type t1, and let I2 = {1, . . . , n2} be the set of all individuals with type t2. Let
I = I1 t I2. The individual i ∈ I has to make one decision d ∈ D = {Y,N}1. Let
L be the preference decision matrix whose coordinates γdp indicate how much an
individual with type tp likes or dislikes, to make decision d

L =

(
γY1 γN1
γY2 γN2

)
.

The preference decision matrix indicates for each type of individuals the decision
that the individuals prefer, i.e. the taste type of the individuals (see [2, 6, 7, 9, 11]).
Let Nd be the preference neighbors matrix whose coordinates βdpq indicate how much
an individual with type tp who decides d likes or dislikes that an individual with
type tq also makes decision d

Nd =

(
βd11 βd12
βd21 βd22

)
.

Let N d be the preference non-neighbors matrix whose coordinates β
d

pq indicate how
much an individual with type tp who decide d, likes or dislikes that an individual
with type tq makes decision d′ 6= d

N d =

(
β
d

11 β
d

12

β
d

21 β
d

22

)
.

The preference neighbors and non-neighbors matrices indicate, for each type of
individuals whose decision is d, whom they prefer, or do not prefer, to be with in
each decision, i.e. the crowding type of the individuals (see [2, 6, 7, 9]).

We describe the (pure) decision of the individuals by a (pure) strategy map S :
I → D that associates to each individual i ∈ I its decision S(i) ∈ D. Let S be the
space of all strategies S. Given a strategy S, let OS be the strategic decision matrix
whose coordinates ldp = ldp(S) indicate the number of individuals with type tp, who
make decision d

OS =

(
lY1 lN1
lY2 lN2

)
.

The strategic decision vector associated to a strategy S is the vector (l1, l2) =
(ly1(S), ly2(S)). Hence, l1 (resp. n1 − l1) is the number of individuals with type t1
who make the decision Y (resp. N). Similarly, l2 (resp. n2 − l2) is the number

1Similarly, we can consider that there is a single individual with type tp that has to make np

decisions, or we can, also, consider a mixed model using these two possibilities.
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of individuals with type t2 who make the decision Y (resp. N). The set O of all
possible strategic decision vectors is

O = {0, . . . , n1} × {0, . . . , n2} .

Let:

• ωY1 = γY1 + β
Y

11(n1 − 1) + β
Y

12n2;

• ωN1 = γN1 + β
N

11(n1 − 1) + β
N

12n2;

• ωY2 = γY2 + β
Y

22(n2 − 1) + β
Y

21n1;

• ωN2 = γN2 + β
N

22(n2 − 1) + β
N

21n1;

• αdij = βdij − β
d

ij , for i, j ∈ {1, 2} and d ∈ {Y,N}.

Let U1 : D×O→ R the utility function of an individual with type t1 be given by

U1(Y ; l1, l2) = γY1 + βY11(l1 − 1) + βY12l2 + β
Y

11(n1 − l1) + β
Y

12(n2 − l2)

= ωY1 + αY11(l1 − 1) + αY12l2;

U1(N ; l1, l2) = γN1 + βN11(n1 − l1 − 1) + βN12(n2 − l2) + β
N

11l1 + β
N

12l2

= ωN1 + αN11(n1 − l1 − 1) + αN12(n2 − l2).

Let U2 : D×O→ R the utility function of an individual with type t2 be given by

U2(Y ; l1, l2) = γY2 + βY22(l2 − 1) + βY21l1 + β
Y

22(n2 − l2) + β
Y

21(n1 − l1)

= ωY2 + αY22(l2 − 1) + αY21l1;

U2(N ; l1, l2) = γN2 + βN22(n2 − l2 − 1) + βN21(n1 − l1) + β
N

22l2 + β
N

21l1

= ωN2 + αN22(n2 − l2 − 1) + αN21(n1 − l1).

Given a strategy S ∈ S, the utility Ui(S) of an individual i with type tp(i) is given
by Up(i)(S(i); ly1(S), ly2(S)).

Definition 2.1. Let x = ωY1 −ωN1 be the horizontal relative decision preference of
the individuals with type t1 and let y = ωY2 − ωN2 be the vertical relative decision
preference of the individuals with type t2. Let Aij = αYij + αNij , for i, j ∈ {1, 2}, be
the coordinates of the influence matrix.

If x > 0, the individuals with type t1 prefer to decide Y , without taking into
account the influence of the others. If x = 0, the individuals with type t1 are
indifferent to decide Y or N , without taking into account the influence of the others.
If x < 0, the individuals with type t1 prefer to decide N , without taking into account
the influence of the others.

If Aij > 0, the individuals with type tj have a positive influence over the utility of
the individuals with type ti. If Aij = 0, the individuals with type tj are indifferent
for the utility of the individuals with type ti. If Aij < 0, the individuals with type
tj have a negative influence over the utility of the individuals with type ti.
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3. Cohesive Nash equilibria. We will show that the relative decision preferences
and the influence matrix together with the total number of individuals of each type
encode all the relevant information for characterizing the Nash equilibria.

A strategy S∗ : I→ D is a (pure) Nash equilibrium if

Ui(S
∗) ≥ Ui(S)

for every individual i ∈ I and for every strategy S ∈ S, with the property that
S∗(j) = S(j) for every individual j ∈ I \ {i}. The Nash domain N(S) of a strategy
S ∈ S is the set of all pairs (x, y) for which S is a Nash equilibrium.

Definition 3.1. A cohesive strategy2 is a strategy in which all individuals with the
same type prefer to make the same decision. A disparate strategy is a pure strategy
that is not cohesive.

As in [11], we construct the Nash domains N(S) for the cohesive strategies. We
observe that there are four cohesive strategies: (Y, Y ) strategy : all individuals make
the decision Y ; (Y,N) strategy : all individuals, with type t1, make the decision
Y , and all individuals, with type t2, make the decision N ; (N,Y ) strategy : all
individuals, with type t1, make the decision N and all individuals, with type t2,
make the decision Y ; (N,N) strategy : all individuals make the decision N .

The horizontal H(Y, Y ) and vertical V (Y, Y ) strategic thresholds of the (Y, Y )
strategy are

H(Y, Y ) = −αY11(n1 − 1)− αY12n2 and V (Y, Y ) = −αY22(n2 − 1)− αY21n1 .

The Nash domain N(Y, Y ) is the right-upper quadrant

N(Y, Y ) = {(x, y) : x ≥ H(Y, Y ) and y ≥ V (Y, Y )} .

The horizontal H(Y,N) and vertical V (Y,N) strategic thresholds of the (Y,N)
strategy are

H(Y,N) = −αY11(n1 − 1) + αN12n2 and V (Y,N) = αN22(n2 − 1)− αY21n1 .

The Nash domain N(Y,N) is the right-lower quadrant

N(Y,N) = {(x, y) : x ≥ H(Y,N) and y ≤ V (Y,N)}.

The horizontal H(N,Y ) and vertical V (N,Y ) strategic thresholds of the (N,Y )
strategy are

H(N,Y ) = αN11(n1 − 1)− αY12n2 and V (N,Y ) = −αY22(n2 − 1) + αN21n1 .

The Nash domain N(N,Y ) is the left-upper quadrant

N(N,Y ) = {(x, y) : x ≤ H(N,Y ) and y ≥ V (N,Y )}.

The horizontal H(N,N) and vertical V (N,N) strategic thresholds of the (N,N)
strategy are

H(N,N) = αN11(n1 − 1) + αN12n2 and V (N,N) = αN22(n2 − 1) + αN21n1 .

The Nash domain N(N,N) is the left-lower quadrant

N(N,N) = {(x, y) : x ≤ H(N,N) and y ≤ V (N,N)} .

2or equivalently, no-split strategy or heard strategy
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4. Disparate Nash equilibria. An (l1, l2) strategic set is the set of all pure strate-
gies S ∈ S with l1(S) = l1 and l2(S) = l2. An (l1, l2) cohesive strategic set is an
(l1, l2) strategy set with l1 ∈ {0, n1} and l2 ∈ {0, n2}. An (l1, l2) disparate strate-
gic set is an (l1, l2) strategic set that is not cohesive. We observe that a cohesive
strategic set has a single strategy and a disparate strategic set has more than one
strategy.

Since individuals with the same type are identical, a strategy to be a Nash
equilibrium depends only upon the number of individuals of each type that decide
either Y or N , and not upon the individual who is making the decision.

Definition 4.1. An (l1, l2) pure Nash equilibrium (set) is an (l1, l2) strategic set
whose strategies are Nash equilibria. The (pure) Nash domain N(l1, l2) is the set
of all pairs (x, y) for which the (l1, l2) strategic set is a Nash equilibrium set.

The (l1, l2) pure Nash equilibrium set is cohesive if l1 ∈ {0, n1} and l2 ∈ {0, n2}.
The (l1, l2) pure Nash equilibrium set is disparate if l1 /∈ {0, n1} or l2 /∈ {0, n2}.

Lemma 4.2. Let (l1, l2) be a Nash equilibrium.

(i): If A11 > 0, then l1 ∈ {0, n1}.
(ii): If A22 > 0, then l2 ∈ {0, n2}.

Furthermore, if A11 > 0 and A22 > 0, then (l1, l2) is cohesive.

Hence, if the individuals with a given type have a positive influence over the
utility of the individuals with the same type, i.e. A11 > 0 and A22 > 0, then there
are no disparate Nash equilibria.

Proof. Suppose, by contradiction, that the (l1, l2) strategy is a Nash equilibrium
for l1 ∈ {1, . . . , n1 − 1}. Hence, the following two inequalities hold

U1(Y ; l1, l2) ≥ U1(N ; l1 − 1, l2) , U1(N ; l1, l2) ≥ U1(Y ; l1 + 1, l2) .

By rearranging the terms in the previous inequalities, we obtain A11 ≤ 0 which
contradicts that A11 is positive. Hence, Lemma 4.2 (i) holds. The proof of the
other cases follow similarly to the proof of the first case.

The cohesive horizontal vector ~H is

~H = (H(Y,N)−H(N,N), V (Y,N)− V (N,N)) = −(A11(n1 − 1), A21n1) .

The cohesive vertical vector ~V is

~V = (H(N,Y )−H(N,N), V (N,Y )− V (N,N)) = −(A12n2, A22(n2 − 1)) .

The disparate vector ~Z(l1, l2) is

~Z(l1, l2) = −l1(A11, A21)− l2(A12, A22) =
l1
n1

( ~H − (A11, 0)) +
l2
n2

(~V − (0, A22))

=
l1

n1 − 1
( ~H + (0, A21)) +

l2
n2 − 1

(~V + (0, A22)).

(1)

Lemma 4.3. Let l1 ∈ {1, 2, . . . , n1 − 1} and l2 ∈ {1, 2, . . . , n2 − 1}.
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(i): If A11 ≤ 0, the disparate Nash domain N(l1, 0) is given by

{(H(N,N), V (N,N)) + ~Z(l1, 0) + (pA11, qA22) : p ∈ [0, 1], q ∈ [0,+∞)}
and the disparate Nash domain N(l1, n2) is given by

{(H(N,N), V (N,N)) + ~Z(l1, n2) + (pA11, qA22) : p ∈ [0, 1], q ∈ (−∞, 1]} .
(ii): If A22 ≤ 0, the disparate Nash domain N(0, l2) is given by

{(H(N,N), V (N,N)) + ~Z(0, l2) + (pA11, qA22) : p ∈ [0,+∞), q ∈ [0, 1]}
and the disparate Nash domain N(n1, l2) is given by

{(H(N,N), V (N,N)) + ~Z(n1, l2) + (pA11, qA22) : p ∈ (−∞, 1], q ∈ [0, 1]} .
(iii): If A11 ≤ 0 and A22 ≤ 0, the disparate Nash domain N(l1, l2) is

N(l1, l2) = {(H(N,N), V (N,N)) + ~Z(l1, l2) + (pA11, qA22) : p, q ∈ [0, 1]} .

Hence, if the individuals with a given type have a non-positive influence over the
utility of the individuals with the same type, i.e. A11 ≤ 0 and A22 ≤ 0, then for
every (l1, l2) disparate strategic set there are relative preferences for which (l1, l2)
is a Nash equilibrium set.

Proof. The (l1, 0) strategy is a Nash equilibrium if, and only if, the following three
inequalities hold

U1(Y ; l1, 0) ≥ U1(N ; l1 − 1, 0) , U1(N ; l1, 0) ≥ U1(Y ; l1 + 1, 0) ,

and
U2(N ; l1, 0) ≥ U2(Y ; l1, 1) .

Hence, the proof of Lemma 4.3 (i) follows from rearranging the terms in the previous
inequalities. The proof of Lemma 4.3 (ii) follows similarly to the proof of the first
case. Let us prove Lemma 4.3 (iii). The (l1, l2) strategy is a Nash equilibrium if,
and only if, the following four inequalities hold

U1(Y ; l1, l2) ≥ U1(N ; l1 − 1, l2) , U1(N ; l1, l2) ≥ U1(Y ; l1 + 1, l2)

and
U2(Y ; l1, l2) ≥ U2(N ; l1, l2 − 1) , U2(N ; l1, l2) ≥ U2(Y ; l1, l2 + 1) .

Hence, the proof of Lemma 4.3 (iii) follows from rearranging the terms in the pre-
vious inequalities.

5. Mixed Nash equilibria. Recall that I = I1 t I2. We describe the (mixed)
decision of the individuals by a (mixed) strategy map S : I→ [0,1] that associates
to each individual i ∈ I1 the probability pi = S(i) to decide Y ∈ D and to each
individual j ∈ I2 the probability qj = S(j) to decide Y ∈ D. Hence, each individual
i ∈ I1 decides N ∈ D with probability 1− pi = 1− S(i) and each individual j ∈ I2
decides N ∈ D with probability 1− qj = 1−S(j). We assume that the decisions of
the individuals are independent.

Define P =
∑n1

i=1 pi, Q =
∑n2

j=1 qj , Pi = P − pi and Qj = Q − qj . For every

individual i ∈ I1, the Y-fitness function fY,1 : [0, 1]× [0, n1]× [0, n2]→ R+ is given
by

fY,1(pi;P,Q) = ωY1 + αY11Pi + αY12Q ;

and the N-fitness function fN,1 : [0, 1]× [0, n1]× [0, n2]→ R+ is given by

fN,1(pi;P,Q) = ωN1 + αN11(n1 − 1− Pi) + αN12(n2 −Q) .
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For every individual j ∈ I2, the Y-fitness function fY,2 : [0, 1]×[0, n1]×[0, n2]→ R+

is given by
fY,2(qj ;P,Q) = ωY2 + αY22Qj + αY21P ;

and the N-fitness function fN,2 : [0, 1]× [0, n1]× [0, n2]→ R+ is given by

fN,2(qj ;P,Q) = ωN2 + αN22(n2 − 1−Qj) + αN21(n1 − P ) .

Lemma 5.1. Let S : I → [0,1] be a mixed strategy. For every individual i ∈ I1,
the utility function U1 : [0, 1]× [0, n1]× [0, n2]→ R+ is given by

U1(pi;P,Q) = pi fY,1(pi;P,Q) + (1− pi) fN,1(pi;P,Q) .

For every individual j ∈ I2, the utility function U2 : [0, 1]× [0, n1]× [0, n2]→ R+ is
given by

U2(qj , P,Q) = qj fY,2(qj ;P,Q) + (1− qj) fN,2(qj ;P,Q) .

Proof. The proof follows by induction on the number of individuals. Let (n1, n2) =
(1, 1). The utility function of individual i = 1, with type t1, is given by

U1(pi; pi, qj) = pi

(
qjfY,1(1; 1, 1) + (1− qj)fY,1(1; 1, 0)

)
+ (1− pi)

(
qjfN,1(0; 0, 1) + (1− qj)fN,1(0; 0, 0)

)
.

By substituting the fitness functions in the previous identity, we obtain

U1(pi; pi, qj) = pi

(
qj

(
ωY1 + αY110 + αY121

)
+ (1− qj)

(
ωY1 + αY110 + αY120

))
+ (1− pi)

(
qj

(
ωN1 + αN110 + αN120

)
+ (1− qj)

(
ωN1 + αN110 + αN121

))
.

After rearranging the terms, the last identity becomes

U1(pi; pi, qj) = pi

(
ωY1 + αY12qj

)
+ (1− pi)

(
ωN1 + αN12(1− qj)

)
= pifY,1(pi; pi, qj) + (1− pi)fN,1(pi; pi, qj) .

Similarly, the utility function of individual j = 1, with type t2, is given by

U2(qj ; pi, qj) = qjfY,2(qj ; pi, qj) + (1− qj)fN,2(qj ; pi, qj) .

Let us add one more individual i = n1 + 1, with type t1, and compute its utility
function. Let us suppose, by induction, that the utility functions are known for n1
individuals with type t1 and for n2 individuals with type t2. Let P

¯
=
∑n1

k=1 pk,
Q =

∑n2

k=1 qk and P = P
¯

+ pn1+1. The utility function of the individual n1 + 1 is
given by

U1(pn1+1;P,Q) = pn1+1

(
pn1

(
fY,1(pn1

; P
¯
, Q) + αY11

)
+ (1− pn1

)fY,1(pn1
; P
¯
, Q)

)
+ (1− pn1+1)

(
pn1

fN,1(pn1
; P
¯
, Q) + (1− pn1

)
(
fN,1(pn1

; P
¯
, Q) + αN11

) )
.

Thus,

U1(pn1+1;P,Q) = pn1+1

(
fY,1(pn1 ; P

¯
, Q) + pn1α

Y
11

)
+ (1− pn1+1)

(
fN,1(pn1 ; P

¯
, Q) + (1− pn1)αN11

)
.

By substituting the fitness functions in the previous identity, we obtain

U1(pn1+1;P,Q) = pn1+1

(
ωY1 + αY11(P

¯
+ pn1

) + αY12Q
)

+ (1− pn1+1)
(
ωN1 + αN11(n1 + 1− (P

¯
+ pn1

)) + αN12(n2 −Q)
)
.
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Hence,

U1(pn1+1;P,Q) = pn1+1fY,1(pn1+1;P,Q) + (1− pn1+1)fN,1(pn1+1;P,Q) .

The proof follows similarly if we add one more individual j = n2 + 1 with type t2
and compute its utility function.

A strategy S∗ : I→ [0,1] is a (mixed) Nash equilibrium, if

Ui(S
∗) ≥ Ui(S)

for every individual i ∈ I and for every strategy S ∈ S with the property that
S∗(j) = S(j), for every individual j ∈ I \ {i}.

Lemma 5.2. Let S : I→ [0,1] be a mixed Nash equilibrium.
(i): If 0 < pi < 1, then x = −A11(P − pi)−A12Q+H(N,N).
(ii): If 0 < qj < 1, then y = −A21P −A22(Q− qj) + V (N,N).

Hence, if A11 6= 0, then there is not a mixed Nash equilibrium with the property
that 0 < pi1 6= pi2 < 1. Furthermore, if A22 6= 0, then there is not a mixed Nash
equilibrium with the property that 0 < qj1 6= qj2 < 1.

Proof. Let S : I→ [0,1] be a mixed Nash equilibrium. For every p ∈ [0, 1], we have
U1(pi;P,Q) ≥ U1(p;P − pi + p,Q). If 0 < pi < 1, we get

fY,1(pi;P,Q) = fN,1(pi;P,Q)

which implies Lemma 5.2 (i). The proof of Lemma 5.2 (ii) follows similarly.

The (l1, k1, p; l2, k2, q) mixed strategic set is the set of all strategies S : I→ [0,1]
with the following properties:

(i): l1 = #{i ∈ I1 : pi = 1} and k1 = #{i ∈ I1 : pi = p};
(ii): l2 = #{j ∈ I2 : qj = 1} and k2 = #{j ∈ I2 : qj = q};
(iii): n1− (l1 +k1) = #{i ∈ I1 : pi = 0} and n2− (l2 +k2) = #{j ∈ I2 : qj = 0}.

For p, q ∈ {0, 1}, we observe that the (l1, k1, p; l2, k2, q) mixed strategic set is equal
to the (l1 + pk1, l2 + qk2) pure strategic set.

Remark 1. By Lemma 5.2, supposing that A11 6= 0 and A22 6= 0, a mixed strategy
S is a Nash equilibrium, if S is contained in some (l1, k1, p; l2, k2, q) mixed strategic
set.

Since individuals with the same type are identical, if a mixed strategy contained
in the (l1, k1, p; l2, k2, q) mix strategic set is a Nash equilibrium, then all the strate-
gies in the (l1, k1, p; l2, k2, q) mixed strategic set are Nash equilibria.

Definition 5.3. An (l1, k1, p; l2, k2, q) mixed Nash equilibrium (set) is an (l1, k1, p; l2, k2, q)
strategic set whose strategies are Nash equilibria. The (mixed) Nash domain N(l1, k1, p;
l2, k2, q) is the set of all pairs (x, y) for which the (l1, k1, p; l2, k2, q) strategic set is
a mixed Nash equilibrium set.

An (l1, k1, p; l2, k2, q) strict mixed Nash equilibrium set is a mixed Nash equilib-
rium set that does not contain pure strategies, i.e. (p, q) ∈ [0, 1]2 \ {0, 1}2. A strict
mixed Nash domain N(l1, k1, p; l2, k2, q) is the mixed Nash domain of a strict mixed
Nash equilibrium set.
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The mixed vector ~W (l1, k1, p; l2, k2, q) is given by

~W (l1, k1, p; l2, k2, q) = ~Z(l1, l2) + p(~Z(k1, 0)− (0, A21)) + q(~Z(0, k2)− (A12, 0))

= −l1(A11, A21)− l2(A12, A22)− p(k1A11, (k1 + 1)A21)− q((k2 + 1)A12, k2A22) .

We observe that
~W (0, n1 − 1, p; 0, n2 − 1, q) = p ~H + q~V .

Let J0 = (−∞, 0) and Jn1
= Jn2

= [0,+∞).

Theorem 5.4. Let A11 > 0 and A22 > 0. N(l1, k1, p; l2, k2, q) 6= ∅ if, and only if,
l1 = n1 − k1, l2 = n2 − k2, k1 ∈ {0, n1} and k2 ∈ {0, n2}.

(i): For l1 ∈ {0, n1} and q ∈ (0, 1), the mixed Nash domain N(l1, 0, 0; 0, n2, q) is
the semi-line

N(l1, 0, 0; 0, n2, q) = {(x, 0) + ~W (l1, 0, 0; 0, n2 − 1, q) : x ∈ Jl1} ;

(ii): For p ∈ (0, 1) and l2 ∈ {0, n2} , the mixed Nash domain N(0, n1, p; l2, 0, 0)
is the semi-line

N(0, n1, p; l2, 0, 0) = {(0, y) + ~W (0, n1 − 1, p; l2, 0, 0) : y ∈ Jl2} ;

(iii): For p, q ∈ (0, 1), the mixed Nash domain N(0, n1, p; 0, n2, q) is the singleton

~W (0, n1 − 1, p; 0, n2 − 1, q) + (H(N,N), V (N,N)) .

By Theorem 5.4, if l1 = n1, then the only strict mixed Nash equilibria are the
ones presented in (i). Furthermore, if l1 = 0, then the only strict mixed Nash
equilibria are the ones presented in (ii) and (iii). Hence, if the individuals with a
given type have a positive influence over the utility of the individuals with the same
type, i.e. A11 > 0 and A22 > 0, then there are no mixed Nash equilibrium, unless
all the individuals with the same type opt for a mixed strategy.

In Figure 1, we show the geometric interpretation of Theorem 5.4, with
−→
W 1 =

−→
W (0, 0, 0; 0, n2 − 1, 1),

−→
W 2 =

−→
W (0, n1 − 1, 1; 0, 0, 0),

Z0 = (H(N,N), V (N,N)),

Z1 = p
−→
W 1 + q

−→
W 2 + Z0 =

−→
W (0, n1 − 1, p; 0, n2 − 1, q) + Z0.

Proof. The mixed strategy (0, 0, 0; 0, n2, q) is a Nash equilibrium if, and only if, the
following two inequalities hold

U1(0;P,Q) ≥ U1(1;P + 1, Q) , U2(q;P,Q) ≥ U2(q′;P,Q− q + q′) .

We note that

U2(q;P,Q) ≥ U2(q′;P,Q− q + q′) , if, and only if, fY,2(q;P,Q) = fN,2(q;P,Q) .

Hence, by Lemma 5.2,

y = −A21P −A22(Q− q) + V (N,N).

The mixed strategy (n1, 0, 0; 0, n2, q) is a Nash equilibrium if, and only if, the fol-
lowing two inequalities hold

U1(1;P,Q) ≥ U1(0;P − 1, Q) , U2(q;P,Q) ≥ U2(q′;P,Q− q + q′) .
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V(Y,N)

Q(Y,N)

V(N,N)

x

y

Q(N,N)

p

 

�

w1

z

NE

NN

z 0

Q(Y,Y)

H(N,Y)H(N,N)H(Y,Y)H(Y,N)

V(N,Y)

Q(N,Y)

V(Y,Y)

x

q

 

�

w2

z1
NW

NS

Figure 1. A decision tiling with mixed vectors, where
NN = N(0, n1, p;n2, 0, 0), NS = N(0, n1, p; 0, 0, 0), NW =
N(0, 0, 0; 0, n2, q) and NE = N(n1, 0, 0; 0, n2, q).

We note that

U2(q;P,Q) ≥ U2(q′;P,Q− q + q′) , if, and only if, fY,2(q;P,Q) = fN,2(q;P,Q) .

Hence, by Lemma 5.2,

y = −A21P −A22(Q− q) + V (N,N).

Thus, the proof of Theorem 5.4 (i) follows from rearranging the terms in the pre-
vious inequalities. The proof of Theorem 5.4 (ii) follows similarly to the proof of
Theorem 5.4 (i). Let us prove Theorem 5.4 (iii).
The mixed strategy (0, n1, p; 0, n2, q) is a Nash equilibrium if, and only if, the fol-
lowing two inequalities hold

U1(p;P,Q) ≥ U1(p′;P − p+ p′, Q) , U2(q;P,Q) ≥ U2(q′;P,Q− q + q′) .

Therefore,

fY,1(p;P,Q) = fN,1(p;P,Q) and fY,2(q;P,Q) = fN,2(q;P,Q) .

Thus, by Lemma 5.2,

x = −A11(P − pi)−A12Q+H(N,N) and y = −A21P −A22(Q− q) + V (N,N).

Hence, Theorem 5.4 (iii) follows from rearranging the terms in the previous inequal-
ities.

Let J0(2) = (−∞, 0) and Jn2
(2) = [A22,+∞). Let Jl2(2) = [A22, 0], for l2 ∈

{0, . . . , n2} \ {0, n2}.

Theorem 5.5. Let A11 > 0 and A22 ≤ 0. N(l1, k1, p; l2, k2, q) 6= ∅ if, and only if,
l1 = n1 − k1 and k1 ∈ {0, n1}.

(i): For l1 ∈ {0, n1}, k2 ≥ 1 and q ∈ (0, 1), the mixed Nash domain N(l1, 0, 0; l2, k2, q)
is the semi-line

N(l1, 0, 0; l2, k2, q) = {(x, 0) + ~W (l1, 0, 0; l2, k2 − 1, q) : x ∈ Jl1} ;
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(ii): For p ∈ (0, 1) and l2 ∈ {0, . . . , n2}, the mixed Nash domain N(0, n1, p; l2, 0, 0)
is the semi-line

N(0, n1, p; l2, 0, 0) = {(0, y) + ~W (0, n1 − 1, p; l2, 0, 0) : y ∈ Jl2(2)} ;

(iii): For p, q ∈ (0, 1), the mixed Nash domain N(0, n1, p; l2, k2, q) is the single-
ton

~W (0, n1 − 1, p; l2, k2 − 1, q) + (H(N,N), V (N,N)) .

By Theorem 5.5, if l1 = n1, then the only strict mixed Nash equilibria are the
ones presented in (i). Furthermore, if l1 = 0, then the only strict mixed Nash
equilibria are the ones presented in (ii) and (iii). Hence, if the individuals with type
t1 have a positive influence over the utility of the individuals with the same type,
i.e. A11 > 0, then, for every Nash equilibrium all the individuals with the type t1
opt for the same strategy either pure or mixed.

Proof. The mixed strategy (0, 0, 0; l2, k2, q) is a Nash equilibrium if the following
two inequalities hold

U1(0;P,Q) ≥ U1(1;P + 1, Q) , U2(q;P,Q) ≥ U2(q′;P,Q− q + q′) .

We note that

U2(q;P,Q) ≥ U2(q′;P,Q− q + q′) , if, and only if, fY,2(q;P,Q) = fN,2(q;P,Q) .

Hence, by Lemma 5.2,

y = −A21P −A22(Q− q) + V (N,N).

Furthermore, (a) if l2 ≥ 1 then U2(1;P,Q) ≥ U2(0;P,Q− 1) and (b) if n2 > l2 + k2
then U2(0;P,Q) ≥ U2(1;P,Q + 1). Hence, the proof follows from rearranging the
terms in the previous inequalities and noting that A22 ≤ 0.
The mixed strategy (n1, 0, 0; l2, k2, q) is a Nash equilibrium if the following two
inequalities hold

U1(1;P,Q) ≥ U1(0;P − 1, Q) , U2(q;P,Q) ≥ U2(q′;P,Q− q + q′) .

We note that

U2(q;P,Q) ≥ U2(q′;P,Q− q + q′) , if, and only if, fY,2(q;P,Q) = fN,2(q;P,Q) .

Hence, by Lemma 5.2,

y = −A21P −A22(Q− q) + V (N,N).

Furthermore, (a) if l2 ≥ 1 then U2(1;P,Q) ≥ U2(0;P,Q− 1) and (b) if n2 > l2 + k2
then U2(0;P,Q) ≥ U2(1;P,Q + 1). Hence, the proof follows from rearranging the
terms in the previous inequalities and noting that A22 ≤ 0.
The mixed strategy (0, n1, p; l2, 0, 0) is a Nash equilibrium if the following inequality
holds

U1(p;P,Q) ≥ U1(p′;P − p+ p′, Q).

We note that

U1(p;P,Q) ≥ U1(p′;P − p+ p′, Q) , if, and only if, fY,1(p;P,Q) = fN,1(p;P,Q) .

Hence, by Lemma 5.2,

x = −A11(P − pi)−A12Q+H(N,N).

Furthermore, (a) if l2 ≥ 1 then U2(1;P,Q) ≥ U2(0;P,Q−1) and (b) if n2 > l2 then
U2(0;P,Q) ≥ U2(1;P,Q + 1). Hence, the proof of Theorem 5.5 (ii) follows from
rearranging the terms in the previous inequalities and noting that A22 ≤ 0. Let us
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prove Theorem 5.5 (iii).
The mixed strategy (0, n1, p; l2, k2 + 1, q) is a Nash equilibrium if the following
inequalities hold

U1(p;P,Q) ≥ U1(p′;P − p+ p′, Q) , U2(q;P,Q) ≥ U2(q′;P,Q− q + q′) .

Therefore,

fY,1(p;P,Q) = fN,1(p;P,Q) and fY,2(q;P,Q) = fN,2(q;P,Q) .

Thus, by Lemma 5.2,

x = −A11(P − pi)−A12Q+H(N,N) and y = −A21P −A22(Q− q) + V (N,N).

Furthermore, (a) if l2 ≥ 1 then U2(1;P,Q) ≥ U2(0;P,Q−1) and (b) if n2 > l2 then
U2(0;P,Q) ≥ U2(1;P,Q + 1). Hence, the proof of Theorem 5.5 (iii) follows from
rearranging the terms in the previous inequalities and noting that A22 ≤ 0.

Let J0(1) = (−∞, 0) and Jn1
(1) = [A11,+∞). Let Jl1(1) = [A11, 0], for l1 ∈

{0, . . . , n1} \ {0, n1}.

Theorem 5.6. Let A11 ≤ 0 and A22 ≤ 0.

(i): For l1 ∈ {0, . . . , n1}, k2 ≥ 1 and q ∈ (0, 1), the mixed Nash domain
N(l1, 0, 0; l2, k2, q) is the semi-line

N(l1, 0, 0; l2, k2, q) = {(x, 0) + ~W (l1, 0, 0; l2, k2 − 1, q) : x ∈ Jl1(1)} ;

(ii): For p ∈ (0, 1), k1 ≥ 1 and l2 ∈ {0, . . . , n2}, the mixed Nash domain
N(l1, k1, p; l2, 0, 0) is the semi-line

N(l1, k1, p; l2, 0, 0) = {(0, y) + ~W (l1, k1 − 1, p; l2, 0, 0) : y ∈ Jl2(2)} ;

(iii): For k1 ≥ 1, k2 ≥ 1 and p, q ∈ (0, 1), the mixed Nash domain N(l1, k1, p; l2, k2, q)
is the singleton

~W (l1, k1 − 1, p; l2, k2 − 1, q) + (H(N,N), V (N,N)) .

By Theorem 5.6, if the individuals with a given type have a non-positive influence
over the utility of the individuals with the same type, i.e. A11 ≤ 0 and A22 ≤ 0,
then for every (l1, k1, p; l2, k2, q) mixed strategic set there are relative preferences
for which (l1, k1, p; l2, k2, q) is a Nash equilibrium set.

In Figures 2 and 3, we show the geometric interpretation of Theorem 5.6, with

Z0 =
−→
Z (1, 1) + (H(N,N), V (N,N)),

−→u 1 =
−→
Z (0, 0)− (0, A21) = −(0, A21),

−→u 2 =
−→
Z (0, 0)− (A12, 0) = −(A12, 0),

−→u = p1
−→u 1 + q1

−→u 2,

Z1 = −→u + Z0 =
−→
W (1, 2, p2; 1, 2, q2) + Z0

and
−→w 1 =

−→
Z (1, 0)− (0, A21) = −(A11, A21),

−→w 2 =
−→
Z (0, 1)− (A12, 0) = −(A12, A22),

−→w = p2
−→w 1 + q2

−→w 2,

Z2 = −→w + Z0 =
−→
W (1, 1, p1; 1, 1, q1) + Z0.
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(0,4) (4,4)(1,4) (2,4) (3,4)

(4,3)

(4,2)(0,3)

(2,3)
(3,3)

(1,3)

(2,2)
(3,2)

(0,0) (4,0)

(4,1)(0,2)

(0,1)

(1,0) (2,0) (3,0)

(2,2)
(3,2)

(1,2)

(2,1)
(3,1)

(1,1)

Figure 2. A decision tiling with mixed vectors. The influence
matrix is given by A11 = −2, A12 = 1/2, A22 = −1/2 and A21 =
−2 and (n1, n2) = (4, 4).

p1

q1

q2
p2

Z0

z1

 

!
u
2

 

!
u
1  

!
w
1

 

!
w
2

Z0

Z1

Z1

Figure 3. Zooming Figure 2. The Nash equilibria {Z1} =
N(1, 1, p1; 1, 1, q1) and {Z2} = N(1, 2, p2; 1, 2, q2).

Proof. The mixed strategy (l1, 0, 0; l2, k2, q) is a Nash equilibrium if the following
inequality holds

U2(q;P,Q) ≥ U2(q′;P,Q− q + q′).

Hence,
fY,2(q;P,Q) = fN,2(q;P,Q).

Therefore, by Lemma 5.2,

y = −A21P −A22(Q− qj) + V (N,N).

Furthermore, (a) if l1 ≥ 1 then U1(1;P,Q) ≥ U1(0;P − 1, Q); (b) if n1 > l1 then
U1(0;P,Q) ≥ U1(1;P + 1, Q); (c) if l2 ≥ 1 then U2(1;P,Q) ≥ U2(0;P,Q − 1); and
(d) if n2 > l2 + k2 then U2(0;P,Q) ≥ U2(1;P,Q+ 1). Hence, the proof of Theorem
5.6 (i) follows from rearranging the terms in the previous inequalities and noting
that A11 ≤ 0 and A22 ≤ 0. The proof of Theorem 5.6 (ii) follows similarly.Let us
prove Theorem 5.6 (iii).
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The mixed strategy (l1, k1, p; l2, k2, q) is a Nash equilibrium if the following inequal-
ities hold

U1(p;P,Q) ≥ U1(p′;P − p+ p′, Q) , U2(q;P,Q) ≥ U2(q′;P,Q− q + q′) .

Hence,

fY,1(p;P,Q) = fN,1(p;P,Q) and fY,2(q;P,Q) = fN,2(q;P,Q).

Therefore, by Lemma 5.2,

x = −A11(P − p)−A12Q+H(N,N) and y = −A21P −A22(Q− q) + V (N,N).

Furthermore, (a) if l1 ≥ 1 then U1(1;P,Q) ≥ U1(0;P − 1, Q); (b) if n1 > l1 + k1
then U1(0;P,Q) ≥ U1(1;P + 1, Q); (c) if l2 ≥ 1 then U2(1;P,Q) ≥ U2(0;P,Q− 1);
and (d) if n2 > l2 + k2 then U2(0;P,Q) ≥ U2(1;P,Q + 1). Hence, the proof of
Theorem 5.6 (iii) follows by rearranging the terms in the previous inequalities and
noting that A11 ≤ 0 and A22 ≤ 0.

Lemma 5.7. Let S be a strategy given by S(i) = pi, for i ∈ I1, and S(j) = qj, for
j ∈ I2.

(i): If A11 = 0, the strategy S at (x, y) is a Nash equilibrium if, and only if,
there is 0 < q < 1, such that

#{j ∈ I2 : qj = 1} = l2;

#{j ∈ I2 : qj = q} = k2 (k2 might be 0);

#{j ∈ I2 : qj = 0} = n2 − (l2 + k2)

and

(x, y) ∈ N(0, n1, P/n1; l2, k2, q).

(ii): If A11 6= 0 and A22 = 0, the strategy S at (x, y) is a Nash equilibrium if,
and only if, there is 0 < p < 1, such that

#{i ∈ I1 : pi = 1} = l1;

#{i ∈ I1 : pi = q} = k1 (k1 might be 0);

#{i ∈ I1 : pi = 0} = n1 − (l1 + k1)

and

(x, y) ∈ N(l1, k1, p; 0, n2, Q/n2).

(iii): If A11 = 0 and A22 = 0, the strategy S at (x, y) is a Nash equilibrium if,
and only if

(x, y) ∈ N(0, n1, P/n1; 0, n2, Q/n2).

Proof. It follows from putting together Lemma 5.2 with Theorems 5.5 and 5.6.

In the following remark, we observe, for a mixed Nash equilibria, who receives
higher utility between (i) the individuals who decide Y, (ii) the individuals who
decide N, and (iii) the individuals who decide based on probability.

Remark 2. Let (l1, k1, p; l2, k2, q) be a mixed Nash equilibria.
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(i) If αY11 ≤ 0, then U1(1, P,Q) ≥ U1(p, P,Q);

(ii) If αY11 ≥ 0, then U1(1, P,Q) ≤ U1(p, P,Q);

(iii) If αN11 ≤ 0, then U1(0, P,Q) ≤ U1(p, P,Q);

(iv) If αN11 ≥ 0, then U1(0, P,Q) ≥ U1(p, P,Q).

6. Replicator Dynamics. Recall that I = I1tI2 and that a strategy S : I→ [0,1]
associates to each individual i ∈ I1 the probability pi = S(i) to decide Y ∈ D and
to each individual j ∈ I2 the probability qj = S(j) to decide Y ∈ D. Recall that
P =

∑n1

i=1 pi,Q =
∑n2

j=1 qj , Pi = P − pi and Qj = Q− qj . The replicator dynamics

Ṡ = G(S;x, y) is given by
ṗi
pi

= fY,1(pi;P,Q)− U1(pi;P,Q) = (1− pi)
(
fY,1(pi;P,Q)− fN,1(pi;P,Q)

)
,

q̇j
qj

= fY,2(qj ;P,Q)− U2(qj ;P,Q) = (1− qj)
(
fY,2(qj ;P,Q)− fN,2(qj ;P,Q)

)
.

Hence, the replicator dynamics Ṡ = G(S;x, y) can be rewritten as ṗi = pi(1− pi) (PiA11 +QA12 + x−H(N,N)) , i ∈ {1, . . . , n1} ,

q̇j = qj(1− qj)(QjA22 + PA21 + y − V (N,N)) , j ∈ {1, . . . , n2} .
We observe that

(i) if pi(0) < pj(0), then pi(t) < pj(t);

(ii) if pi(0) = pj(0), then pi(t) = pj(t);

(iii) if qi(0) < qj(0), then qi(t) < qj(t);

(iv) if qi(0) = qj(0), then qi(t) = qj(t);

for every t ∈ R.

A strategy S : I→ [0,1] is a dynamical equilibrium if G(S;x, y) = 0, i.e. pi(1− pi) (PiA11 +QA12 + x−H(N,N)) = 0 , i ∈ {1, . . . , n1} ,

qj(1− qj)(QjA22 + PA21 + y − V (N,N)) = 0 , j ∈ {1, . . . , n2} .
The coefficients of the linearized replicator dynamics DG(S;x, y) are

∂ṗi/∂pi = (1− 2pi)(PiA11 +QA12 + x−H(N,N)) ,
∂ṗi/∂pj = pi(1− pi)A11 , i 6= j
∂ṗi/∂qj = pi(1− pi)A12 ,
∂q̇j/∂qj = (1− 2qj)(QjA22 + PA21y + y − V (N,N)) ,
∂q̇j/∂qi = qj(1− qj)A22 , j 6= i
∂q̇j/∂pi = qj(1− qj)A21 .

An equilibrium strategy S is (strongly) stable if all the eigenvalues of the linearized
replicator dynamics DG(S;x, y) have real parts that are negative. An equilibrium
strategy S is (strongly) unstable if there is at least one eigenvalue of the linearized
replicator dynamics DG(S;x, y) with positive real part.
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Lemma 6.1. Let S : I→ [0,1] be a dynamical equilibrium of the replicator dynam-
ics.

(i): If 0 < pi < 1, then x = −A11(P − pi)−A12Q+H(N,N).
(ii): If 0 < qj < 1, then y = −A21P −A22(Q− qj) + V (N,N).

Hence, if A11 6= 0, then there is not a dynamical equilibrium with the property
that 0 < pi1 6= pi2 < 1. Furthermore, if A22 6= 0, then there is not a dynamical
equilibrium with the property that 0 < qj1 6= qj2 < 1.

Proof. The proof is analogous to the proof of Lemma 5.2.

Hence, assuming that A11 6= 0 and A22 6= 0, the dynamical equilibria of the
replicator dynamics are contained in the union of all (l1, k1, p; l2, k2, q) strategic
sets, where p, q ∈ [0, 1], 0 ≤ l1 + k1 ≤ n1 and 0 ≤ l2 + k2 ≤ n2. Thus, to find and
study the dynamical equilibria we introduce the following notation:

• v[1l] = (v1l1 , . . . , v
1l
l1

),v[1m] = (v1m1 , . . . , v1mn1−(l1+k1)) and v[1r] = (v1r1 , . . . , v
1r
k1

);

• v[2l] = (v2l1 , . . . , v
2l
l2

), v[2m] = (v2m1 , . . . , v2mn2−(l2+k2)) and v[2r] = (v2r1 , . . . , v
2r
k2

).

Let us define the vectors v[1] ∈ Rn1 , v[2] ∈ Rn2 and v ∈ Rn1+n2 as follows:

v[1] = (v[1l], v[1m], v[1r]) , v[2] = (v[2l], v[2m], v[2r]) and v = (v[1], v[2]) .

Let us define V [1] and V [2] as follows:

• V [1] =
∑l1
i=1 v

1l
i +

∑n1−(l1+k1)
j=1 v1mj +

∑k1
k=1 v

1r
k and

• V [2] =
∑l2
i=1 v

21
i +

∑n2−(l2+k2)
j=1 v2mj +

∑k2
k=1 v

2r
k .

In this notation, the replicator dynamics DG(v;x, y) are given by the following
n1 + n2 ODE:

v̇1m1
i1

= v1m1
i1

(
1− v1m1

i1

) ((
V [1]− v1m1

i1

)
A11 + V [2]A12 + x−H(N,N)

)
, i1 ∈ I1

v̇2m2
i2

= v2m2
i2

(
1− v2m2

i2

) ((
V [2]− v2m2

i2

)
A22 + V [1]A21 + y − V (N,N)

)
, i2 ∈ I2

where m1,m2 ∈ {l,m, r} and (x, y) ∈ R2.

Definition 6.2. The (l1, k1, p; l2, k2, q) canonical strategy is defined as follows:

• for all i ∈ {1, . . . , l1}, j ∈ {1, . . . , n1 − (l1 + k1)} and k ∈ {1, . . . , k1}

v1li = 1 , v1mj = 0 , and v1rk = p ;

• for all i ∈ {1, . . . , l2}, j ∈ {1, . . . , n2 − (l2 + k2)} and j ∈ {1, . . . , k2}

v2li = 1 , v2mj = 0 , and v2rk = q .

The linearized replicator dynamicsDG = DG(l1, k1, p; l2, k2, q;x, y) at the (l1, k1, p; l2, k2, q)
canonical strategy is given by the matrix

DG =



f [1l, 1l] 0 0 0 0 0

0 f [1m, 1m] 0 0 0 0
f [1r, 1l] f [1r, 1m] f [1r, 1r] f [1r, 2l] f [1r, 2m] f [1r, 2r]

0 0 0 f [2l, 2l] 0 0
0 0 0 0 f [2m, 2m] 0

f [2r, 1l] f [2r, 1m] f [2r, 1r] f [2r, 2l] f [2r, 2m] f [2r, 2r]


,

where the coefficients are matrices with the following coordinates:
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• for all i ∈ {1, . . . , l1},

fii[1l, 1l] = −(l1 − 1 + k1p)A11 − (l2 + k2q)A12 − x+H(N,N) ;

• for all l ∈ {1, . . . , n1 − (l1 + k1)},

fll[1m, 1m] = (l1 + k1p)A11 + (l2 + k2q)A12 + x−H(N,N) ;

• for all i, j ∈ {1, . . . , l1}, with i 6= j, and for all l, k ∈ {1, . . . , n1 − (l1 + k1)},
with l 6= k,

fij [1l, 1l] = fl,k[1m, 1m] = 0 ;

• for all i ∈ {1, . . . , k1},

fii[1r, 1r] = (1− 2p)((l1 + (k1 − 1)p)A11 + (l2 + k2q)A12 + x−H(N,N)) ;

• for all i, j ∈ {1, . . . , k1}, with i 6= j,

fij [1r, 1r] = p(1− p)A11 ;

• for all i ∈ {1, . . . , k1}, j ∈ {1, . . . , l2}, k ∈ {1, . . . , n2 − (l2 + k2)} and l ∈
{1, . . . , k2},

fij [1r, 2l] = fik[1r, 2m] = fil[1r, 2r] = p(1− p)A12 ;

• for all i ∈ {1, . . . , l2},

fii[2l, 2l] = −(l2 − 1 + k2q)A22 − (l1 + k1p)A21 − y + V (N,N) ;

• for all l ∈ {1, . . . , n2 − (l2 + k2)},

fll[2m, 2m] = (l2 + k2q)A22 + (l1 + k1p)A21 + y − V (N,N) ;

• for all i, j ∈ {1, . . . , l2}, with i 6= j, and for all l, k ∈ {1, . . . , n2 − (l2 + k2)},
with l 6= k,

fij [2l, 2l] = fl,k[2m, 2m] = 0 ;

• for all i ∈ {1, . . . , k2},

fii[2r, 2r] = (1− 2q)((l2 + (k2 − 1)q)A22 + (l1 + k1p)A21 + y − V (N,N)) ;

• for all i, j ∈ {1, . . . , k2}, with i 6= j,

fij [2r, 2r] = q(1− q)A22 ;

• for all i ∈ {1, . . . , k2}, j ∈ {1, . . . , l1}, k ∈ {1, . . . , n1 − (l1 + k1)} and l ∈
{1, . . . , k1},

fij [2r, 1l] = fik[2r, 1m] = fil[2r, 1r] = q(1− q)A21 .

We observe that for some pair (x, y) ∈ R2, if the (l1, k1, p; l2, k2, q) canonical
strategy is an equilibrium of the replicator dynamics, then every strategy contained
in the (l1, k1, p; l2, k2, q) strategic set is an equilibrium of the replicator dynam-
ics. Furthermore, the eigenvectors of the linearized replicator dynamics at the
(l1, k1, p; l2, k2, q) canonical strategy coincide with the eigenvectors of the linearized
replicator dynamics at any strategy contained in the (l1, k1, p; l2, k2, q) strategic
set, up to permutation of coordinates. Hence, the eigenvalues of the linearized
replicator dynamics at the (l1, k1, p; l2, k2, q) canonical strategy coincide with the
eigenvalues of the linearized replicator dynamics at any strategy contained in the
(l1, k1, p; l2, k2, q) strategic set.
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Definition 6.3. The equilibria domain E(l1, k1, p; l2, k2, q) is the set of all pairs
(x, y) ∈ R2 for which the strategies contained in the (l1, k1, p; l2, k2, q) strate-
gic set are equilibria of the replicator dynamics. The (strongly) stable domain
S(l1, k1, p; l2, k2, q) is the set of all pairs (x, y) ∈ R2 for which the strategies con-
tained in the (l1, k1, p; l2, k2, q) strategic set are (strongly) stable equilibria of the
replicator dynamics. The (strongly) unstable domain U(l1, k1, p; l2, k2, q) is the set
of all pairs (x, y) ∈ R2 for which the strategies contained in the (l1, k1, p; l2, k2, q)
strategic set are (strongly) unstable equilibria of the replicator dynamics.

We observe that the stable domains are contained in the Nash domains and the
Nash domains are contained in the equilibria domains, i.e.

S(l1, k1, p; l2, k2, q) ⊆ N(l1, k1, p; l2, k2, q) ⊆ E(l1, k1, p; l2, k2, q) .

For the (l1, l2) (pure) strategic set, the dynamic equilibria set coincides with R2,
i.e.

E(l1, l2) = R2 .

The following geometric relation associates to every pair (x, y) ∈ R2 a unique pair
(p, q) ∈ R2 and vice-versa:

(x, y) = (H(N,N), V (N,N)) + ~Z(l1, l2) + (pA11, qA22)

= (H(N,N)− l1A11 − l2A12 + pA11, V (N,N)− l2A22 − l1A21 + qA22) .

Theorem 6.4. The eigenvalues of DG(l1, l2;x, y) = DG(l1, 0, 0; l2, 0, 0;x, y) are

λ[1l] = A11(1− p) , λ[1m] = A11p , λ[2l] = A22(1− q) , λ[2m] = A22q . (2)

The eigenspaces of DG(l1, l2;x, y) are

E(λ[1l]) = {v : (v[1m], v[2]) = 0} , E(λ[1m]) = {v : (v[1l], v[2]) = 0},
E(λ[2l]) = {v : (v[1], v[2m]) = 0} , E(λ[2m]) = {v : (v[1], v[2l]) = 0} . (3)

Furthermore,

S(l1, l2) = int(N(l1, l2)) and U(l1, l2) ⊂ R2 \N(l1, l2).

Putting together Lemma 4.3 and Theorem 6.4, we obtain the following:

• if (a) A11 ≥ 0 and l1 ∈ {1, . . . , n1−1}, or if (b) A22 ≥ 0 and l2 ∈ {1, . . . , n2−1},
or if (c) A11 ≥ 0 and A22 ≥ 0 and (l1, l2) ∈ {1, . . . , n1 − 1} × {1, . . . , n2 − 1},
then

S(l1, l2) = int(N(l1, l2)) = ∅.
• if (a) A11 < 0 and l2 ∈ {0, n2}, or if (b) A22 < 0 and l1 ∈ {0, n1}, or if (c)
A11 < 0 and A22 < 0 and (l1, l2) ∈ {(0, 0), (n1, 0), (0, n2), (n1, n2)}, then

S(l1, l2) = int(N(l1, l2)) 6= ∅.

Proof. The coefficients of the linearized replicator dynamicsDG = DG(l1, 0, 0; l2, 0, 0;x, y)
are the following: If i ∈ {1, . . . , l1}, then

fii[1l, 1l] = −(l1 − 1)A11 − l2A12 − x+H(N,N) = A11(1− p) .
If i ∈ {1, . . . , n1 − l1}, then

fii[1m, 1m] = l1A11 + l2A12 + x−H(N,N) = A11p .

If j ∈ {1, . . . , l2}, then

fjj [2l, 2l] = −(l2 − 1)A22 − l1A21 − y + V (N,N) = A22(1− q) .
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If j ∈ {1, . . . , n2 − l2}, then

fjj [2m, 2m] = l2A22 + l1A21 + y − V (N,N) = A22q .

Furthermore, all the other coefficients of DG are equal to 0. Hence, DG is a diagonal
matrix. The eigenvalues and the eigenspaces of DG are the ones presented in (2)
and (3). Hence, the proof of the second part of Theorem 6.4 follows from applying
Lemma 4.3.

From Theorems 5.4, 5.5 and 5.6, the equilibrium domain E(l1, k1, p; l2, k2, q) is the
following:

(i) For l1 ∈ {0, . . . , n1} and q ∈ (0, 1), the equilibrium domain E(l1, 0, 0; l2, k2, q)
is the line

E(l1, 0, 0; l2, k2, q) = {(x, 0) + ~W (l1, 0, 0; l2, k2 − 1, q) : x ∈ R} ;

(ii) For p ∈ (0, 1) and l2 ∈ {0, . . . , n2} , the equilibrium domain E(l1, k1, p; l2, 0, 0)
is the line

E(l1, k1, p; l2, 0, 0) = {(0, y) + ~W (l1, k1 − 1, p; l2, 0, 0) : y ∈ R} ;

(iii) For p, q ∈ (0, 1), the equilibrium domain E(l1, k1, p; l2, k2, q) is the singleton

~W (l1, k1 − 1, p; l2, k2 − 1, q) + (H(N,N), V (N,N)) .

Define the matrix M(k1, k2) = M(l1, k1, p; l2, k2, q;x, y) as follows:

• if k1 ≥ 1 and k2 ≥ 1, then

M(k1, k2) =

(
(k1 − 1)p(1− p)A11 k1q(1− q)A21

k2p(1− p)A12 (k2 − 1)q(1− q)A22

)
,

• if k1 = 0 and k2 ≥ 1, then

M(0, k2) = ((k2 − 1)q(1− q)A22) ,

• if k1 ≥ 1 and k2 = 0, then

M(k1, 0) = ((k1 − 1)p(1− p)A11) .

The following relation associates to each pair (x, y) ∈ R2 a unique pair (p, q) ∈ R2

and vice-versa:

(x, y)− (H(N,N), V (N,N)) =

− ((l1 + p(k1 − 1))A11 + (l2 + qk2)A12, (l2 + q(k2 − 1))A22 + (l1 + pk1)A21) .

Theorem 6.5. Let DG = DG(l1, k1, p; l2, k2, q;x, y) and

(p, q) ∈ [0, 1]2 \ {(0, 0), (0, 1), (1, 0), (1, 1)}.
The eigenvalues of DG are the following:

• λ[1l] = (1− p)A11, with algebraic dimension l1;
• λ[1m] = pA11, with algebraic dimension n1 − (l1 + k1);
• λ[2l] = (1− q)A22, with algebraic dimension l2;
• λ[2m] = qA22, with algebraic dimension n1 − (l2 + k2);
• λ[1r] = −p(1− p)A11, with algebraic dimension k1 − 1;
• λ[2r] = −q(1− q)A22, with algebraic dimension k2 − 1;
• The eigenvalues of the matrix M(l1, k1, p; l2, k2, q;x, y).

Furthermore, S(l1, k1, p; l2, k2, q) = ∅.
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Theorem 6.5 also implies the following unstability properties for the equilibria
E(l1, k1, p; l2, k2, q;x, y).

• LetA11 > 0 andA22 > 0. The sum of the eigenvalues ofM(l1, k1, p; l2, k2, q;x, y)
is greater than zero. Hence, U(l1, k1, p; l2, k2, q) = E(l1, k1, p; l2, k2, q).

• LetA11 > 0 andA22 < 0. (a) If k2 ≥ 2 then λ[2r] > 0. (b) If k1 < n1 then λ[1l]
or λ[1m] has real part greater than zero. (c) If k1 = n1 and k2 = 0 then the
eigenvalue of M(l1, k1, p; l2, k2, q;x, y) has real part greater than zero. (d) If
k1 = n1 and k2 = 1 then the sum of the eigenvalues of M(l1, k1, p; l2, k2, q;x, y)
is greater than zero. Hence, U(l1, k1, p; l2, k2, q) = E(l1, k1, p; l2, k2, q).

• Let A11 < 0 and A22 < 0.
– If k1 ≥ 2 or k2 ≥ 2, then λ[1r] or λ[2r] is positive. Hence, U(l1, k1, p; l2, k2, q) =
E(l1, k1, p; l2, k2, q).

– If k1 = 1 and k2 = 1, then the eigenvalues λ± of M(l1, k1, p; l2, k2, q;x, y)
are

λ2± = p(1− p)q(1− q)A12A21.

Hence, (a) if A12A21 > 0 then U(l1, k1, p; l2, k2, q) = E(l1, k1, p; l2, k2, q);
(b) if A12A21 ≤ 0 then

U(l1, k1, p; l2, k2, q) = S(l1, k1, p; l2, k2, q) = ∅,

i.e. the mixed Nash equilibria is neither strongly stable nor strongly
unstable.

– if k1 = 1 and k2 = 0, then M(l1, k1, p; l2, k2, q;x, y) = (0). Hence,

U(l1, k1, p; l2, k2, q) = S(l1, k1, p; l2, k2, q) = ∅,

i.e. the mixed Nash equilibria is neither strongly stable nor strongly
unstable.

Proof. Let us denote the vectors of the canonical basis of Rn1+n2 by

e1[1l], . . . , el1 [1l] , e1[1m], . . . , en1−(l1+k1)[1m] , e1[1r], . . . , ek1 [1r]

and

e1[2l], . . . , el2 [2l] , e1[2m], . . . , en2−(l2+k2)[2m] , e1[2r], . . . , ek2 [2r] .

Let w1 =
∑k1
i=1 ei[1r] and w2 =

∑k2
i=1 ei[2r]. We obtain that

DG(ei[1l]) = λ[1l]ei[1l] + p(1− p)A11w1 + q(1− q)A21w2 ,

DG(ei[1m]) = λ[1m]ei[1m] + p(1− p)A11w1 + q(1− q)A21w2 ,

DG(ei[1r]) = −p(1− p)A11ei[1r] + p(1− p)A11w1 + q(1− q)A21w2 ,

DG(ei[2l]) = λ[2l]ei[1l] + p(1− p)A12w1 + q(1− q)A22w2 ,

DG(ei[2m]) = λ[2m]ei[1m] + p(1− p)A12w1 + q(1− q)A22w2 ,

DG(ei[2r]) = −q(1− q)A22ei[1r] + p(1− p)A12w1 + q(1− q)A22w2 .

Furthermore,

DG(w1) =

k1∑
i=1

DG(ei[1r]) =

k1∑
i=1

 k1∑
j=1

p(1− p)A11ej [1r] +

k2∑
j=1

q(1− q)A21ej [2r]


= (k1 − 1)p(1− p)A11w1 + k1q(1− q)A21w2 .
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DG(w2) =

k2∑
i=1

DG(ei[2r]) =

k2∑
i=1

 k2∑
j=1

q(1− q)A22ej [2r] +

k1∑
j=1

p(1− p)A12ej [1r]


= k2p(1− p)A12w1 + (k2 − 1)q(1− q)A22w2 .

Hence, the space spaned by w1 and w2 is DG invariant and DG| < w1, w2 > is
given by the matrix M(k1, k2). Therefore, the eigenvalues of DG| < w1, w2 > are
the eigenvalues of the matrix M(k1, k2). For t ∈ {1, 2} and s ∈ {l,m, r}, the vectors
ei[ts] − ej [ts], with i 6= j, belong to the eigenspace of the eigenvalue λ[ts]. Since
the space spaned by w1 and w2 is DG invariant, the vectors ei[ts] belong to the
extended eigenspace of the eigenvalue λ[ts].

In Figure 4, we observe the appearance of periodic cycles for the replicator dy-
namics. The individuals keep modifying their decisions along time exhibiting a
periodic pattern in their decisions.
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Figure 4. The time evolution of the probabilities of individuals
under the replicator dynamics form a cycle. The influence matrix
is given by A11 = −0.1, A12 = 3, A21 = −10, A22 = 0, (n1, n2) =
(2, 2) and (x, y) = (0.4, 0.6).

7. Leadership Model. A leader is an individual who can influence others to make
a certain decision. For simplicity, we assume that the leader will influence other
individuals to make decision Y. We study how the choice of the leader can influ-
ence the potential followers (individuals of type t1 and t2) to make the decision he
pretends, see [3].

As in [3], the parameters (θi, Pi, Li), with i ∈ {1, 2}, characterize the leaders and
the potential followers. The types of leaders are defined as follows:

• Altruistic, individualist and biased leaders. The leader donates P1 to the indi-
viduals of type t1 and P2 to the individuals of type t2. The altruistic leader,
for the individuals with type ti, is the one who distributes a valuation to po-
tential followers making the decision Y, i.e. Pi > 0; while the individualist
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leader, for the individuals with type ti, is the one who distributes a deval-
uation or debt to potential followers making the decision Y, i.e. Pi < 0.
The biased leader is the one who distributes a valuation to one type of poten-
tial followers and a debt to the other type of potential followers, i.e. P1P2 < 0.

• Consumption or wealth creation by the followers. Define θ1, θ2 as the parame-
ters of the consumption or wealth creation on the valuation distributed by the
leader to other individuals. Therefore, the new valuation of the individuals,
with type t1 and t2, to make decision Y is given by

ωYi +
θiPi
ni

,

where ωYi corresponds to the valuation before the influence of the leader of
the individuals to make decision Y. There is wealth creation by the followers
of type ti when Pi > 0 and θi > 1 or when Pi < 0 and θi < 1. There is
wealth consumption by the followers of type ti when Pi > 0 and θi < 1 or
when Pi < 0 and θi > 1.

• Influential and persuasive leader. The influence or persuasiveness of the leader
on other individuals is measured by the parameters L1 and L2. The individuals
have a new valuation, when they make the decision N, under the influence of
the leader, given by

ωNi − Li.
If Li < 0, the individuals with type ti will like more to make the decision that
the leader pretends; however, if Li > 0, the individuals with type ti will like
more to make the opposite decision from the one that the leader pretends.

Let
H = max{H(Y, Y ), H(Y,N), H(N,Y ), H(N,N)}

and
V = max{V (Y, Y ), V (Y,N), V (N,Y ), V (N,N)}.

Lemma 7.1. Let S be a (mixed) Nash equilibrium.

(i) If θ1P1

n1
+ L1 > H − x, then the individuals with type t1 make the decision Y.

(ii) If θ2P2

n2
+ L2 > V − y, then the individuals with type t2 make the decision Y.

As in [3], the inequalities above provide a sufficient condition in the values of the
donated parts P1 and P2, in the values of the influence and persuasiveness L1 and
L2 of the leader and in the values of the consumption or creation of wealth θ1 and
θ2 by the followers, implying that the potential followers make the same decision as
the leader.

8. Conclusions. The union of the equilibria E(l1, k1, p; l2, k2, q) form hystereses.
The equilibria S(l1; l2) are the stable part of the hystereses and the equilibria
U(l1, k1, p; l2, k2, q) are the unstable part of the hystereses. The equilibria in E(l1, k1, p; l2, k2, q)\
{S(l1, k1, p; l2, k2, q), U(l1, k1, p; l2, k2, q)} can be stable or unstable equilibria. Hence,
small changes in the coordinates of the influence matrix that determines the equi-
libria sets S(l1; l2) and U(l1, k1, p; l2, k2, q) can create or annihilate cohesive and
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disparate Nash equilibria giving rise to abrupt and collective changes in the de-
cisions of the individuals that are explained by the hystereses. Furthermore, we
observed the appearance of periodic attracting cycles and so the individuals can
keep changing their decisions with a periodic pattern. We demonstrated how the
characteristics of the leader can have a positive or negative influence over the deci-
sions of the individuals. In particular, we show that an individualist leader might
have to be more persuasive than an altruistic leader to convince the individuals to
make a particular decision.
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