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A B S T R A C T

This paper provides an answer to the problem of State Estimation (SE) with multiple simultaneous gross errors,
based on Generalized Error Correntropy instead of Least Squares and on an interior point method algorithm
instead of the conventional Gauss–Newton algorithm. The paper describes the mathematical model behind the
new SE cost function and the construction of a suitable solver and presents illustrative numerical cases. The
performance of SE with the data set contaminated with up to five simultaneous gross errors is assessed with
confusion matrices, identifying false and missed detections. The superiority of the new method over the classical
Largest Normalized Residual Test is confirmed at a 99% confidence level in a battery of tests. Its ability to
address cases where gross errors fall on critical measurements, critical sets or leverage points is also confirmed at
the same level of confidence.

1. Introduction

The problem of State Estimation (SE) departing from a data set
contaminated with gross errors (GE) remains a challenging issue in the
case of multiple errors and when GE fall on leverage points or critical
measurements and sets. There are mathematical difficulties, but the
sensitivity to bad data of the solving method generally used
(Gauss–Newton iterations) stands as a basic hurdle to be coped with.
This paper provides an innovative answer that deviates from the or-
thodox approach in two combined perspectives: the association of
modelling the cost function based on Generalized Error Correntropy
instead of Least Squares, with an interior point method solver instead of
a Gauss–Newton algorithm. This blend achieves a remarkable level of
accuracy in detecting, identifying and quantifying gross errors.

The definition of Generalized Correntropy is first introduced, de-
parting from the concepts of Correntropy [1] developed within the
framework of Information Theoretic Learning. Briefly, the objective of
SE becomes no longer to minimize the (sum of the) squares of the er-
rors, but to minimize the information content of the error distribution.

The earliest proof of concept that such a model would work in Power
Systems SE, based on Information Theory concepts, was described in
Ref. [2], where Correntropy was first adopted.

Generalized Correntropy includes Correntropy as a particular case,
but it has properties that allow a better matching between criterion and
solving algorithms, as the paper will show. These properties were ex-
plored by designing an interior point algorithm [3] optimizing the
Generalized Correntropy, whose derivation is presented in a following
section of the paper.

The novel combination Generalized Correntropy + Interior Point
(GCIP) has unique properties that allow the following:

(a) Detecting, identifying and quantifying/correcting multiple gross
errors.

(b) Dealing naturally with errors (namely, gross errors) in leverage and
critical measurements and sets.

(c) Remaining competitive in terms of computing effort for base cases
with no gross errors, yet much more efficient than classical ap-
proaches for cases of multiple GE.
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Such properties have sound mathematical foundations, with
abridged reference in the following sections. The paper is mainly de-
voted to providing numerical evidence of such properties, which are
highlighted in comparison with the performance of a conventional in-
dustrial approach (LNRT — Largest Normalized Residual test) for
identifying and correcting measurements with gross errors. A following
paper will dissect the mathematical foundations supporting the favor-
able properties of the novel method.

The paper includes didactic examples, to provide insight and allow
plotting of functions, and results from extensive testing of the new
model on an adaptation of the IEEE 30-bus system, in a diversity of load
and generation scenarios. These tests satisfy two conditions: (a) a
comparison, in terms of quality of results, with LNRT, and (b) a robust
statistical testbed, instead of solely presenting individual cases of oc-
casional success.

These results confirm the statistically significant superiority over
the industrial conventional method for a confidence level of 99%, taken
from a very large sample of experiments. A deeper analysis of the
method as a diagnosis process confirms such assessment, counting in-
correct and correct detections of gross errors (as “false alarms” and
“missed alarms”) in a confusion matrix [4].

The GCIP model explores favorable properties that allow the
method to swiftly deal with errors at leverage points and in critical
measurements, something that has been looked at with caution, and
even considered not-possible. The paper provides experimental con-
firmation that the method can deal with such problems. An investiga-
tion on this success led to the derivation of mathematical justifications
for the behavior of GCIP in these cases. These proofs are quite extensive
and will be provided in length in a separate publication — however, the
experimental results are undeniable: with its formulation, GCIP natu-
rally deals with problems that a Newton–Raphson model elicits.

The favorable properties of the GCIP approach — robustness and
competitiveness in computing effort — make it a robust candidate to be
integrated in an industrial environment.

2. State estimation with gross errors

The search for a suitable cost function that would allow SE from
data sets contaminated with GE (also denoted as bad data) has more
than four decades [5]. GE can also be seen as outliers, strongly de-
viating from a pattern that would be a consequence of the Kirchhoff
Laws applied in the power networks. There is an early recognition that
the Minimum Square Error (MSE) criterion, also denoted as Least
Squares, has inconvenient properties in dealing with outliers — in fact,
instead of ignoring these odd data, MSE puts unnecessary weight on
them and therefore the estimation becomes deviated from a true pat-
tern, in the attempt of compensating for such outliers.

Two main approaches can be identified in the literature, in the at-
tempt to circumvent such difficulties and identify gross errors: we will
denote them as: (a) the a posteriori approach, and (b) the a priori ap-
proach.

2.1. A posteriori approaches

In this approach, a first estimation is performed using an SE-like
model. Most typically, applications explored by the industry are, in one
way or another, referring to a classical, almost canonical model, best
systematized in Ref. [6]. Then, a sort of diagnosis-and-correction pro-
cedure is applied, departing from the residuals (differences between
measured and estimated values). The process tries to identify data
corresponding to measurements contaminated with gross errors, in
order to eliminate them from the data set and re-run a classical SE
procedure again, using only “healthy data” plus some form of pseudo-
measurements. The technique denoted as LNRT — Largest Normalized
Residual Test [7] is one of the best known and used in industrial ap-
plications, following these principles. Even in recent publications, in a

diversity of variants such as in Refs. [8,9], the a posteriori approach is
commonly used.

2.2. A priori approaches

In this approach, the fundamental idea is to perform a SE directly on
the original (contaminated) data, with a model that somehow, in a
natural way, pushes gross errors out of the data sub-set contributing to
the estimation. This process would not require, in principle, any two- or
three-step procedure, as the a posteriori process does. To achieve such
result, again two broad approaches were tried: (1) using artificial
neural networks and (2) adopting cost functions that, in some way,
could be related to a family of M-estimators [10].

2.2.1. Artificial neural networks (ANN)
Feed-forward artificial neural networks in SE were proposed as early

as 1990 [11]. More recently, a different architecture for ANN was
proposed, in the form of auto-associative ANN or autoencoders [12,13],
and adopting Correntropy as the cost function of the training process.

An autoencoder learns a data pattern, when subject to training.
Therefore, the cost function may also be interpreted as measuring a
distance between data and a supporting manifold for the pattern
learned from training. Maximizing Correntropy, the similarity between
the output of the ANN and the pattern learned is measured under a
specific non-Euclidean metric — the so-called CIM (Correntropy
Induced Metric), in a smooth variation from metric L0 (indifference) to
L2 (Euclidean) — while Least Squares represents a distance only mea-
sured in an Euclidean space (metric L2). Autoencoder approaches were
shown to be successful, but display some drawbacks, among which the
need for off-line training and the limitation in their practical size for a
meaningful and accurate training, suggesting that they may find their
niche of application in distributed architectures based on a mosaic of
small intertwined local networks.

2.2.2. Non-Euclidean metrics
Attempts were made to replace the classical Least Squares criterion

by a different criterion that would become insensitive to outliers, as
early as in Refs. [14,15]. In perspective, these were attempts to address
the problem from the point of view of the adoption of M-estimators.
Their mathematical expressions move away from the quadratic form of
Least Squares and, therefore, it may be said that they resort to non-
Euclidean metrics when evaluating the distance between a vector of
measurements and the supporting manifold for the solutions of the
Kirchhoff equations; this is, in a way, a geometrical interpretation of the
process. The non-quadratic criteria proposed were justified, in most
cases, based on engineering judgment about the desired properties for a
criterion that would be able to adequately deal with gross errors.

2.2.3. Information theoretic learning criteria
The adoption of a Maximum Correntropy Criterion (MCC) as the SE

cost function and the interpretation it provides in terms of information
content remaining in the error probability density function (pdf), shed
new light over the State Estimation process. The basic principle is that a
SE process should result in an error distribution with mode at zero and
minimal Entropy. As Correntopy is related with the value of a pdf at
zero, maximizing Correntropy achieves the minimization of Entropy as
desired. This interpretation was first taken advantage of in Ref. [2],
with the adoption of an MCC — Maximum Correntropy Criterion, being
later extensively explored in Ref. [16]; in Ref. [17], this type of cost
criterion was adopted but did not explore the Information Theoretic
interpretation. In both latter works, a Gauss–Newton solver was de-
veloped. In Ref. [18], an evolution based on MCC with Laplace kernel
functions and interior point method solver was presented. Finally, in
Ref. [19] one finds a proposal to use GGD (generalized Gaussian den-
sity), as a family of kernel functions. However, the purpose of this latter
work is modelling noise in measurements from a large sample of past
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information. Also, a number of solvers should be ready to be used at the
same time, which is not practical.

2.3. Difficulties with leverage points

Errors in some particular measurements were shown to be very
influential and have the potential to mislead the computing into an
erroneous solution — the location of such measurements received the
label of leverage points. Early attempts with M-estimators [20,21] al-
ready had the intention of specifically down-weighting bad (with error)
leverage points. M-estimators are known to be resistant to unusual
observations (outliers), but sensitive to high leverage points; however,
it is shown in Ref. [22]. that certain M-estimators with redescending
influence functions [23] are resistant to high leverage outliers.

While the Weighted Least Squares (WLS) method provided some
outlier rejection capability based on re-weighted residuals, an inter-
esting competing method was also proposed, the Weighted Least
Absolute Value (WLAV) estimator [24], with recent renewed interest,
for instance in Refs. [25,26]. It was early shown that WLAV might fail
even when there is a single bad leverage point and, in the event of
multiple bad leverage points, it is still more vulnerable due to masking
effects. Moreover, it is essential to be aware that since leverage points
without gross errors (good leverage points) are capable of considerably
improving the estimation reliability, the best solution is not always
down-weighting all leverage points.

In order to effectively suppress bad data on leverage points, the
Least Median of Squares (LMS) was extended to nonlinear power system
problems [27], providing a substantial improvement to state estimators
that were prone to a masking effect of multiple bad leverage points. In
Ref. [28], an M-estimator was improved on the basis of projection
statistics in the formulation of the so-called Schweppe-Huber GM-esti-
mator. Later [29], had proposed a robust estimator based on maximum
agreements among measurements. Furthermore [30], introduced a
mixed integer nonlinear programming approach for a robust estimator.
And recently [31] presented a Schweppe-type Huber generalized
maximum-likehood estimator claimed to be robust in processing GE in
leverage points. However, while the performances of these estimator
approaches are good even for identifying gross errors on leverage
points, the associated computational burden seems to be a limiting
factor for their practical applications to large-scale power systems.

2.4. Difficulties with critical measurements

Critical measurements have been defined in relation to ob-
servability: a measurement is critical when its loss makes the system
unobservable. This concept is not put in question. However, there is a
commonly repeated assertion that “the residuals of critical measure-
ments will always be zero, and therefore errors in critical measurements
cannot be detected or identified”. Also, it has been argued that when a
GE falls on a measurement in a critical set, it is possible to detect that
there is a GE somewhere but it is not possible to identify which mea-
surement is contaminated.

This is true, given that the model behind the calculation is a clas-
sical Least Squares model. But if a different mathematical representa-
tion is adopted, so that the calculation of residuals exhibits different
properties, it may be possible that the variance for an estimated re-
sidual in a critical measurement is not zero, even if the variances of the
measurement and its estimated value are equal — it depends on co-
variances not being null. If so, then this property may be used to
identify gross errors in critical measurements. It is tantamount to saying
that the property of “error undetectability” belongs to the method, not
to the measurement.

2.5. Difficulties with Gauss–Newton solvers

In geometrical terms, Correntropy is similar to the Welsch M-

estimator [32] and shares its advantages and drawbacks. One of the
most unpleasant characteristics is that such cost functions exhibit a
possibly large number of local optima. This rendered the use of
Gauss–Newton solvers problematic, because they demand specific ne-
cessary conditions to converge to the global optimum. It is however not
possible to guarantee that the traditional flat start first iterative solution
(all voltages equal to 1 p.u. and all angles equal to 0) enforces such
conditions. This is why the proof of concept in Ref. [2] resorted to a
meta-heuristic to find the correct solution for the SE problem in an AC
model.

The strategy to circumvent this problem, using as initial iteration
point the MSE solution and forcing a smooth transition between a
Euclidean metric and the CIM, was not 100% successful, and it has been
possible to demonstrate that there are cases of failure of such processes
[16]. The technique became competitive with the LNRT approach, but
not significantly better if not aided by a complementary process.

This is why in Ref. [16] a mix strategy was adopted: ANN in the
form of denoising autoencoders [33] provided a filtering and correction
of the measurement vector, generating a suitable starting point for the
iterations of a subsequent Gauss–Newton solver acting under a max-
imum correntropy criterion (MCC). This led to a 100% recognition of
gross errors, when two simultaneous large errors are present in the
measurement set, clearly beating the LNRT method — but had the
drawback of demanding the adoption of a multitude of autoencoders,
with the burden of fine-tuning their training and of retraining each time
any topologic change would occur in the network.

In any case, for all approaches, a quick degradation of performance
can still be witnessed when more than two gross errors are present.

3. Generalized correntropy

Entropy is a measure of information content of a probability density
function. Renyi’s entropy [34] has proven to allow the development of
working algorithms in an easier fashion than the definition of Shannon
[35]. Correntropy [1] is a generalized measure of similarity between
two pdf, with a strong relation with entropy. Given the two scalar
random variables X and Y , it is defined by

∬= − = −υ X Y E X Y x y p x y dxdy( , ) [κ ( )] κ ( ) ( , )σ σ xy σ (1)

where κσ is a kernel operator with parameter (width) σ. Most of ap-
plications have adopted the Gaussian kernel Gσ, among other reasons
because of its positive semidefinite property and computational tract-
ability. Since the joint pdf p x y( , ) is usually unknown and only a finite
number of data =x y{( , )}i i i

N
1 are available, the correntropy estimated by

the Parzen windows method [36] is given by:

∑= −
=

υ X Y
N

G x yˆ ( , ) 1 ( )σ
i

N

σ i i
1 (2)

As referred to in Section 2.2.3, the correntropy of the distribution of
residuals was introduced in Ref. [2] as the cost function for the state
estimation problem. This allows the interpretation that the SE process
aims at discovering the set of estimated measurements whose dis-
tribution is as similar as possible to the distribution of measurements.

A very useful generalization was produced with the adoption of the
GGD (generalized Gaussian density), as proposed in Ref. [37], plotted
in Fig. 1, which is given by

= ⎛
⎝

− ⎞
⎠

G e c
σ c

exp e
σ

( )
2 Γ(1/ )c σ

c

,
(3)

where e is the error between random variables X and Y, >c 0 is the
shape parameter, Γ(.) is the gamma function and σ is the scale
(bandwidth) parameter defined by =σ ζ c cΓ(1/ )Γ(3/ ) .

Special cases of this GGD include: c = 1— Laplace density function;
c = 2 — Gaussian density function: c → +∞ – uniform distribution
over (−σ , σ). The Generalized Correntropy (GC) estimator for a finite
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discrete sample becomes

∑= −
=

υ X Y
N

G x yˆ ( , ) 1 ( )c σ
i

N

c σ i i,
1

,
(4)

Associated with the GC, there is the generalized correntropy in-
duced metric (GCIM), which may behave like different norms de-
pending on the parameters adopted and the region of analysis.
Accordingly, GCIM may vary from L∞ to L0, while the metric induced
by a Gaussian-based Correntropy only varies from L2 to L0. This prop-
erty proves to be helpful in SE with gross errors. In particular, the ca-
pacity to apply an L0 metric (indifference in distance) in the case of
outliers is what is needed, because their residuals can be pushed to
whatever value is necessary without disturbing the objective function
evaluation, thus allowing the remaining residuals to be minimized
without contamination. Furthermore, the L∞ metric is indifferent to all
components in a residual vector, except the most significant one — this
helps in separating outliers by providing freedom to the rearrangement
of residual vector components.

In summary, this paper proposes the adoption of a new criterion in
SE: the MGCC — maximum generalized correntropy criterion, with the
same theoretical perspective as MCC: to produce a solution tending to
minimize the Entropy of the error distribution while complying with
the requirement that this distribution should have a zero mean, i.e., no
bias present.

4. Interior point solver

The difficulties previously met with Correntropy (and smooth M-
estimators of the kind), for problems with GE, derive from problem
formulation — as an unconstrained non-linear program — as well as
parametrization and the algorithm used — classical Gauss–Newton
iterations. This formulation is plagued with local optima and the tra-
ditional iteration flat start solution does not work in all cases, as it may
be out of the region of necessary conditions for the Newton process to
converge. The information theory behind the process is robust but the
algorithmic difficulties cannot provide full convergence guarantee and
some rate of failure is verified [16]. To circumvent such difficulties, this
paper reports the successful adoption of an Interior Point method (IPM)
solving strategy.

Since the 80’s one finds suggestions for using IPM in power systems
problems [38–40]; in particular, several researchers applied IPM to SE,
usually associated with WLAV (weighted least absolute value) criteria
[41–44]. Some adepts of the WLAV criteria claimed that it had some
good behavior in the rejection of outliers, but this has not been suffi-
ciently quantified. In terms of computing efficiency, IPM was shown to
be competitive.

In the following sections, a formulation of an IPM solver for the
MGCC criterion will be detailed. This combination of MGCC with IPM
forms the GCIP model for power systems state estimation.

4.1. The state estimation model based on GC

The formulation of the state estimator based on GC follows paths
similar to previous work, as referred to above. The following optimi-
zation problem is set up:

∑= ⎛
⎝

− ⎞
⎠=

J x
m

c
σ c

exp r
σ

max ( ) 1
2 Γ(1/ )i

m
i

c

1 (5)

⎧
⎨⎩

=
= −

g x
r z h x

subject to
( ) 0

( )

where:
z is the vector of measurements (mx1)
x is the vector of state variables (nx1)
h(x) is the nonlinear state estimation function that relates the

measurements to the system states (the power flow equations producing
estimated values for the measured variables)

n is the number of state variables to be estimated
m is the number of available measurements
r is the vector of residuals (difference between measured and esti-

mated values)
g(x) : Rn → RΩ are zero-injection equality constraints, Ω is the

number of equality constraints.
In order to be relieved of the absolute value, introducing inequality

constraints for the residual term is required. These may be transformed
in equalities by adding non-negative slack variables.

4.2. Producing a standard cost function

Define a new variable vector ∈s Rm such that

− ≤ ≤s r si i i (6)

By introducing two slack variable vectors such that ∈ ≥u v R, 0,m and
defining two new non-negative variable vectors ∈p q R, m as =p ui i

1
2

and =q vi i
1
2 , we have

= −r p qi i i (7)

= +s p qi i i (8)

Considering the upper bound of Eq. (6) which is defined by Eq. (8), a
new equivalent system based on standard form of non-linear pro-
gramming is obtained:

∑= ⎛
⎝

−⎛
⎝

+ ⎞
⎠

⎞
⎠=

J x
m

c
σΓ c

exp
p q

σ
max ( ) 1

2 (1/ )i

m
i i

c

1 (9)

⎧

⎨
⎩

=
=
≥

f x
g x
p q

subject to
( ) 0
( ) 0
, 0.

where = − − +f x z h x p q( ) ( ) .

4.3. Primal-dual interior point method

Introducing Lagrange multipliers ∈β R λ γ; ,Ω and ∈α Rm, we can
construct the following Lagrangian function associated with Eq. (9)

≡ − − − −L J x α f x β g x γ q λ p( ) ( ( )) ( )T T T T (10)

Then, we can derive the following Karush–Khun–Tucker (KKT)
conditions for system (9) as follows

≡ =L γ q 0γ i ii (11)

≡ =L λ p 0λ i ii (12)

⎜ ⎟≡ ⎛
⎝

− + ⎞
⎠

⎛
⎝

−⎛
⎝

+ ⎞
⎠

⎞
⎠

− − =
−

L J x
c p q

mσ
exp

p q
σ

α γ( )
( )

0q
i i

c

c
i i

c

i i

1

i (13)

Fig. 1. GGD graph for several values of c when ζ= 1.
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⎜ ⎟≡ ⎛
⎝

− + ⎞
⎠

⎛
⎝

−⎛
⎝

+ ⎞
⎠

⎞
⎠

+ − =
−

L J x
c p q

mσ
exp

p q
σ

α λ( )
( )

0p
i i

c

c
i i

c

i i

1

i (14)

≡ =L g x( ) 0β (15)

≡ =L f x( ) 0α (16)

≡ ∇ − ∇ =L g x β h x α( ) ( ) 0x
T T (17)

Given the special nonlinearity in complementary conditions (11)
and (12), it is not possible to solve directly the above KKT equations by
Newton’s method. For example, by Newton's method, Eq. (10) solves as:

+ = −γ dq q dγ γ qi i i i i i (18)

If qi
k( ) in Eq. (11) becomes zero at the k -th iteration, dqi

k is equal to
zero, from Eq. (15), and hence = + =+q q dq 0i

k
i
k

i
k1 . This means, once

qi falls on the boundary of a feasible region, it is stuck at that point,
preventing the convergence of the algorithm. It is necessary to modify
the Newton formulation in a way that zero variables become nonzero in
subsequent iteration. This can be done by replacing the com-
plementarity equation with a perturbed complementary [45]. Thus, we
introduce a perturbation factor >μ 0 to relax (11) and (12) as:

≡ − =L γ q μ 0γ
μ

i ii (19)

≡ − =L λ p μ 0λ
μ

i ii (20)

The parameter μ is calculated as =μ ρ m. Gap/2 where
= +Gap γ q λ pT T and ∈ρ (0,1) is a centering parameter [45].
By applying the Newton method into the KKT optimality conditions,

we can express the correction equations as:

+ = −γ dq q dγ Li i i i γ
μ
i (21)

+ = −λ dp p dλ Li i i i λ
μ
i (22)

+ − − = −e dp e dq dα dγ Li i i i q1 1 i (23)

+ + − = −e dp e dq dα dλ Li i i i p1 1 i (24)

∇ = −g x dx L( ) β (25)

− ∇ − + = −h x dx dp dq L( ) α (26)

∇ − ∇ + ∇ − ∇ = −h x β g x α dx g x dβ h x dα L( ( ) ( ) ) ( ) ( )T T
x

2 2 (27)

where ∇ h x( )2 and ∇ g x( )2 are Hessian matrices of h x( ) and g x( ); ei is as
follows

⎜

⎟⎜ ⎟

= ⎛
⎝

− − + ⎛
⎝

−⎛
⎝

+ ⎞
⎠

⎞
⎠

+ ⎛
⎝

+ ⎞
⎠

⎛
⎝

−⎛
⎝

+ ⎞
⎠

⎞
⎠

⎞
⎠

−

−

e J x
m

c c p q
σ

p q
σ

c p q
σ

p q
σ

( ) ( 1)( )
exp

( )
exp

i
i i

c

c
i i

c

i i
c

c
i i

c

2

2 2 2

2 (28)

From Eqs. (20–23), let ⎡
⎣⎢

⎤
⎦⎥

= ⎡
⎣⎢

+
+

⎤
⎦⎥

−a b
c d

q e γ q e
p e p e λ ,i i

i i

i i i i i

i i i i i

1

then the

following expressions are obtained

= +dq n dα ti i i i1 1 (29)

= +dp n dα ti i i i2 2 (30)

where = −n a q b pi i i i i1 ; = −n c q d pi i i i i2

= − + − +t a q L L b p L L( ) ( )i i i q γ
μ

i i p λ
μ

1 i i i i

and

= − + − +t c q L L d p L L( ) ( ).i i i q γ
μ

i i p λ
μ

2 i i i i

Substituting Eqs. (29) and (30) into Eq. (26) then

∇ + =h x dx Adα ν( ) (31)

where ∈ ×A Rm m is a diagonal matrix, with the elements

= − + = − − + + +A n n v z h x p q t t( )i i i1 2 1 2

and ∈t t R, m
1 2 as defined in Eqs. (29) and (30). Then, according to Eqs.

(25), (27) and (31) and ignoring the second derivative terms in Eq. (27)
just as in the WLS method, the reduced correction Eq. (24) is obtained,
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−

⎤

⎦
⎥
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G H

H A
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dα

L
L

0 0
0

0 ν
T T

β

x

(32)

where = ∇G g x( ); and = ∇H h x( ). The values of xd , βd , and αd can be
obtained from Eq. (32); then, Eqs. (29) and (30) give pd and qd .
Eventually, γd and λd can be obtained from Eqs. (23) and (24).

We can calculate the primal and dual step sizes by Ref. [44]

= − < − <q dq q p dp pΔ 0.9995min{min( / : 0; / : 0), 1}P i i i i i i (33)

= − < − <γ dγ γ λ dλ λΔ 0.9995min{min( / : 0; / : 0), 1}D i i i i i i (34)

which can ensure that the slack variables p and q satisfy >p q, 0, and
the Lagrange multipliers λ and γ satisfy >λ γ, 0.

4.4. The role of central path in the identification of GE

The new algorithm benefits from a very important feature occurring
in IPM central path following, to detect and identify measurements
contaminated with spike noises. As far as one can recollect, this is the
first time that this feature is used to identify GE.

The central path C is an arc of strictly feasible points that plays a
vital role in the theory of IPM algorithms. In our algorithm, we restrict
the iterations to a neighborhood of the central path and followC to find
a better solution. Therefore, directions calculated from any point in the
neighborhood make a progress toward the solution set. The neighbor-
hood of C is defined by

= ∈ ≥ = …γ q μ γ q τμ i m{( , , ) | for all 1,2, , }τ i i1N F (35)

= ∈ ≥ = …λ p μ λ p τμ i m{( , , ) | for all 1,2, , }τ i i2N F (36)

where ∈τ (0,1) defines the neighborhood parameter and � represents
the primal-dual feasible set. The neighborhood excludes points that are
too close to the boundary of the non-negative orthant. Measurements
contaminated with spike noises are however located far from the cen-
tral path. In fact, they are mostly placed near the boundaries. However,
as the measurements contaminated with GE are interacting with the
clean measurements, some sound measurements may become placed
close to the boundaries as well. However, by having knowledge of re-
sidual values related to these measurements, one could verify this
suspicion by additionally evaluating the well-known weighted residuals
rw:

= −r R rw 1/2 (37)

where R is the covariance matrix of the measurement error vector.
Considering weighted residuals to detect GEs does not bring any diffi-
culty in case of critical and leverage outliers, as the residuals are not
necessarily small for such points in GCIP formulation. In addition, al-
though for critical measurements there is no redundant information,
zero injection and inequality constraints used in the formulation work
the same way as pseudo measurements and provide an extra re-
dundancy for the system. These results are fully demonstrated in Ref.
[49] and will be presented in a coming publication.

Notice that not considering the normalized residuals as a verifica-
tion method in here is due to the fact that measurement error dis-
tributions are not constrained by any assumption and can be either
Gaussian or non-Gaussian. By comparing the absolute value r| |w of the
suspicious measurement identified by the primal-dual criterion with a
defined threshold T, the measurement is either marked as GE, if

>r T| |w or non-GE, otherwise. Measurements labeled as GE are then
withdrawn from the measurement set and the states are re-estimated.

Notice that the statistical significance is used in here to determine
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the T value in the sense that the algorithm is prepared to ignore all
results that fail to reach this standard. Statistical significance is often
expressed in multiples of the standard deviation of a normal distribu-
tion. Such criterion is still independent from any Gaussian or non-
Gaussian assumptions for the measurement error distributions; there-
fore, based on central limit theorem, even if the distributions are not
normal, the estimates of the means are going to be close to normally
distributed. This paper sets significance thresholds at a strict level of 5σ
as it corresponds to the probability of 0.00006% for two-sided p-value
(+/− residuals). In fact, p-value corresponds to the probability of
detecting a measurement as GE when it is in fact a sound measurement,
given that the null hypothesis is true [46].

It is important to mention that contrary to a classical unconstrained
non-linear program formulation, the deletion of the GEs in the proposed
method does not generate any computational difficulty. For a general
non-linear system, where the mapping is continuously differentiable,
the sequence generated by Newton method converges to a solution that
is non-degenerate, i.e. the Jacobian is non-singular. In an IPM setting,
convergence can be achieved even when the Jacobian approaches a
singular limit and even when the solution is not unique [47].

4.5. Special favorable properties of GCIP

The combination of Generalized Correntropy with an Interior Point
method (GCIP) has important properties that make it a powerful and
robust method, superior to many other approaches. Among these
properties, the following are of the utmost importance:

A There is a theoretical optimum value for the shape parameter c, and
therefore there is no need for trial and error experiments. It can be
proved that for c = 13.4, the strict convexity range of GC objective
function is in its maximum value and so the solutions found by the
algorithm in the search space are global solutions.

B The GCIP solving process, as designed, naturally introduces a dis-
tortion or transformation of the search space in a way that errors in
measurements in leverage points appear no longer causing spurious
contaminations, disturbing the estimation process. It can be shown
that, in GCIP, all data points are forced to belong to a large cluster of
evenly spread measurements, by a coordinate transformation that is
embedded in the method. This causes an effect similar to the method
argued in Ref. [48], but without imposing external transformations
or adding extra procedures.

The coordinate transformation induced by the application of GCIP
leads to defining a new hat matrix K’, distinct from the hat matrix
usually defined in WLS, i.e. its residual sensitivity matrix. K’ is idem-
potent, non-symmetrical, and GCIP adaptively makes the value of any
diagonal element of K’ as close as possible to its expected value. The
scaling factors used are not prescribed as suggested in Ref. [48] and are
assigned according to the spread of the row vectors in matrix H.
Therefore, the method naturally evolves in a way that mitigates the
effect of leverage measurements.

A The identification of errors in critical measurements becomes pos-
sible, because problems in solving with the WLS/Newton–Raphson
approach disappear with GCIP. The co-variance matrix of the esti-
mated measurement vector can be shown to derive from the new K’
hat matrix and the scaling and translation introduced by the
method. It can then be demonstrated that, contrary to WLS, the
estimated residual of a critical measurement is not zero in GCIP,
which allows the identification of gross errors in such measure-
ments.

The authors have developed detailed mathematical derivations that
justify the above three properties. Because they are lengthy, they are
omitted from this paper and will be published in a separate paper,

solely devoted to the favorable features of GCIP and their mathematical
foundations.

The experimental results described in this paper provide evidence
that such properties become useful in dealing with gross errors occur-
ring is such classical difficult cases. It must be recalled that the concepts
of leverage and critical measurements evolved from the classical Least
Squares criterion + Newton–Raphson optimizer and are a consequence
of such formulation and of interpretations over it.

This paper presents, in the form of numerical results from a sample
of hundreds of experiences, referred to in Section 6 below, solid evi-
dence of results in line with the expectations generated by the prop-
erties above. In particular, Sections 6.5 and 6.6 present the experiments
and result analysis for special cases of gross errors in leverage points
and critical measurements. These results translate the favorable prop-
erties of GCIP, which have a provable mathematical foundation, into
numeric experimental evidence.

4.6. GCIP estimator algorithm

The detailed GCIP estimator algorithm is summarized in Table 1.
Although following the general logic steps of previous approaches
[41,44], it includes important improvements that allow for flexibility in
solving different problems from changing the shape parameter of the
objective function. A second prominent feature is the proper path fol-
lowing method, by selecting a well-defined neighborhood and choosing
an appropriate neighborhood parameter, which improves the search of
an accurate solution. But perhaps the most important feature is the
novel approach introduced to detect and identify GEs. This method is
based on the interesting property of the proposed algorithm in which
the neighborhood excludes the points that are too close to the boundary
of the non-negative orthant (hyperoctant). Hence, the measurements
that are located near the boundaries are suspected to be contaminated
with GEs. Weighted residuals are then used in order to verify such
suspicion so that the data can be cleaned before SE is run one more
time. Experimental results confirm the efficiency introduced by this
approach.

Table 1
GCIP estimator algorithm.

Step 1: (Initialization) Set the iteration count to zero ( =k 0) and define kmax ; where k
and kmax are iteration count and maximum number of iterations. Set the
centering parameter ∈ρ (0,1) and tolerance = −ε 10 3. Choose >σ 0,

= =α β 0(0) (0) and >p q γ λ, , , 0(0) (0) (0) (0) ;
Step 2: Select a shape parameter c for the objective function;
Step 3: Compute the Complementary Gap (Gap≡ +γ q λ pT T ). If Gap <ε, then the

optimal solution has been reached, go to Step 9; else, go to Step 4;

Step 4: Update the relaxation parameter =μ ρ.
m

Gap
2

;

Step 5: Solve the reduced correction Eq. (32) for dx dβ dα[ , , ]T and then

compute dp dq dγ dλ[ , , , ]T ;
Step 6: From Eqs. (33) and (34) choose the primal and dual step-lengths (Δ Δ,P D);
Step 7: Set the primal and dual variables as:
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( 1)

( 1)

( 1)
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( )
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( )

Step 8: Set = +k k 1 and go to step 3;
Step 9: Choose the neighborhood parameter, τb, close to the boundaries and find

primal-dual suspicious measurements contaminated with GE such that:
= − ≥ − ≥ϖ i γ q τ μ λ p τ μ{ | | | 0 & | | 0}i i b i i b

Step 10: Choose a threshold T. For the identified measurements with spike noise such
that: >ϖ r T r{ | | | ; | | is weighted residual of suspicious measurement}ϖ

w
ϖ
w then

withdraw zϖ from measurement set and go to Step 1, else go to Step 11;
Step 11: END
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5. Simulations for a 3-bus system case

5.1. Testbed

This section presents some illustrative insight-providing results in a
3-bus DC-model system, shown in Fig. 2, with line reactances and the
indication of the measurement plan for active powers. A basic power
flow case was created; Gaussian noise was added to all measurements,
with zero mean and standard deviation =δ pu0.01 . but not allowing
values so large that could be seen as gross errors.

The results for SE were obtained, for a linearized DC model, with the
classical WLS and with GCIP ( = =c ζ13.4, 6). Voltage magnitudes for
all the buses are 1 pu, the angle of Bus 1 of 0 rad, and the angles of
Buses 2 and 3 are to be estimated. For DC experiments, the solutions
were reached in a single iteration (internal loop) for both methods.
Notice that the SE results of GCIP in the following section do not show
the impact of identification and cleaning GEs yet.

5.2. Three simultaneous gross errors

The didactic experiment consists of establishing a stress test (3 GE in
a 3-bus system), with the GE having an amplitude of 25δ relative to the
noise component.

Table 2 shows how GCIP detected and corrected all three errors, and
how its solution is very close to the power flow solution (taken as re-
ference), while the WLS process failed (as expected).

The relationship between the objective function J(x) of the GCIP
estimator, the constraints and x (voltage angles of bus 2 and bus 3) is
depicted in Fig.3 ( =ζ 6). In Fig. 4, the projection on the (θ2, θ3) space
shows the GCIP solution (x) very close to the reference power flow
solution and on one of the lines that jointly represent the feasible region
of the IP model, while the WLS solution is apart.

6. Results with a 30-bus system

6.1. Testbed

A comprehensive testbed for algorithm behavior was prepared
based on the IEEE 30-bus system from Matpower database [50] with a
load added to bus 11, by changing generation and load values.

A Monte Carlo sampling was used to create 500 complex scenarios.

Each generator could be sampled as in one of the two states: operating
or failed (Up, or Down with a high probability of 0.18–0.23); similarly,
loads could be in one of several demand levels or be disconnected with
probability 0.01. This ensured a large diversity in the scenario set.

The definition of measurement plans for each scenario as well as the
location of specific gross errors was dealt with care, to ensure fairness
and avoid bias in the experiment outcomes. Four measurement plans
were defined, with different redundancy levels Λr (ratio between actual
number of measurements and number of state variables). The mea-
surement plans were built to have critical measurements or critical sets
appear in controlled percentages, which are higher for reduced re-
dundancy rates. In each case, a power flow was run, Gaussian noise was
randomly added to measurements with zero mean, standard deviation
of δ, pu0.02 for active and reactive power and pu0.003 for voltage
magnitudes (noise sampled under other distribution could be used, not
relevant to the essence of the results presented).

Then, GEs were superimposed, in six experiments, by adding 0–5
simultaneous errors. This addition was made randomly but under su-
pervision, making sure that the percentage of cases of GE falling in
critical sets and leverage points was in line with the theoretical prob-
ability of this happening (counting the number of possible measure-
ment combinations and the number of combinations falling in critical
sets). The process of identifying of leverage points is described below, in
Section 6.5.

Per experiment (for each Λr), 500 scenarios were built.
For each scenario, GCIP ( = =c ζ13.4, 6) iterated twice (steps 2–10

in Table 1) until convergence, while WLS + LNRT was allowed to
iterate with progressive removal of the largest suspect measurement in
each run (removal threshold set to 4 as commonly done in SE pro-
blems), until a stopping criterion is met, or convergence failed. In our
experience, parameter values of c fixed at values close enough to 13.4
(e.g., 12) do not provide a discernable difference in the quality of re-
sults.

Fig. 2. The 3-bus DC test system.

Table 2
Comparison of results for three GE (in gray).

In grey/bold: measurements/results directly affected by gross error.

Fig. 3. 3D view of the objective function of GCIP for the 3-bus DC system in the
flat start (θ2 = 0, θ3 = 0) area in the problem with three GEs.

Fig. 4. 2D projection of the objective function and constraints in Fig. 3. The
lines correspond to the feasible area in the IP model. The GCIP solution × is
over a constraint and close to the reference solution ∗, while the WLS solution
+ is far away.
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The results were then analyzed by examining the comparative
performance of both methods, in the whole set of scenarios as well as on
selected subsets, to analyze specific cases of GE falling on critical
measurements or critical sets, or in leverage points.

All tests were run on a MacBook Pro machine equipped with a two
Intel Core i5, CPU clocked at 2.5 GHz and 8 GBs of RAM. It used macOS
10.13.5 and 64-bit version of Matlab 2017a as well as Matpower
package for steady-state power system simulations [50].

6.2. Performance in the complete set of scenarios

As Tables 3 and 4 show, GCIP is very stable in terms of the number
of iterations and computing time, and both methods exhibit comparable
running times, for average results over the complete set of scenarios.
GCIP exhibits no disadvantage in terms of computing burden.

These numbers of iterations are computed until the algorithm stops,
irrespective of achieving convergence or not, and irrespective of
reaching the correct solution or not.

An observed valuable property of the GCIP algorithm lies in that the
number of iterations is almost insensitive to the degree of difficulty of
the problem (as measured by the number of GE involved). This is
clearly shown in Fig. 5, illustrating the average and maximum number
of iterations in 500 cases for each method, for the case of a (good)
redundancy of =Λ 3.2r (similar plots for other cases).

GCIP iterations never exceed 7 internal loops, while in LNRT there
are scenarios reaching 117 internal iterations, when there are 5 gross
errors present in the sampled measurement set. Table 5 presents the
maximum number of iterations for all the tested redundancy levels.

6.3. Estimation accuracy in the complete set

To evaluate the performance of an estimator we made use of a nodal
voltage metric previously proposed in Ref. [51], given by:
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where
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Vi

est
and

→
Vi

true
are the estimated and reference (obtained from a

previous power flow run) complex voltage values at the i-th bus. The

MV index was calculated for 500 cases in each set of experiments with 0
to 5 GE with four redundancies scenarios.

As a first remark, GCIP converged in 100% cases, in all experiments
and for all levels of redundancy rate Λr . On the other hand, the LNRT
procedure failed to converge in 212 out of 500 cases for the high re-
dundancy level of 3.2 (the progressive withdrawal of suspicious mea-
surements led at some point to an unsolvable problem).

The failure of the LNRT procedure is known to be due to several
factors: (i) GEs in measurements in low redundancy scenarios (critical
measurements or pertaining to critical sets of measurements); (ii) in-
teractive multiple GEs; (iii) GE in highly influential measurements, i.e.,
affecting the convergence of the SE process, the so-called leverage point
measurements [52].

A 99% confidence interval for the convergence rate was calculated
based on the dimension of the sample, leading to the representation in
Fig. 6 of confidence intervals in all experiments. The LNRT procedure,
at a confidence level of 99%, will fail to converge in at least 53% of the
cases, in the experiment conditions.

To produce a fair comparison, in terms of accuracy and for all these

Table 3
Average iteration number for 500 cases in each set of experiments with 0–5 GE
in the four redundancy-level scenarios.

Λr 3.2 3 2.8 2.6

No. GE GCIP LNRT GCIP LNRT GCIP LNRT GCIP LNRT

0 2 6 2 6 2 6 2 6
1 5 13 5 13 5 13 5 13
2 5 20 5 20 5 20 5 21
3 5 27 5 28 5 28 5 28
4 5 36 5 36 5 36 5 37
5 5 46 5 45 5 45 5 46

Table 4
Average CPU time (s), for 500 cases in each set of experiments with four re-
dundancy-level scenarios.

Λr 3.2 3 2.8 2.6

No. GE GCIP LNRT GCIP LNRT GCIP LNRT GCIP LNRT

0 0.06 0.02 0.08 0.02 0.06 0.02 0.08 0.07
1 0.10 0.06 0.12 0.04 0.12 0.09 0.14 0.08
2 0.11 0.06 0.13 0.09 0.14 0.10 0.14 0.10
3 0.11 0.07 0.13 0.11 0.14 0.14 0.14 0.11
4 0.12 0.08 0.15 0.14 0.14 0.16 0.14 0.13
5 0.12 0.16 0.15 0.16 0.14 0.19 0.14 0.17

Fig. 5. Average and maximum iteration number for 500 cases in each set of
experiment with 0–5 GE with measurement redundancy of 3.2.

Table 5
Maximum iteration number for 500 cases in each set of experiment with 0–5 GE
with four redundancy-level scenarios.

Λr 3.2 3 2.8 2.6

No. GE GCIP LNR GCIP LNR GCIP LNR GCIP LNR

0 2 6 2 6 2 6 2 6
1 5 21 5 23 5 21 6 21
2 6 38 6 30 6 44 6 42
3 7 44 6 41 6 51 7 52
4 6 63 7 58 6 66 7 73
5 7 117 7 82 7 83 7 102

Fig. 6. Confidence interval for convergence rate for 500 cases in each set of
experiment with 0–5 GE with four redundancies scenarios.
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cases, the WLS estimation results obtained, or the results before the
verification of the lack convergence conditions, were retained as the
LNRT outcome.

This produced the results in Table 6, showing the average MV index
value obtained, with a net superiority of the GCIP algorithm.

Fig. 7 is also enlightening. The top plot shows the histogram of MV
indexes for both methods when we have a redundancy level of =Λ 3.2r

and only 2 random gross errors. The bottom plot represents their
probability density estimates, calculated by a kernel smoothing func-
tion method [53]. The estimate is based on a Gaussian kernel function,
and is evaluated at equally-spaced points, that cover the range of the
MV indexes for each scenario and per SE approach. These estimates
allow one to assess, for each method, the probability (risk) of reaching
an MV index worse than a specified threshold.

Tables 7 and 8 show the numerical value of such risk, associated
with thresholds 0.01 and 0.02, by computing the area under the esti-
mated density function. The conclusion is clear: GCIP is a much more
robust method, with a much smaller risk of producing a bad result
(“bad” meaning with a MV index worse that some reasonable
threshold).

6.4. Efficiency in the detection and identification of GE

In a final comparison test, the detection of gross errors was treated

as a binary classifier, by defining a threshold T for residuals: if |
≤r T|i

w , the corresponding measurement i is accepted; if | >r T|i
w , an

alarm is triggered, and the measurement is said to be possibly con-
taminated by a gross error. For the purpose of this paper, T was set to
the value T = 5 (see Section 4.4.). Then, for each scenario, the occur-
rence of the following events was inspected:

a True Positive (TP): the method labels the measurement as a GE, and
it actually is.

b False Positive (FP) or False Alarm: the measurement is labeled as a
GE, but in fact it is not.

c True Negative (TN): the method labels the measurement as clean of
GE, and it is true.

d False Negative (FN) or Missed Alarm: the measurement is labeled as
clean of GE, but in fact it is contaminated.

False Positives and False Negatives do not have symmetrical con-
sequences. A FN means that some GE remained undetected and,
therefore, the estimation is (strongly) contaminated and may be con-
sidered wrong, for practical purposes. A FP means that some mea-
surement was labeled as possibly containing a GE while it did not – but
this usually does not strongly affect the quality of the estimation, be-
cause such measurement will have a reduced weight and small con-
tribution to the final result.

The FP and FN rates, denoted FPR and FNR, are defined as:

=
+

=
+

FPR FP
TN FP

FNR FN
FN TP

and
(39)

FPR and FNR were computed for all the scenarios in each set of
experiment with 0–5 GEs. Figs. 8 and 9 show the confidence intervals at
99% for each set of experiments with different redundancies.

As it can be seen, GCIP performs extremely well, in comparison to
LNRT. The confidence intervals for GCIP are much smaller than the
ones for LNRT and the FPR and FNR rates are always close to zero for
GCIP; this means LNRT is much more prone to generate false alarms or
missed alarms for bad data. The small confidence interval and values
near zero show the robustness of the new method in detecting and
identifying the gross errors.

Table 6
Average MV index for 500 cases in each set of experiment with 0–5 GE with four
redundancy-level scenarios.

Λr 3.2 3 2.8 2.6

No. GE GCIP LNRT GCIP LNRT GCIP LNRT GCIP LNRT

0 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.006
1 0.005 0.008 0.005 0.009 0.006 0.009 0.007 0.009
2 0.006 0.010 0.005 0.011 0.006 0.011 0.009 0.014
3 0.007 0.013 0.007 0.013 0.007 0.013 0.011 0.016
4 0.007 0.014 0.008 0.015 0.009 0.017 0.014 0.020
5 0.008 0.016 0.008 0.018 0.010 0.018 0.019 0.021

Fig. 7. Estimates for the density of MV index for Λr = 3.2, 2 GEs.

Table 7
Risk (%) associated with having MV larger than 0.01.

Λr 3.2 3 2.8 2.6

No. GE GCIP LNRT GCIP LNRT GCIP LNRT GCIP LNRT

0 0.00 0.00 0.01 0.19 0.00 0.25 0.21 0.41
1 1.70 13.40 2.95 16.96 3.57 17.37 3.61 19.83
2 1.72 25.46 3.36 31.17 6.93 33.66 9.51 41.66
3 14.47 36.97 16.25 40.44 17.13 41.30 27.06 47.90
4 19.30 43.88 19.63 45.65 25.67 50.86 33.35 61.17
5 22.16 47.72 26.78 51.04 31.14 51.24 45.44 53.99

Table 8
Risk (%) associated with having MV larger than 0.02.

Λr 3.2 3 2.8 2.6

No. GE GCIP LNRT GCIP LNRT GCIP LNRT GCIP LNRT

0 0 0 0 0 0 0 0 0
1 0.00 5.00 0.80 5.94 0.88 6.95 2.00 7.07
2 1.00 9.14 1.40 11.53 1.80 13.55 6.59 17.39
3 1.80 16.18 1.81 16.30 2.20 18.27 9.94 26.77
4 2.76 21.67 2.90 26.12 4.88 28.08 13.15 37.28
5 3.97 27.35 5.41 32.43 5.58 34.18 16.44 36.89

Fig. 8. Confidence interval at 99% of FNR, for 500 cases in each set of ex-
periments with 0–5 GE, in the four Λr redundancy-level scenarios.
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6.5. GE in critical measurements and leverage points

The Achilles heel of many proposed SE processes is the performance
in cases traditionally identified as difficult: errors falling in critical
measurements, sets or measurements in leverage points. This has been
recently discussed, regarding the vulnerability of the LNRT [55]. Thus,
particular care was taken in observing the performance of GCIP in such
cases. To achieve that, the set of scenarios was screened and divided in
the following sub-sets:

- Group A: cases including neither leverage nor critical measurements
or sets contaminated with GE.

- Group B: GEs in measurements at leverage points;
- Group C: GEs in critical measurements or critical sets;
- Group D: GEs in leverage points and in critical measurements or
critical sets simultaneously.

To identify leverage points (which depend on the measurement plan
defined, measurement weighting and system parameters), the method
suggested in Ref. [56] was adopted: an indicator, called Undetectability
Index (UI), is used to qualify all the measurements of a metering system
from a geometrical point of view. In Ref. [56], the authors showed that
the set of measurements with high UI contains the critical measure-
ments and leverage points. In general, the UI values have to be com-
pared with a cutoff value. It was shown in Ref [56]. that critical mea-
surements belonging to the range space of the Jacobian matrix have an
infinite UI. However, the suggested algorithm does not identify critical
sets. Therefore, in order to map the dataset onto the four above-men-
tioned groups, the method in Ref. [57]. was adopted in order to identify
critical measurement sets. The combination of these techniques allowed
us to identify leverage points and their occurrence (or not) associated
with critical measurements or critical sets.

6.6. Convergence in the special cases

The GCIP algorithm is very stable and converges in 100% of the
scenarios regardless of the incidence of GEs, for all groups A–D (even if
some GE is missed), while LNRT is prone to fail in at least 46.3% cases.
This rate can reach as low as 13% when there are GEs located in
leverage and critical measurements simultaneously. The intervals of
confidence at 99% for GCIP and LNRT, for each subset A to D, are
depicted in Fig. 10. The estimation accuracy associated with of each
method is again evaluated by comparing the average MV indexes of all
the four redundancy-level scenarios for groups A, B, C, and D. The
comparisons shown in Table 9 provide evidence of a clear superiority of
GCIP over LNRT.

It is important to note that, as the locations of GEs were assigned
randomly, the percentage of cases in groups B, C, and D are relatively
smaller than group A. For all redundancies and different numbers of

added GE, the percentage of cases in groups A, B, C, and D are re-
spectively 92, 3.8, 4.1, and 0.1. Clearly, the co-incidence of GE in
leverage measurements and critical sets simultaneously in a single
scenario (group D) is much lower than other experimental groups and it
does not happen in all redundancy-level experiments. Those experi-
ments that did not include this condition are pointed as N/A in Table 9
(obviously, when we have only one GE).

6.7. Detection and identification efficiency in special cases

Figs. 10 and 11 represent the 99% confidence intervals for the
percentage of the missed alarms and false alarms to total existing GEs,
for all the data sub-sets, considering the total in all four redundancy-
level scenarios, with 1–5 simultaneous GE.

The plots show the results for each data group separately. As sug-
gested in the figures, one can be 99% certain that the true population
mean is contained in the ranges calculated for each category. As it can
be seen from the plots, the confidence interval of Group A (which is a
large sample) is quite narrow.

This happens because much more certainty (narrower confidence

Fig. 9. Confidence interval at 99% of FPR, for 500 cases in each set of ex-
periment with 0–5 GE, in the four Λr redundancy-level scenarios.

Fig. 10. Confidence interval of percentage of the missed alarms to total existing
GEs in all the four redundancy-level scenarios with 1–5 simultaneous GEs ca-
tegorized by the location of GEs.

Table 9
Average MV index of all the four redundancy-level scenarios with 1–5 si-
multaneous GEs, by location of GEs.

Λr Group A Group B Group C Group D

GE GCIP LNR GCIP LNR GCIP LNR GCIP LNR

1 0.006 0.008 0.006 0.023 0.008 0.033 N/A N/A
2 0.006 0.011 0.006 0.021 0.014 0.034 0.007 0.048
3 0.007 0.013 0.008 0.020 0.018 0.031 0.004 0.040
4 0.009 0.015 0.008 0.028 0.018 0.034 0.006 0.040
5 0.010 0.016 0.010 0.029 0.035 0.039 0.038 0.052

Fig. 11. Confidence interval of percentage of false alarms to total existing GEs
in all the four redundancy-level scenarios with 1–5 simultaneous GEs categor-
ized by the location of GEs.
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interval) may be estimated with the calculation of the mean of larger
samples, which is a non-biased estimator of an assumed true distribu-
tion. Constructing confidence intervals can suffer with smaller samples
such as groups B, C and D.

A common solution to compute confidence intervals on non-nor-
mally distributed and small datasets is by using the Bootstrap method
[54]. This method resamples the data with replacement many times and
performs a statistic analysis (average values in this work) in each
iteration. Due to the central limit theorem, the distribution of means
will always approach a normal distribution and that can be used to
compute accurate confidence intervals.

Fig. 10 suggests, at 99% confidence, that the missed alarm percen-
tage using GCIP method is less than 2%, 4.1%, 4.6%, and 11.5% for
groups A, B, C, and D respectively, noting that group A constitutes 92%
of total scenarios. These percentages are in the sense of conditional
probability, i.e. they are estimates given that we are in a specific special
set (a subset of all events).

These values are much higher for LNRT. Furthermore, as the con-
fidence intervals of two methods do not overlap, one can conclude, with
99% confidence, that the true means of these two methods differ sig-
nificantly. In particular, given the severe impact, in the SE, of having
false negatives, the performance of GCIP in Groups B and D, where GE
fall on leverage points, is remarkable. The same can be said for Group C,
where GE fall on critical measurements or critical sets – something that
cannot be dealt with the LNRT model.

Fig. 11 shows another perspective of the statistically significant
superiority of the GCIP method, at a 99% confidence level: no more
than 31% false alarms in the worst-case scenario — significantly lower
than what is obtained with LNRT. Fig. 11 is plotted in logarithmic scale
through the y-axis so that the most foreseeable range for the mean of
the rate of false alarms for LNRT can be easily seen and compared with
the ones of GCIP.

The base value for calculating percentages was the number of ac-
tually existing gross errors. As the number of false alarms (or false
positives) can be significantly higher, the calculated percentages may
well be orders of magnitude higher that 100% - this is evident for the
false positives generated by the LNRT process.

7. Conclusions

A single gross error in a measurement set, in power system state
estimation, is handled quite well in most cases (but not in critical sets or
measurements) by classical approaches, such as the Largest Normalized
Residual Test, based on the weighted least squares approach, which is
the most used in industrial applications. The same cannot be said for
simultaneous multiple errors. Moreover, the application of that and
other proposed methods is quite unsuccessful in particular cases, such
as of errors occurring in critical sets.

Previous work departing from a least squares approach and
adopting Correntropy as the cost function have produced a sound the-
oretical model explaining where to find the optimal solution of a SE
problem with gross errors — however, not how to find it. The problem
usually becomes plagued with local optima, and convergence with
classical Gauss–Newton iterations is problematic and may fail, for the
lack of a consistently good starting point for iterations. Also, attempts
using Correntropy and Interior Point method faced problems because of
the need to reduce the size of Parzen windows.

This paper presented work demonstrating that an alternative
method could be built, based on two evolutions: 1. Adopting
Generalized Correntropy as cost function, with a very large shape
parameter c, and 2. Adopting an Interior Point solving strategy, moving
away from the Gauss–Newton classical approach, keeping a separate
representation of objective function and constraints. This combination,
with its favorable properties, is the essence and novelty of the GCIP
model.

Generalized Correntropy, based on generalized Gaussian kernels,

keeps the fundamental Information Theoretical basis and properties of
formulations using Correntropy, but allows re-shaping the optimization
landscape in a more favorable manner. Furthermore, the Generalized
Correntropy definition depends on setting some parameters, but theo-
retical results indicate an optimal shape parameter to be used in GCIP,
so there is no need for parameter tuning.

A toy problem presented in the paper visually illustrates some of the
interesting properties of GCIP. However, in order to claim that this is a
viable alternative, it was necessary to demonstrate a competitive per-
formance in terms of computing effort and a superior performance in
the quality of results. The term of comparison, in this paper, in a
carefully designed testbed, was the classical Largest Normalized
Residual Test, because this is the technique most used in industrial
applications.

One of the remarkable results obtained by GCIP is its ability to
correctly solve problems with multiple gross errors falling in critical
measurements and sets, something that LNRT and other methods are
unable to address. Another remarkable feature is the robustness in face
of gross errors falling on leverage points, something that methods such
as Least Absolute Error have been shown to be vulnerable to. GCIP
processes these features in a natural way and in a competitive com-
puting time. Consequently, in an operational environment, GCIP will be
a reliable tool that offers the same quality as LNRT for simple cases and
provides quality answers in the more difficult cases. The quantification
of this advantage was achieved in two ways: by evaluating the risk,
posed by both approaches, of producing an unsatisfactory estimation —
and by the comparison in the rate of production of missed alarms
(failing to detect a gross error) and false alarms (wrongly indicating an
error-free measurement as being contaminated by a gross error). In all
cases, the superiority of GCIP is demonstrated by the non-overlapping
intervals of confidence estimated for the results obtained.

The results obtained provide experimental validation to special
properties of GCIP, which allow the method to deal with cases that were
previously considered very difficult or impossible to solve and for
which no practical solution existed so far. The derivation of such
properties will be approached in a coming publication — but the evi-
dence that results are appearing in cases where previously one would
think not possible, should immediately make one realize that a math-
ematical explanation must be behind them.

Some additional future lines of work and reporting are the fol-
lowing:

(a) dissecting the mathematical justifications for the properties of the
GCIP model;

(b) showing the effects of changing shape and size of Parzen windows,
confirming theoretical expectations;

(c) showing the robustness of GCIP to distinct noise distributions (ac-
tually, in GCIP there are no assumptions on the shape of the dis-
tribution of the errors, contrarily to WLS, where a Gaussian dis-
tribution is assumed for an optimal estimation);

(d) numerically showing that the method scales up nicely with network
size and with the number of gross errors.

As for network size, a general characteristic of electric networks is
that the effect of perturbations is mostly local, so SE algorithms will
perform statistically better in larger networks, for the same number of
randomly assigned gross errors (the probability of simultaneous gross
errors falling in interfering measurements becomes smaller). Therefore,
tests on a 30-bus system are significant and justified, and nothing out of
the ordinary is to be expected in larger networks.

The work reported, therefore, presents experimental evidence sup-
porting the development of a new reliable, robust and competitive tool,
combining Generalized Correntropy with an Interior Point solver, for a
state estimation process resilient to gross errors, including in leverage
and critical measurements, apt to be integrated in control centers and
used in an operation environment.
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