
On Understanding Contextual Changes of Failures
Francisco Ribeiro

HASLab/INESC TEC
University of Minho

Braga, Portugal
francisco.j.ribeiro@inesctec.pt

Rui Abreu
INESC-ID & FEUP
University of Porto

Porto, Portugal
rui@computer.org

João Saraiva
HASLab/INESC TEC
University of Minho

Braga, Portugal
saraiva@di.uminho.pt

Abstract—Recent studies show that many real-world software
faults are due to slight modifications (mutations) to the program.
Thus, analyzing transformations made by a developer and associ-
ating them with well-known mutation operators can help pinpoint
and repair the root cause of failures. This paper proposes a
mutation operator inference technique: given the original pro-
gram and one of its subsequent forms, it infers which mutation
operators would transform the original and produce such a
version. Moreover, we implemented this technique as a tool called
Morpheus, which analyzes faulty Java programs. We have also
validated both the technique and tool by analyzing a repository
with 1753 modifications for 20 different programs, successfully
inferring mutation operators 78% of times. Furthermore, we also
show that several program versions result from not just a single
mutation operator but multiple ones. In the end, we resort to
real-world case studies to demonstrate the advantages of this
approach regarding program repair.

Index Terms—program comprehension, program mutation,
program repair

I. INTRODUCTION

Software development methodologies have quickly evolved
in recent years. Teams of engineers develop complex and large
software applications in a collaborative environment, using
version control systems, testing frameworks and continuous
integration mechanisms to improve productivity. As is increas-
ingly common in such a development environment, a new
software feature or maintenance update needs to be pushed (to
the version control system) to be available to the development
team. After such a push, the continuous integration mechanism
performs a set of tests that the new software ought to pass.
When all the tests pass, a new software build is produced.
However, often the software does not pass such tests because
of a bug that was unintentionally introduced. Developers
typically look at the source code to identify changes between
versions that may have introduced the bug. This analysis is
frequently based on diff reports and misses the context of the
fault. Let us consider an example taken from the Bugswarm [1]
repository containing real-world bugs and their fixes:

132c133
< ... property.toUpperCase());

> ... property.toUpperCase(Locale.ENGLISH));

Simply knowing that line 132 got modified does not re-
flect the modifications’ semantics (context), making it dif-
ficult to understand and fix the problem without concrete

clues. If we analyze further, we see that this modifica-
tion essentially adds a parameter in an already existing
method call. More precisely, property.toUpperCase()

now gets an additional parameter, represented by the call
property.toUpperCase(Locale.ENGLISH). An argument
number change [2, 3, 4] is an example of a mutation that
changes the number of input parameters in method invocations,
given that there is a definition for the same method name
which accepts the new arguments. Although this is a simple
motivating example, recent studies show that many real-world
software faults are coupled to mutation operators [5, 6, 7, 8].

This paper presents a mutation operator inference technique
that, given the original program and one of its subsequent ver-
sions, infers the mutation operators capable of producing such
an alternative. This is achieved by interpreting the changes
made to the abstract syntax tree (AST). Although the different
program versions are obtained by manually modifying the
source code, as it happens in a real-world software project,
throughout this paper, we sometimes refer to them as mutants,
even though there was no mutation testing tool involved.

The contributions of this paper are: 1) a technique that al-
lows for the detection/inference of mutation operators based on
AST transformations; 2) a tool implementing this technique;
3) a dataset produced by validating our technique and tool over
an existing repository of 1753 manually modified programs
with information about the detected mutation operators; 4) a
repair strategy that reverts the detected mutation operators and
a tool implementing it; 5) a case study investigation with
real-world bugs from the Bugswarm and Defects4J repositories
showing how this work can benefit program repair.

Being able to infer the mutation operators is a first step to
incorporate automated program repair in a continuous integra-
tion system, where a faulty program is fixed by considering
the contextual modifications that led to the introduction of the
bug. By analyzing a considerable number of programs, we can
verify the most common mutations. As far as we know, there
is no ranking that lists each mutation operator’s frequency in
a real-world scenario. That is, the number of times a manually
created version of a program translates to the application of
commonly known mutation operators.

While mutation testing focuses on injecting faults as small
modifications, our work aims to analyze the prevalence of
those exact patterns of modifications in source code modified
by humans.

II. MUTATION ANALYSIS

Mutation operators are one of the pillars of mutation testing
[9], a technique that introduces faults in source code to assess
the quality of tests. This quality is measured by evaluating
the test suite’s ability to detect the mutated programs. That
is, tests that cover the mutated code should fail. Mutation
testing relies on the quality of mutation operators and their
aim is to mimic programming errors, such as using the wrong
value for a constant, applying an incorrect binary operator or
referring to a wrong variable’s name. The alternative programs
produced by these operators (called mutants) are semanti-
cally correct, i.e., the program is valid. Research concerning
mutation operators has been widely conducted. As a result,
many operators representing precise transformations have been
defined. Although the study of mutation operators started by
targeting general programming aspects [10, 11], the definition
of such operators can be more specific, with some works
describing mutations specialized for object-oriented settings
[2, 12]. The mutation operators considered in this work have
been taken from previous literature and incorporated into
existing mutation testing tools [9, 12, 13].

TABLE I: Mutation operators: possible inferences

Mutation Operator Example
ConstantReplacement int i = 0 → int i = 1

RelationalOperatorReplacement x <= 2 → x < 2
VarToVarReplacement next = var1 → next = var2
StatementDeletion ����XXXXint n = 1;

ArithmeticOperatorInsertion int a = b; → int a = b + 1;
NonVoidMethodDeletion String s (((((hhhhh= getName();
VarToConsReplacement int i = j; → int i = 0;

ReturnValue return 2; → return 3;
UnaryOperatorInsertion setX(x); → setX(x++)

ConditionalOperatorReplacement x<=2 && y<4 → x<=2 || y<4
VoidMethodDeletion ((((hhhhprint("str");

ConditionalOperatorDeletion x<=2 && y<4 → x<=2
ArithmeticOperatorReplacement float x = a * b → float x = a / b;

MemberVariableAssignmentDeletion private int x ��HH= 3;
AccessorModifierChange public void... → private void...
UnaryOperatorReplacement i++ → i- -

RemoveConditional if(x < 2) → if(true)
ArithmeticOperatorDeletion float x = a * b → float x = a;

ConsToVarReplacement int x = 2; → int x = a;
ConditionalOperatorInsertion x<=2 → x<=2 && y<4

UnaryOperatorDeletion setX(x++) → setX(x);
ConstructorCallReplacementNull String s = (((((hhhhhnew String() null;

StaticModifierDeletion public static int... → public int...
AccessorMethodChange point.getX(); → point.getY();

BitshiftOperatorReplacement 1 « 30 → 1 » 30
ReferenceReplacementContent someObj → someObj.clone()

StaticModifierInsertion public int... → public static int...
TrueReturn return x<=2; → return true;
FalseReturn return x<=2; → return false;

ArgumentTypeChange method(int x){ → method(long x){
ArgumentNumberChange new Person(); → new Person("joe");

BitshiftOperatorDeletion 1 « 30 → 1
BitwiseOperatorReplacement int x = a | b; → int x = a & b;

Negation int x = num; → int x = -num;

Test coverage is not enough to guarantee a test suite’s
quality, as it is purely a quantitative measure of the amount
of source code we exercise. Having a way of automatically
generating alternatives to our programs is helpful, as now we
can qualitatively measure if our test suite is robust enough to
react to the presence of bugs. Moreover, interpreting the source
code and manually creating mutants of the most pertinent parts
of the program’s logic would be very inefficient. However,
there is still the question of whether artificial faults, i.e.,
mutants, are a suitable replacement for real faults. Several

studies [5, 6, 7, 8] have analyzed the connection between
real faults, i.e., bugs accidentally introduced while developing
a real-world application, and mutants. In general, results ob-
tained by using real errors are also obtained by using mutants.
In particular, one of these studies [5] even shows that real
faults are coupled with commonly used mutation operators by
mutation testing frameworks. This means that real faults can be
translated as the application of well-known mutation operators.
Thus, we argue that if we better understand how software was
modified in terms of the application of mutation operators, we
can efficiently design a repair strategy that fixes the program.
The changes introduced by these operators represent small
modifications to a program’s logic and can be interpreted as
changes to the program’s structure. Therefore, to accurately
detect these modifications, we focus on the structural repre-
sentation of programs. The AST represents a program’s source
code in which emphasis is given to structure and contents.
The nodes composing such trees represent constructs used
in the corresponding program, e.g., if ’s, while’s, expressions,
etc. Therefore, when obtaining the set of modifications by
comparing programs based on their AST’s, we can better
understand how its structure changed. These modifications are
additions, deletions, updates or movements of nodes in the
AST. Because these nodes have information related to the
source code’s context, we can see how a program changed
semantically.

In terms of AST differencing, Figure 1 illustrates the
introductory example1. As we can see, the area pointed at
shows where an insert operation was performed. By capturing
this change and verifying the context in which it occurs, we
can realize its actual meaning. In this case, the change is
applied to an invocation and the number of its arguments gets
modified. As such, we can infer it translates to applying an
ArgumentNumberChange operator. Creating a technique
that embodies this reasoning allows us to derive the seman-
tics of source code modifications automatically. As a result,
developers can get support in reasoning why certain changes
lead to errors.

...

Invocation

propertytarget:

toUpperCaseexecutable:

arguments:

FieldRead
Locale

target:

ENGLISH
variable:

1.
In

se
rt

Fig. 1: Argument number change: introductory example

III. INFERRING MUTATIONS

To infer the mutation operators responsible for a new
program version, we focus on the AST representations of both
the original and the mutated versions. This approach allows
us to circumvent a significant limitation concerning textual
diffs: we lose the code’s structural notion, i.e., what each piece
represents and how it connects to the remaining parts of the

1Colors represent the action types applied to the AST: Green - Insert; Red
- Delete; Yellow - Move; Orange - Update

source code. Furthermore, detecting changes at a textual level
regarding the evolution of a file mainly considers two possible
representations: insertions and deletions. Detecting changes
made to structured data is a topic that has been subject to
a considerable amount of research [14, 15, 16]. This set of
changes, called an edit script, is computed at a node level and
considers more types of transformations: insertions, deletions,
updates and moves. In short, given two trees, T1 and T2, we
are interested in obtaining the edit script, which, when applied
to T1, produces T2. Consider the following original code and
corresponding mutant:

return h & (length - 1); //original
return h & (length); //mutant

In mutation testing, we could obtain the previous mutant by
applying the ArithmeticOperatorDeletion operator.
Detecting such modifications based on the textual representa-
tion of this part of the source code would be cumbersome. We
only know which lines changed and we have no information
about which part of the line was modified. Moreover, we
would have to parse a partial program, which is a task subject
to ambiguities [17]. There is no sensible way of parsing
incomplete code without rapidly falling into errors. At some
point, the degree of incompleteness will easily cause the failure
of whatever workaround strategies the parser is using.

In turn, if we provide the two complete programs to an AST
diff tool2, we obtain a set of transformations, which Figure 2
illustrates.

...

Return

BinOp:
&

hleftOp:
BinOp:

-

rightOp:

1. Delete

lengthleftOp: Literal:
1

rightOp:

2.
M

ov
e

Fig. 2: Arithmetic operator deletion

Because an AST conveys the program’s structure, instead
of being directed to a line in the source code, the differencing
algorithm analyzes the tree nodes and can detect changes at
the component granularity. Also, because tokens are split into
their corresponding nodes, carrying their meaning in the source
code, we can isolate changes at a more elementary level. Here,
a total of two operations are involved:
• a delete operation of the node corresponding to the sub-

traction operator, which in turn implies the deletion of one
of its operands, in this case, the literal 1;

• a move operation of the leftover operand, which now takes
the spot of the deleted one.
However, checking only for the types of operations, in this

case, delete and move, is not sufficient. The simple occurrence
of such node modifications can have different meanings, as
other mutation operators also manifest themselves through
these kinds of AST transformations. In order to correctly

2https://github.com/SpoonLabs/gumtree-spoon-ast-diff

pinpoint this case as the application of an arithmetic operator
deletion, we need:
• to check if the deleted node is a binary operator and if it

is an arithmetic operator (in this case: "-");
• to check if the moved node is one of the operands of the

deleted node (in this case: "length").
Of course, when we only have the difference between ASTs,

we do not know which mutation operators are present. As
such, we need to check against all possible operators until we
exhaust all options. Similar to what we previously described
regarding the arithmetic operator deletion, each mutation
operator is associated with a set of rules that must be observed
to establish its presence accurately.
A. Multiple mutations

A file may be modified in a way that reflects several
mutation operator applications at once. Jia and Harman [18]
define this concept as higher-order mutants, referring to them
as the injection of two or more simple faults, which they
call first-order mutants. However, the AST diff does not
differentiate groups of transformations and it produces a set
with all transformations. We subdivide this set into subsets so
that we can better isolate the occurrences of operators.

1) Overlapping mutations: Let us consider the textual diff:
173c173
< if (inflection.match(word)) {

> if (true) {

In this example, we have at least two mutation operators:
• NonVoidMethodDeletion: removes a call to a non-

void method; in this case, the call to match() was deleted;
• RemoveConditional: removes conditional expressions

with either true or false; in this case, the expression
inflection.match(word) got replaced by true.
The two operators overlap and, thus, we need to take special

care when analyzing the following transformations to the AST:
Literal:

true
...

If

...then: ...else: Invocationcondition: Delete

inflectiontarget:

matchexecutable:

wordarguments:

In
se

rt

Fig. 3: Two overlapping mutation operators
As we can see, there is:
• a delete operation of the method invocation node inside the
if condition, which deletes its children;

• an insert operation of the literal value true in the place
where the previous deletion occurred.

As mentioned before, two operators overlap:
• NonVoidMethodDeletion is identified by the delete

operation, for which we check if the deleted node corre-
sponds to an Invocation node and if the return type is not
void (boolean in this case);

• RemoveConditional is identified by both operations -
delete and insert. For this, we need to check if the deleted

node’s parent is of If type, if the inserted one is a Literal
node and its value is a boolean (here, true) and if the inserted
node is placed in the same spot as the previously deleted
node, i.e., if both nodes’ parent (If) is the same.
2) Independent mutations: Sometimes, the different places

in a program where mutations are applied are independent of
one another. Similarly, analyzing fragments of the complete
set of AST modifications helps in detecting all the various
operators.
191c191
< int oldCapacity = oldTable.length;

> int oldCapacity = oldTable.length-1;
260c260
< next = n;

> next = k;
303c303
< if (x == y) {

> if (x != y) {

In this example, three mutation operators were applied in
entirely different places of the program:
• ArithmeticOperatorInsertion: an arithmetic oper-

ator (+, -, *, /, %) is inserted, performing an opera-
tion between an existing variable/constant in the code and an
inserted operand; here, the expression oldTable.length
became oldTable.length - 1 (Figure 4);

• VarToVarReplacement: a variable’s name is replaced
by another one; here, variable k replaces n (Figure 5);

• RelationalOperatorReplacement: a relational op-
erator (>, >=, <, <=, ==, !=) is replaced by a dif-
ferent one; here, == was replaced by ! = (Figure 6).

BinOp:
-

1

rightOp:

leftOp:
...

Assignment

inttype: oldCapacityname: FieldReadexpression:

oldTabletarget:

lengthvariable:

1.
In

se
rt

2. Move

Fig. 4: Arithmetic operator insertion
...

Assignment

nextname: VariableRead:
�n k

expression: Update

Fig. 5: Variable replacement
...

If

...then: ...else: BinOp:
��== !=condition: Update

xleftOp: yrightOp:

Fig. 6: Relational operator replacement
All three previous images illustrate the modified parts of the

complete AST. For each mutation operator, we need to check
for different properties/rules:
• ArithmeticOperatorInsertion: check if the in-

serted node is a BinaryOperator and if its type is arithmetic.

We also need to verify if the inserted node is taking the spot
of the moved node. Additionally, it is necessary to confirm
that neither of the operands is a String, as the binary operator
+ is also used for string concatenation;

• VarToVarReplacement: check if the update operation
is being performed on a VariableRead node;

• RelationalOperatorReplacement: check if the up-
date operation is performed on a BinaryOperator node and
if it is of relational kind.

IV. INFERENCE TECHNIQUE AND TOOL

This section describes the technique’s algorithm and its
implementation in the Morpheus tool.
A. Algorithm

The algorithm for inferring mutation operators from AST
transformations can be divided into two phases (Algorithm 1):
1) partitioning — subdivides the set of AST operations so that
each resulting subpart can be analyzed separately, isolating it
from the "noise" of all other transformations; 2) matching —
the subsets from the previous phase are matched against the
mutation operator patterns. An analogy can be made regarding
type inference systems, where expressions are associated with
their correct types via automatic inference. Here, a set of
transformations are “expressions” for which we are trying to
associate with mutation operators (“types”). As we do not have
any specific information regarding the nature of the mutation
(which would correspond to type annotations in languages
using manifest typing), we have to detect specific properties
(type rules) in the provided transformations to conclude what
mutation operator it represents.

Algorithm 1: Algorithm for inferring mutation opera-
tors

Data: An AST Diff between trees T1 and T2 containing the list of
modifications M which, if applied to T1, will produce T2; a
list of mutation operators MO to search for; an empty list of
inferred mutation operators IMO

Result: The list of inferred mutation operators IMO
1 subLists ← [];
2 for i ← 1,size(M) do
3 add([Mi], subLists); // appends list to subLists
4 for j ← i+1,size(M) do
5 add([Mi, Mj], subLists);
6 for k ← j+1,size(M) do
7 add([Mi, Mj , Mk], subLists);
8 end
9 end

10 end
11 foreach list ∈ subLists do
12 foreach mo ∈MO do
13 inferred ← matches(mo, list);
14 if inferred != null then
15 add(inferred, IMO);
16 end
17 end
18 end

To better illustrate the first part of the algorithm, let us
consider a list of the form [Operationnode]:
[DeleteA, InsertB, MoveC]

This example indicates that we should apply one delete,
one insert and one move operation to the original program
tree to obtain the target program tree. Applying the previously
mentioned sub-listing procedure would result in the sub-lists:
[[DeleteA], [DeleteA, InsertB],
[DeleteA, InsertB, MoveC], [DeleteA, MoveC],
[InsertB], [InsertB, MoveC], [MoveC]]

The first part of the algorithm is responsible for partitioning
the complete list of AST modifications into sub-lists, each
with a size between one and three (as these correspond to the
minimum and the maximum number of changes that define
a mutation operator, respectively). There are two reasons
for this. First, because a program may have been modified
in a way that reflects the application of more than one
mutation operator, we need to identify multiple patterns in
the complete list of alterations. As such, considering smaller
portions of modifications enables us to find such patterns.
Second, although the changes made to the AST are provided in
sequential order, it does not mean that the ones characterizing
the mutation operators are contiguous. The described approach
allows us to consider non-adjacent sets of modifications in the
search space.

The matching phase of the algorithm looks for predefined
patterns in the list of changes to the AST. In such AST,
different expressions of the language are represented in dif-
ferent subtrees. The subtrees are constructed according to the
productions/constructors defining the respective expression.
In languages that use type inference systems, the inference
mechanism traverses these trees and takes a different approach
according to the type of node it is visiting. In other words, the
node’s type influences what rules are checked for the system
to try to infer the correct data type.

Let us consider a simple syntax for expressions. Here,
expressions can be a number, a variable’s name or a binary
operator that allows for more sub-expressions.
Expression = Num n | VarName n | BinOp
BinOp = Expression Op Expression
Op = + | - | / | *

A type inference system should have a mechanism that will
take one of the possible expressions and, depending on the
type it has in the tree, carry on with the appropriate action to
determine the data type.
infer(expr: Expression): Type
switch(expr)
Num n -> //check if n is Int, Float, ...
VarName n -> //check scope for variable n
BinOp e1 op e2 ->
infer(e1);
infer(e2);

As we can see by the pseudo-code of a hypothetical infer
function, the switch statement will perform different checks
for different node types. That is, each node type encompasses
its own set of rules.

The algorithm we describe takes a similar approach, as
we can see in line 13. Each mutation operator comprises
the group of rules it will analyze to report if some series of
transformations complies with them. Let us take the example
of the ConstantReplacement mutation operator, which

changes the value of a constant in the source code. One of the
inference rules for this case is expressed like:

M = program modification with set of transformations T
T = T1, ..., Tk

origk = original node of Tk

newk = new node created by Tk

opx = operand of node x
px = parent node of element x

Γ ⊢ size(T) = 1
Γ ⊢ T1 : Update Γ ⊢ orig1 : Lit Γ ⊢ new1 : Lit

Γ ⊢ M : ConstantReplacement

In this case, the first thing to do is to check the number of
transformations to the tree. If T only has one transformation
(T1), this needs to be an Update operation and both the
original node and the modified one have to be of type Literal
(representing constants) to confirm the mutator. An example
would be changing methodCall(1) to methodCall(2).

This ConstantReplacement mutator can also be
present through another pattern consisting of two transfor-
mations, T1 and T2. If so, we analyze the case where the
constant value changed signals, e.g. from methodCall(0) to
methodCall(-1).

The inference rule for this situation can be expressed as:

Γ ⊢ size(T) = 2 Γ ⊢ T1 : Delete Γ ⊢ T2 : Insert
Γ ⊢ orig1 : Lit Γ ⊢ orig2 : UnaryOp
Γ ⊢ oporig2 : Lit Γ ⊢ porig1 = pT2

Γ ⊢ M : ConstantReplacement

For this example, operations T1 and T2 need to be a Delete
and an Insert, respectively. The Delete operation corresponds
to removing the constant 0 from the code. As such, the node to
which the deletion operation is applied, orig1, needs to be of
type Literal. Because the new value for the constant is −1, we
have to consider this as the addition of two separate elements:
a unary operator representing the negative signal and a literal
representing the number 1. Following this line of thought, the
insertion operation T2 needs to be applied to a UnaryOp node,
orig2. Furthermore, we also need to check if the operand
associated with the unary operator is a constant, that is, a
Literal node. Note that, although two nodes are inserted, we
only consider the insertion of the top-level one, the UnaryOp,
as the Literal node corresponding to the value −1 is its child.
Also, we need to check if this deletion and insertion occurred
in the same spot in the tree, which means the parent node of
the deleted one must be the same as the parent of the insertion
operation, represented by the expression porig1 = pT2

. Figure
7 illustrates these modifications.

UnaryOp:
-

Literal:
1

operand:

...

Invocation

methodCallexecutable: Literal:
0

arguments: 1. Deleted

2.
In

ser
t

Fig. 7: Constant replacement - positive to negative value

B. Morpheus

We have implemented our technique as the Morpheus tool3.
Morpheus analyzes Java programs and was developed using
the Kotlin language. As shown in Figure 8, it consists of two
components: The Diff Calculation gets as input the original
and the mutated programs and produces the list of transfor-
mations representing the differences between the programs
[16]. The second component - the Inferrer - implements
Algorithm 1, with its two parts: partitioning and matching.

Original

Mutant

Original AST

Mutant AST

Parser Compare AST Diff

Diff Calculation

Partition [...] Match

Inferrer

Mutation Operators

Inferred
Mutation
Operatorsmatches?

Fig. 8: Morpheus architecture
Morpheus is an extensible tool: it implements all operators

in Table I and can easily be extended with new mutation
operators due to its extensible architecture.

V. DATASET AND ANALYSIS

In this section, we present the structure of the produced
dataset and analyze the results. Morpheus was used to analyze
the CodeDefenders [19] repository4 containing 20 original
programs and 1753 mutants created by players. In CodeDe-
fenders, attackers modify programs to introduce faults and
defenders write unit tests that detect these errors. The 20
original classes are part of various real-world open-source
projects. We identified 230 mutants that failed to compile and
27 for which the AST diff tool failed to produce an edit script,
leading to 1496 valid programs.

A. Dataset Structure

After using our tool to analyze every valid mutant in the
repository, we produced a dataset5 containing information
about each one. Therefore, each mutant has a corresponding
record in the dataset with the following fields:
• Mutant ID: Mutant identifier based on the repository;
• Nr. AST modifications: Number of modifications applied

to the original AST;
• AST modifications: List with the types of operations per-

formed on the AST in order to obtain this mutant;
• Mutation overviews: List of the source code change for

each inferred mutation operator;
• Inferred mutation operators: List containing the names of

the inferred mutation operators (according to Table I);
• Callables: List containing the method/constructor names

where each mutation was inferred;
• Old start-end lines: List containing the start and end

lines in the original file where each mutation operator was
detected (same index in inferred mutation operator list);

• Old start-end columns: Same as the previous field but for
columns;

3https://github.com/FranciscoRibeiro/morpheus
4https://study.code-defenders.org/
5https://doi.org/10.6084/m9.figshare.15173934

• New start-end lines: List containing the start and end
lines in the mutated file where each mutation operator was
detected;

• Start-end columns: Same as the previous field but for
columns;

• Relative old start-end lines: List containing the start and
end lines inside the callable’s body in the original file where
each mutation operator was detected;

• Relative new start-end lines: Same as the previous field
but for the mutated file.
Recalling the example in Figure 2, the fields for the corre-

sponding dataset record have the values shown in Table II.
TABLE II: Dataset record for one of the mutants

Mutant ID 1001/15/00000001/ByteArrayHashMap
Nr AST Modifications 2

AST Modifications [DeleteOperation, MoveOperation]
Mutator Overviews [AOD(from=(length - 1),to=length)]

Inferred Mutation Operators [ArithmeticOperatorDeletion]
Callables [ByteArrayHashMap#indexFor(int,int)]
Old Lines [324-324]

Old Columns [16-27]
New Lines [324-324]

New Columns [14-21]
Relative Old Lines [1-1]
Relative New Lines [1-1]

B. Dataset Analysis

Table III shows the number of mutants associated with
each class in the repository. Furthermore, it also displays
the number of mutants for which Morpheus could infer and
classify as corresponding to one or more mutation operators.

TABLE III: Available mutants per valid program

Class #Available
Mutants

#Inferred
Mutants Effectiveness %

ByteArrayHashMap 126 108 86%
ByteVector 55 39 71%

ChunkedLongArray 95 68 72%
FontInfo 30 22 73%
FTPFile 34 24 71%

HierarchyPropertyParser 66 48 73%
HSLColor 50 42 84%

ImprovedStreamTokenizer 84 70 83%
ImprovedTokenizer 130 97 75%

Inflection 13 10 77%
IntHashMap 71 55 72%

ParameterParser 68 57 84%
Range 152 122 80%

RationalNumber 47 40 85%
SubjectParser 28 21 75%

TimeStamp 32 25 78%
VCardBean 173 116 67%

WeakHashtable 40 32 80%
XmlElement 175 136 78%
XMLParser 27 27 100%

Total 1496 1159 78%

The effectiveness rate of our technique is calculated in
terms of the number of mutants for which we can infer
at least one mutation operator divided by the total number
of valid mutants. Overall, we were able to infer 78% of
all the considered mutants. This percentage is not consistent
throughout all of the programs. However, there is not a
single program for which we could not detect the presence
of a mutation operator. The class with the least amount
of inferred mutation operators was VCardBean, with 67%
of its mutants classified. The XMLParser class is on the

opposite side with all of its mutants inferred and, therefore, a
100% effectiveness rate. Curiously, the same mutation operator
was applied in the same manner by all the players who
had to attack this class, i.e., create mutants. This particular
mutation occurred in a method that replaces occurrences of
the character "<" with the character "<". The arguments of
the call to the method in question were passed as string

literals. As such, every call to replaceAll("<", "<")

was mutated to replaceAll("<", "<"). As string literals
are considered constants, all these mutations were inferred to
be the ConstantReplacement operator.

TABLE IV: Inferences per mutation operator

Mutation Operator #Occurrences
ConstantReplacement 273

RelationalOperatorReplacement 179
VarToVarReplacement 141

ArithmeticOperatorInsertion 105
StatementDeletion 104

NonVoidMethodDeletion 90
VarToConsReplacement 83

ReturnValue 54
UnaryOperatorInsertion 47

ConditionalOperatorReplacement 42
VoidMethodDeletion 40

ArithmeticOperatorReplacement 28
AccessorModifierChange 21
UnaryOperatorReplacement 20

RemoveConditional 20
ConditionalOperatorDeletion 18
ArithmeticOperatorDeletion 16

ConsToVarReplacement 13
MemberVariableAssignmentDeletion 10

ConditionalOperatorInsertion 9
ConstructorCallReplacementNull 7

AccessorMethodChange 6
UnaryOperatorDeletion 5
StaticModifierDeletion 4

ReferenceReplacementContent 4
TrueReturn 4

ArgumentNumberChange 4
BitshiftOperatorReplacement 4

FalseReturn 2
StaticModifierInsertion 2

ArgumentTypeChange 2
BitwiseOperatorReplacement 1
BitshiftOperatorDeletion 1

Negation 1
UNCLASSIFIED 337

We did not infer any mutation operators for 337 of the
mutants — Table IV. Ideally, a mutation is a slight syntactic
modification that alters the program’s behavior. However,
sometimes, the generated mutants are not simple modifications
because they consist of extensive edits to the source code.
These changes are challenging to infer as no mutation operator
resembles it. On the other hand, some of these mutants are
still small. Nevertheless, they represent intricate code modifi-
cations. The following example illustrates such a situation.
103c103
< set(index2, tmp);

> set(index2, get(index2-1));

Here, a variable tmp got replaced by a method call with
different arguments. Many changes are co-occurring, making
it difficult to discern the logic behind them.

To get an overview of the entire set of unclassified mutants,
we compared every program version for which Morpheus did
not produce any inference against its original and verified that
the difference did not match the criteria of any mutation op-
erator. Nevertheless, we still detected some recurring patterns,
shown in Table V. The most frequently detected pattern is
adding an instance method call to a variable, which happened
51 times. Adding a statement was the second most spotted type
of mutation with 45 occurrences. This is the least specific type
of transformation and one of the most difficult to incorporate
in mutation testing, as deciding which source code to add to
a specific part of a program is not a straightforward task.
The third most common mutation pattern was replacing the
kind of exception thrown, occurring 21 times. Curiously, we
can observe that some patterns displayed in Table V parallel
with some of the mutation operators covered by Morpheus.
For instance, let us consider the fifth most common one,
Overwrite Default Initialization, which assigns a specific value
to a variable, thus not allowing the default ones to occur.
This pattern can be seen as the transformation opposing
the MemberVariableAssignmentDeletion operator (Table I),
which eliminates specific assignments to member variables.
As another example, if we consider the expression x < 2
and then apply the Negate Expression pattern, we would get
!(x < 2). From another perspective, this is a particular case
of rewriting this expression as x >= 2, which ends up being
covered by the operator RelationalOperatorReplacement. The
detection of these new patterns has implications regarding
mutation-based repair techniques [20, 21, 22, 23, 24, 25].
The candidate fixes for a faulty program are produced by
applying mutation operators to suspicious parts of the source
code. As such, a repair technique of that kind would not
generate an appropriate patch for the cases from which we
extracted the patterns reported in Table I. This is because
these particular faults originated from applying changes that
are not covered by any mutation operator in the literature
to the best of our knowledge. Even though the patterns we
found in the unclassified cases are used to introduce faults,
instead of producing fixes, it is still essential that repair tools
incorporate these new operators. As we stated before, some
of them revert the effects of already documented operators
(Overwrite Default Initialization reverts MemberVariableAs-
signmentDeletion). Moreover, the most challenging patches
to create are the ones that require adding code [20], which
patterns like Instance Method Call Addition and Add String
Concat aim to achieve.

As discussed in Section III-A, sometimes, a mutant can
consist of several mutation operators, also called higher-order
mutants [18], and Morpheus can detect these occurrences.
Table VI shows the frequency of the number of mutation
operators for each program alternative. As we can see by
the table, the most common mutants are the ones that get
only one mutation operator inferred, totaling 1004 mutants.
The program versions with more than one inferred mutation
operator combine for 155, representing 10% of all the valid
mutants in the repository.

TABLE V: Manual inspection — detected patterns in the 337
program versions with no reported inferences

Pattern Example #Occurrences
Instance method call addition var → var.method() 51

Add statement 45
Throw exception replacement throw new ��A() B() 21
Replace with new instance x = ��var new Var() 20

Overwrite default initialization int x; → int x = 4; 20
Replace Method Call var.foo(); → var.bar(); 15
Final keyword removal ��final int x; 14

If block deletion ((((((if(cond) x = 2; 11
Return type change public ��int long foo() 9
Delete statement 8
If check deletion ���if(cond) x = 2; 7
Add string concat str → str + "word" 7

Continue/break replacement ���continue break; 7
Swap lines 7

Primitive to wrapper ��int Integer x = 2; 7
Change thrown exception for return ((((((throw new A() return -1 6

Instance change var1.foo() → var2.foo() 6
Negate expression if(expr) → if(!expr) 5

Delete case ((((((((
case SOME_VALUE: 5

Change increment size i++ → i+=2 4
Change assigned x = 2 → y = 2 3

Delete string concat str ((((+ "word" 2
Equivalent default initialization Obj x ���= null; → Obj x; 2

While/If Replace while(cond) → if(cond) 1
Variable Type Change int var; → long var; 1

Delete Try/Catch 1
Change Constant Type Integer.MAX → Long.MAX 1

Add Else Block 1
Undefined 50

TABLE VI: Mutation operators per mutant

#Mutation Operators 1 2 3 4 5 16
#Files 1004 132 14 6 2 1

VI. MUTATION-BASED REPAIR

We can devise a repair strategy that takes advantage of this
new information by translating the bug-inducing changes in
terms of mutation operators. Our implementation6 of such a
repair strategy is divided into three parts:

• Extracting fault localization components: interprets the
report produced by Morpheus and creates components
that connect the inferred mutations to their location in
the source code;

• Finding nodes in the AST: isolates tree nodes representing
source code elements in specific locations;

• Reverting mutations: applies the opposed mutation oper-
ator to produce patches.

Figure 9 shows how these parts connect.

Morpheus
Components

AST

Iterate Component

Tree
Traversal

location?

Nodes

Node finder

Iterate Node

Get
Opposite

Mutation
Operator

Get
Applicable

Mutation
Operators

Mutate
exists?

Reverser

Mutated
Node

Fig. 9: Repair overview

A. Extracting mutation operators’ locations

We can create components that allow us to kickstart the
repair process by associating each inferred mutation to its
location in the source code. Let us go back to the introductory
example. The corresponding component would convey the
information in Table VII.

6https://github.com/FranciscoRibeiro/auto_repairer

TABLE VII: Mutation’s location: introductory example

Mutation Operator ArgumentNumberChange
Callable getEnumProperty(Class,String)

Start-End Old Lines 132-132
Start-End Old Columns 40-61

Start-End New Lines 133-133
Start-End New Columns 61-74

Start-End Old Relative Lines 8-8
Start-End New Relative Lines 8-8

It shows that the argument number change mutation oper-
ator was inferred in line 133 and spans columns 61 to 74.
Furthermore, the transformation was detected in the 8th line
of the getEnumProperty method. These components can
be extracted from the output provided by Morpheus.

B. Finding AST nodes

Since these components can pinpoint specific places in the
buggy source code, the repair strategy can then analyze the
program’s AST to find the corresponding nodes.

Method

Body

statements:
...

Return

...

Invocation

propertytarget:

toUpperCaseexecutable:

FieldRead

arguments:

Locale
target ENGLISH

variable

Line 133 Column 61-74

Relative Line 8 Line 133

Callable getEnumProperty(Class,String)

Fig. 10: Finding AST nodes: introductory example

Figure 10 illustrates four different criteria to find nodes in
an AST: 1) matching both lines and columns; 2) matching
only lines; 3) matching relative lines; 4) matching the callable;
As Figure 10 shows, a different number of nodes may be
retrieved depending on the selected criteria. As such, it is a
matter of deciding on efficiency (1) vs. efficacy (2). To increase
the likelihood of generating a fix, we should seek to detect
many nodes, albeit at the expense of producing a large number
of patches. On the other hand, we can limit the number of
generated patches by only fetching nodes matching both the
lines and columns reported by Morpheus.

However, the detected mutations are not always in the same
file that we wish to repair. Such would occur when Morpheus
infers mutations in past file versions, but we wish to use that
information and repair a more recent version of a program.
In these cases, the reported line numbers may differ from
the current location. Thus, it is helpful to use the reported
information about the relative line numbers (3) or the callable
(4), representing efficiency and efficacy, respectively.

C. Reversing mutations

Following the previous step, the repair process iterates over
the returned AST nodes and tries to mutate each one —

Algorithm 2. Every mutation operator that Morpheus can infer
has another one that performs the opposing transformation.
As such, the opposing mutation operator is considered for
the inferred mutation in a component (line 1). Then, the
strategy retrieves the appropriate mutation operators regarding
the node type in question (line 2). Finally, if the opposing
transformation belongs to the group of applicable mutations
(line 3), it applies it over the AST node (line 4).

Algorithm 2: Algorithm for reversing mutation oper-
ators

Data: The inferred mutation operator IMO; an AST node N that
we wish to mutate; a mapping of opposing mutation operators
MapO; a mapping between types of AST nodes and their
applicable mutation operators MapN ; an empty list of
mutated nodes MutN

Result: The list of mutated nodes MutN
1 opposite ← MapO[IMO]; // get opposite mutOp of IMO

2 mut_ops ← MapN [N]; // get mutOps applicable to N

3 if opposite ∈ mut_ops then
4 MutN ← repair(opposite, N); // apply opposite to

node N
5 end

VII. CASE STUDIES WITH REAL BUGS

The main idea we want to deliver is that the semantics
behind a bug can guide the repair process of a program.
To show this, we used Morpheus to analyze Bugswarm and
Defects4J, extracting several case studies from real-world
programs. Furthermore, we also implemented an automated
repair process that successfully fixed all the studied programs.
These experiments are available for replication7,8.

a) Bugswarm: We selected case studies from this repos-
itory for which a simple fix, susceptible of being represented
by a mutation, makes the program pass every test. We looked
back through the commit history of each selected case study
and searched for the most recent commit that began failing
these tests. There, we detected mutations opposing the bug-
fixing modification, likely responsible for introducing the bug.

Fix
Simple mutation

fixes the bug

Failing N ... Failing 1

One of the changes
is a mutation opposing

the fix

Passing

Fig. 11: Selection criteria for the case studies - Bugswarm

b) Defects4J: In this repository, the fixes for the selected
case studies can also be obtained by performing a simple
mutation. In Defects4J, however, the commit in which we
detect the opposing transformation does not necessarily cause
the software to fail its tests. Moreover, the file that makes the
tests fail may have changed multiple times since introducing
the original reason for the bug.

7https://github.com/FranciscoRibeiro/bugswarm-case-studies
8https://github.com/FranciscoRibeiro/d4j-case-studies

Fix
Simple mutation

fixes the bug

Buggy N ...

Other mutations
may occur

Commit B
One of the changes

is a mutation opposing
the fix

Commit A

Fig. 12: Selection criteria for the case studies - Defects4J

Besides repairing all analyzed programs, when guiding the
repair process, our approach has four key advantages over
spectrum-based fault localization (SFL) reports: 1) Efficiency:
Morpheus detects fewer mutants when compared against the
many lines SFL reports. Moreover, SFL sometimes misses
to rank the faulty line in which Morpheus can spot a mu-
tant; 2) Compilation: buggy programs may fail to compile
as Morpheus does not need the program’s execution trace,
whereas SFL would not generate a report; 3) Reachability:
mutations can be detected in any commit of a program’s
history, regardless of whether there are failing tests or not;
4) Granularity: inferred mutants have more granularity than
the line number provided by SFL, allowing program repair to
use different criteria (recall Figure 10).

Due to lack of space, we provide a detailed explanation of
the case studies separately on the following page:

https://github.com/FranciscoRibeiro/qrs21-case-studies-report

VIII. THREATS TO VALIDITY

Our work has two main objectives. Firstly, to assess whether
we can translate the evolution of a program in terms of
mutation operators. More precisely, are the changes applied
to a program equivalent to the application of well-known
mutation operators? Secondly, to check if the information
about inferred mutations can benefit automated program repair.
That is, can programs be fixed more efficiently by using this
new knowledge over regular SFL reports?

As we have shown, the answer to the previous questions is
yes. There are, however, several aspects that may affect the
validity of our work.

a) Internal Validity: There is no guarantee that the
analyzed programs compare equally in terms of susceptibility
to mutations. Mutations are slight syntactic modifications that
alter the program’s semantics, and, as such, the examined
mutants may consist of more complex changes which do not
correspond to any documented mutation operators. Further-
more, the mutants from CodeDefenders were created by people
learning about the topic in question. Although some mutants
may not convey the desired simple nature, we think our results
show that a considerable part of them do hold to this standard.

b) External Validity: The mutants from the CodeDefend-
ers repository were created with the explicit goal of producing
faults. Nonetheless, we showed that our work generalizes to a
real-world context by using the inferred information to repair
open-source projects from the Bugswarm and the Defects4J
repositories in which faults were unintentionally introduced.
Quoting DeMillo et al. [10] on a quality about programmers:
"they create programs that are close to being correct!".

c) Construct Validity: The CodeDefenders mutants were
produced by subjects who were aware that they were to
be used in research. We do not believe this to have com-
promised our measures because the origin of the repository
is independent of our study, and the intentions of inferring
mutation operators were never communicated. Moreover, our
analysis of real-world faults further strengthens this point
as programs were developed in a completely disconnected
context disassociated from any research intentions.

d) Conclusion Validity: The idea transmitted to Cod-
eDefenders players was they should replicate the behavior
of mutation operators. Still, some mutants did not obey this
practice. We conclude that real-world program changes can
be described in terms of mutation operators, as demonstrated
by the reported real-world case studies. Furthermore, previous
studies have already shown associations between real faults
and mutation operators.

IX. RELATED WORK

Jia and Harman [18] present the concept of higher-order
mutation testing, in which mutants are not individual faults
but are composed of several faults. They emphasize subsuming
higher-order mutants, which are notably hard to kill. The
program versions for which Morpheus infers two or more
mutation operators are instances of higher-order mutants.

Debugging is one of the most expensive actions in the
development cycle [26] and a considerable effort is put into
fault localization [27, 28]. MUSE [29] applies mutations to
both faulty and correct statements to rank the most suspicious
lines, improving over previous state of the art. The reasoning
is that tests that pass in the original program are more
likely to fail when correct statements are mutated and less
likely to do so when faulty lines are mutated. Mutation-based
fault localization has also been applied to projects written
in multiple programming languages, reporting high accuracy
and proposing new mutation operators [30]. Other approaches
[31, 32] detect suspicious statements by calculating similarities
between mutants. Zhang et al. [33] describe a technique in
which artificially produced mutants are mapped to higher-level
programming edits. Instead, we provide more granularity by
interpreting structural changes to infer what mutation operator
is being applied. Fault localization lacks the semantics behind
the faults it spots. Morpheus can provide this as it computes
the context of the modifications it detects.

Mutation-based program repair [20, 21, 22, 23, 24, 25] uses
fault localization to mutate the most suspicious lines. A mutant
is considered as a potential fix if it passes all the test cases.
If effectiveness is the focus, a large set of mutation operators
should be considered to cover the largest number of faults. On
the other hand, techniques aiming for efficiency should only
apply a small set of mutation operators to minimize overhead,
sacrificing the ability to fix some types of faults. Morpheus
infers mutation operators and repair strategies can take ad-
vantage of this semantics to apply modifications that revert
the faulty effects. Tan and Roychoudhury [34] aim to repair
regression errors by manually extracting fix patterns from a

project’s history and applying them to suspicious statements.
Our approach differs, as the inference process of our tool
automatically detects the application of mutation operators.
Moreover, we aim to infer operators used by mutation testing
tools, instead of high-level transformations such as "Revert to
previous statement". The automatic detection of bug fixes [35]
is also based on an established taxonomy, with changes being
analyzed at the AST level. However, the list of considered bug
fixes — 25 patches — is more generic and not as extensive
as ours — 34 mutations.

Generating test cases through mutations [36] has been
applied in web page testing [37], and tools like Sapienz [38]
are already following this approach and successfully detecting
bugs in mobile applications used by millions of people.

Tree differencing has been applied to build files [39]. Hence
it is well suited to address a project’s configuration. Our work
focuses on a much broader aspect, requiring the ASTs of source
code to reason about the issues.

Some approaches [40] mine project repositories to find
frequent bug patterns for languages that research has yet to
report mutation operators. Our work differs, as we present
a tool that automatically detects the application of well-
documented mutation operators to a correct program.

X. CONCLUSIONS AND FUTURE WORK

We presented an inference technique that defines the context
behind source code changes by associating them with well-
known mutation operators. We implemented it as the Mor-
pheus tool and analyzed several manually modified programs.
Our results show that this is a sound approach, as we were able
to infer mutation operators for 78% of the 1496 valid mutants
in CodeDefenders and that 10% of these are higher-order
mutants [18]. Furthermore, we have also analyzed several case
studies extracted from real-world projects in Bugswarm and
Defects4J, showing the benefits of our approach regarding
automated program repair. We fixed these programs by im-
plementing a repair tool that reverts bug-introducing changes
based on Morpheus’ information by applying the opposing
mutation. The concept of higher-order mutants was essential,
as highlighted by the case studies. The repair strategy focused
on fixing the effect of a single atomic mutation to create a
patch for a program that was modified in separate places by
different mutation operators. Nonetheless, there are still faults
which need more extended and more intricate patches. As
such, we wish to explore the use of multiple mutations to
repair programs, either by compounding them to build more
complex expressions or by applying them at separate places
to patch independent modifications.

Replication Package
All the necessary resources to replicate this study, as well as the full set of results, are
publicly available:
• Mutant repository: https:// study.code-defenders.org/
• Morpheus: github.com/FranciscoRibeiro/morpheus
• Repair tool: github.com/FranciscoRibeiro/auto_repairer
• Dataset: https://doi.org/10.6084/m9.figshare.15173934
• Bugswarm case studies: github.com/FranciscoRibeiro/bugswarm-case-studies
• D4J case studies: github.com/FranciscoRibeiro/d4j-case-studies
• Case studies report: github.com/FranciscoRibeiro/qrs21-case-studies-report

ACKNOWLEDGMENTS
Francisco Ribeiro and João Saraiva would like to thank the

Portuguese funding agency, FCT - Fundação para a Ciência e
a Tecnologia through reference UIDB/50014/2020. Francisco
Ribeiro would also like to acknowledge a PhD scholarship
with reference SFRH/BD/144938/2019. Rui Abreu would like
to acknowledge FCT through reference UIDB/50021/2020,
the SecurityAware Project (ref. CMU/TIC/0064/2019) - also
funded by the Carnegie Mellon Program, and the FaultLocker
Project (ref. PTDC/CCI-COM/29300/2017).

REFERENCES

[1] D. A. Tomassi, N. Dmeiri, Y. Wang, A. Bhowmick, Y.-C.
Liu, P. T. Devanbu, B. Vasilescu, and C. Rubio-González,
“Bugswarm: Mining and continuously growing a dataset
of reproducible failures and fixes,” in Proceedings of the
41st International Conference on Software Engineering.
IEEE Press, 2019.

[2] Y.-S. Ma, Y.-R. Kwon, and J. Offutt, “Inter-class muta-
tion operators for java,” in Proceedings of the 13th Inter-
national Symposium on Software Reliability Engineering
(ISSRE’02). IEEE Press, 2002.

[3] J. Offutt, Y.-S. Ma, and Y.-R. Kwon, “The class-level
mutants of mujava,” in Proceedings of the 2006 In-
ternational Workshop on Automation of Software Test
(AST’06). ACM, 2006.

[4] A. Derezińska, “Advanced mutation operators applicable
in c# programs,” in Software Engineering Techniques:
Design for Quality. Springer US, 2007.

[5] R. Just, D. Jalali, L. Inozemtseva, M. D. Ernst,
R. Holmes, and G. Fraser, “Are mutants a valid substitute
for real faults in software testing?” in Proceedings of
the 22nd ACM SIGSOFT International Symposium on
Foundations of Software Engineering (FSE’14). ACM,
2014.

[6] J. H. Andrews, L. C. Briand, and Y. Labiche, “Is mu-
tation an appropriate tool for testing experiments?” in
Proceedings. 27th International Conference on Software
Engineering (ICSE’2005), May 2005.

[7] M. Daran and P. Thévenod-Fosse, “Software error analy-
sis: A real case study involving real faults and mutations,”
in Proceedings of the 1996 ACM SIGSOFT International
Symposium on Software Testing and Analysis (ISSTA’96).
ACM.

[8] A. S. Namin and S. Kakarla, “The use of mutation in
testing experiments and its sensitivity to external threats,”
in Proceedings of the 2011 International Symposium on
Software Testing and Analysis (ISSTA’11). Association
for Computing Machinery, 2011.

[9] H. Coles, T. Laurent, C. Henard, M. Papadakis, and
A. Ventresque, “Pit: A practical mutation testing tool for
java (demo),” in Proceedings of the 25th International
Symposium on Software Testing and Analysis (ISSTA’16).
ACM, 2016.

[10] R. A. DeMillo, R. J. Lipton, and F. G. Sayward, “Hints on
test data selection: Help for the practicing programmer,”
Computer, 1978.

[11] K. N. King and A. J. Offutt, “A fortran language sys-
tem for mutation-based software testing,” Softw. Pract.
Exper., vol. 21, no. 7, pp. 685–718, 1991.

[12] Y.-S. Ma, J. Offutt, and Y.-R. Kwon, “Mujava: A muta-
tion system for java,” in Proceedings of the 28th Inter-
national Conference on Software Engineering (ICSE’06).
ACM, 2006.

[13] R. Just, “The major mutation framework: Efficient and
scalable mutation analysis for java,” in Proceedings of
the 2014 International Symposium on Software Testing
and Analysis (ISSTA’14). ACM, 2014.

[14] S. S. Chawathe, A. Rajaraman, H. Garcia-Molina, and
J. Widom, “Change detection in hierarchically structured
information,” in Proceedings of the 1996 ACM SIGMOD
International Conference on Management of Data (SIG-
MOD’96). ACM, 1996.

[15] B. Fluri, M. Wuersch, M. PInzger, and H. Gall, “Change
distilling:tree differencing for fine-grained source code
change extraction,” IEEE Transactions on Software En-
gineering, vol. 33, no. 11, pp. 725–743, 2007.

[16] J.-R. Falleri, F. Morandat, X. Blanc, M. Martinez, and
M. Monperrus, “Fine-grained and accurate source code
differencing,” in Proceedings of the 29th ACM/IEEE
International Conference on Automated Software Engi-
neering (ASE’14). ACM, 2014.

[17] B. Dagenais and L. Hendren, “Enabling static analysis
for partial java programs,” SIGPLAN Notes, 2008.

[18] Y. Jia and M. Harman, “Higher order mutation testing,”
Information and Software Technology, 2009, proceedings
of the International Conference on Source Code Analysis
and Manipulation (SCAM’08).

[19] J. M. Rojas, T. D. White, B. S. Clegg, and G. Fraser,
“Code defenders: Crowdsourcing effective tests and sub-
tle mutants with a mutation testing game,” in Proceed-
ings of the 39th International Conference on Software
Engineering (ICSE’17). IEEE Press, 2017.

[20] V. Debroy and W. E. Wong, “Using mutation to automat-
ically suggest fixes for faulty programs,” in Proceedings
of the 2010 Third International Conference on Software
Testing, Verification and Validation (ICST’10). USA:
IEEE Press, 2010.

[21] M. Martinez and M. Monperrus, “Astor: A program
repair library for java (demo),” in Proceedings of the
25th International Symposium on Software Testing and
Analysis (ISSTA’16). ACM, 2016.

[22] T. Durieux, F. Madeiral, M. Martinez, and R. Abreu,
“Empirical review of java program repair tools: A large-
scale experiment on 2,141 bugs and 23,551 repair at-
tempts,” in Proceedings of the 2019 27th ACM Joint
Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engi-
neering (ESEC/FSE’19). ACM, 2019.

[23] B.-C. Rothenberg and O. Grumberg, “Sound and com-
plete mutation-based program repair,” in Formal Methods
(FM’16), J. Fitzgerald, C. Heitmeyer, S. Gnesi, and

A. Philippou, Eds. Springer International Publishing,
2016.

[24] V. Debroy and W. E. Wong, “Combining mutation and
fault localization for automated program debugging,”
Journal of Systems and Software.

[25] U. Repinski, H. Hantson, M. Jenihhin, J. Raik, R. Ubar,
G. Di Guglielmo, G. Pravadelli, and F. Fummi, “Com-
bining dynamic slicing and mutation operators for esl
correction,” in 2012 17th IEEE European Test Sympo-
sium (ETS), 2012.

[26] I. Vessey, “Expertise in debugging computer programs: A
process analysis,” International Journal of Man-Machine
Studies, 1985.

[27] C. Parnin and A. Orso, “Are automated debugging tech-
niques actually helping programmers?” in Proceedings of
the 2011 International Symposium on Software Testing
and Analysis (ISSTA’11). ACM, 2011.

[28] A. Ang, A. Perez, A. v. Deursen, and R. Abreu, “Re-
visiting the practical use of automated software fault lo-
calization techniques,” in 2017 IEEE International Sym-
posium on Software Reliability Engineering Workshops
(ISSREW), Oct 2017, pp. 175–182.

[29] S. Moon, Y. Kim, M. Kim, and S. Yoo, “Ask the
mutants: Mutating faulty programs for fault localization,”
in Proceedings of the IEEE Seventh International Con-
ference on Software Testing, Verification and Validation
(ICST’14), 2014.

[30] S. Hong, B. Lee, T. Kwak, Y. Jeon, B. Ko, Y. Kim,
and M. Kim, “Mutation-based fault localization for real-
world multilingual programs (t),” in Proceedings of the
30th IEEE/ACM International Conference on Automated
Software Engineering (ASE’15), 2015.

[31] M. Papadakis and Y. Le Traon, “Using mutants to locate
"unknown" faults,” in Proceedings of the 2012 IEEE Fifth
International Conference on Software Testing, Verifica-
tion and Validation (ICST’12). IEEE Press, 2012.

[32] ——, “Metallaxis-fl: Mutation-based fault localization,”

Software Testing Verification Reliabiability, vol. 25, no.
5–7, 2015.

[33] L. Zhang, L. Zhang, and S. Khurshid, “Injecting me-
chanical faults to localize developer faults for evolving
software,” in Proceedings of the 2013 ACM SIGPLAN
International Conference on Object Oriented Program-
ming Systems Languages & Applications (OOPSLA’13).
ACM, 2013.

[34] S. H. Tan and A. Roychoudhury, “Relifix: Automated
repair of software regressions,” in Proceedings of the
37th International Conference on Software Engineering
(ICSE’15). IEEE Press, 2015.

[35] F. Madeiral, T. Durieux, V. Sobreira, and M. Maia,
“Towards an automated approach for bug fix pattern
detection,” arXiv preprint arXiv:1807.11286, 2018.

[36] G. Fraser and A. Zeller, “Mutation-driven generation of
unit tests and oracles,” IEEE Transactions on Software
Engineering, vol. 38, no. 2, pp. 278–292, March 2012.

[37] S. Almeida, A. C. R. Paiva, and A. Restivo, “Mutation-
based web test case generation,” in Quality of Infor-
mation and Communications Technology, M. Piattini,
P. Rupino da Cunha, I. García Rodríguez de Guzmán,
and R. Pérez-Castillo, Eds. Springer International
Publishing, 2019.

[38] K. Mao, M. Harman, and Y. Jia, “Sapienz: Multi-
objective automated testing for android applications,”
in Proceedings of the 25th International Symposium on
Software Testing and Analysis, ser. ISSTA 2016. New
York, NY, USA: Association for Computing Machinery,
2016, pp. 94–105.

[39] C. Macho, S. Mcintosh, and M. Pinzger, “Extracting
build changes with builddiff,” in Proceedings of the 14th
International Conference on Mining Software Reposito-
ries (MSR’17). IEEE Press, 2017.

[40] Q. Hanam, F. S. d. M. Brito, and A. Mesbah, “Discover-
ing bug patterns in javascript,” in Proceedings of the 24th
ACM SIGSOFT International Symposium on Foundations
of Software Engineering (FSE’16). ACM, 2016.

