
The High-Assurance ROS Framework
André Santos

High-Assurance Software Laboratory
INESC TEC & University of Minho

Braga, Portugal
0000-0002-1985-8264

Alcino Cunha
High-Assurance Software Laboratory
INESC TEC & University of Minho

Braga, Portugal
0000-0002-2714-8027

Nuno Macedo
High-Assurance Software Laboratory

INESC TEC & University of Porto
Porto, Portugal

0000-0002-4817-948X

Abstract—This tool paper presents the High-Assurance ROS
(HAROS) framework. HAROS is a framework for the analysis
and quality improvement of robotics software developed using
the popular Robot Operating System (ROS). It builds on a static
analysis foundation to automatically extract models from the
source code. Such models are later used to enable other sorts
of analyses, such as Model Checking, Runtime Verification, and
Property-based Testing. It has been applied to multiple real-world
examples, helping developers find and correct various issues.1

Index Terms—static analysis, lightweight formal methods, soft-
ware engineering, robot operating system

I. INTRODUCTION

There is little doubt that today’s robots are capable of
incredible feats. Innovation is constant, expectations are high,
and the responsibilities we place on robots are ever increasing.
Robots are the new definition of safety-critical devices. But,
what can we say about their overall software quality?

Primitive robot systems, much like any relatively new
technology, were built mostly in an ad hoc fashion. Over
time, some middlewares thrived and became standards among
practitioners. Among them, the Robot Operating System [1]
(ROS) became an established backbone of open-source robotic
software development [2], [3]. Initiatives such as the ROSIN EU
Horizon 2020 project2 and the ROS Quality Assurance Working
Group3 are fundamental steps in promoting established software
engineering practices, such as Model-driven Engineering.
Despite their efforts, adoption by the general ROS community is
still a slow work in progress. Traditional, code-first development
is the norm; software models are nowhere to be seen.

When confronted with the question “Does my robot do what
it is supposed to do, reliably?”, we want to be able to answer it
with some degree of certainty. It is well known in the software

This work is financed by the ERDF - European Regional Development
Fund through the Operational Programme for Competitiveness and Internation-
alisation - COMPETE 2020 Programme and by National Funds through the
Portuguese funding agency, FCT - Fundação para a Ciência e a Tecnologia
within project PTDC/CCI-INF/29583/2017 (POCI-01-0145-FEDER-029583).

1©2021 IEEE. Personal use of this material is permitted. Permission from
IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional
purposes, creating new collective works, for resale or redistribution to servers
or lists, or reuse of any copyrighted component of this work in other works.
Postprint, after review.
To appear in: Proceedings of the 3rd International Workshop on Robotics
Software Engineering (RoSE@ICSE 2021), Madrid, Spain, 4 pages

2https://www.rosin-project.eu/
3https://discourse.ros.org/c/quality/

engineering field that this is not an easy question to answer.
Ultimately, a system should only be deemed safe, or dependable,
if a set of critical properties is considered satisfied. These
properties can be checked with a number of techniques, such
as Formal Verification, Model Checking, Runtime Verification,
and more, but using one technique in isolation might not be
sufficient. Moreover, it is often the case that these techniques
are only able to address relatively low-level properties of small
units of software, not the system as a whole. Ideally, we want
to specify high-level, system-wide dependability properties and
have a direct means of showing that they hold. This is where
dependability cases [4] come in.

A dependability case is an end-to-end argument, supported
by concrete evidence, that a system satisfies a given property.
The argument spans the system both horizontally, considering
various inputs and outputs, and vertically, from design level
down to the source code. Properties can be broken down and
evidence for each sub-property can be harnessed using different
verification techniques. It is, thus, a way to systematically
combine verification techniques and play to the strengths
of each, as needed. Still, using the individual verification
techniques requires expertise that one rarely finds in the
common ROS developer [2]. This is the problem we address.

How can existing software analysis techniques and tools be
used by non-experts, to improve the quality of ROS applications
and to provide the basis for dependability cases?

Standard software analysis techniques can be employed
behind an interface that caters to ROS roboticists. Namely,
an interface that (i) takes source code as input, (ii) reverse
engineers formal models as needed, and that (iii) uses a
high-level property specification language that addresses ROS
concepts directly. These are the guiding principles behind the
High-Assurance ROS framework (HAROS) [5], found at:

https://github.com/git-afsantos/haros

In this paper we explain the analysis workflow of HAROS
(Section II) and show how it combines multiple verification
techniques (Section III). We compare it to other relevant tools
in Section IV. Lastly, in Section V we summarize our work,
some experimental results with real-world case studies and
some directions for future work. Compared with earlier publi-
cations [5], [6], this paper provides more up-to-date figures,
code fragments and an up-to-date report about the current state
and future plans for the project.

ar
X

iv
:2

10
3.

01
60

3v
1 

 [
cs

.S
E

] 
 2

 M
ar

 2
02

1

https://www.rosin-project.eu/
https://discourse.ros.org/c/quality/
https://github.com/git-afsantos/haros


II. TOOL OVERVIEW AND WORKFLOW

HAROS is specifically designed for the analysis of ROS
software. One of its core features is a metamodel describing
how ROS software is structured, both at runtime and in a
file system [6]. At runtime, a ROS system is composed of
a network of processes, called nodes, communicating via
message-passing. Messages can be exchanged following a
publisher-subscriber paradigm (ROS topics) or a client-server
paradigm (ROS services). There is also a shared key-value store
where arbitrary data is read and written (ROS parameters). At
the file system level, ROS software is distributed in units called
packages, which contain a variety of files, such as CMake build
files, C++ and Python source code, system deployment scripts
(launch files) and message type definition files, to name a few.

In practice, HAROS is divided into two components: the
analyser, a Python console application that does the bulk of the
work (sometimes simply called HAROS); and the visualizer
(or viz, for short) that handles interactive reports using web
technologies. HAROS comes also with a companion repository4

containing a minimalistic ROS application. It consists of
a driver for a fictitious robot (Fictibot), a random walker
controller and a multiplexer that sorts velocity commands by
priority. We detail both components of HAROS in the remainder
of this section, using Fictibot as the running example.

A. HAROS Analyser

The typical workflow of the HAROS analyser is shown in
Fig. 1. It starts by processing a user-provided YAML project file,
such as the one shown in Fig. 2, whose primary purpose is to
define analysis targets. In this file, users specify configurations
– lists of launch files that represent concrete robotic systems or
applications. This is necessary because ROS does not have a
well-defined concept of system or application. In this example,
we can see that only 4 packages should be considered for
analysis, and only one configuration is defined, multiplex,
consisting of a single launch file. Configurations convey only
architectural information (nodes, topics, etc.). They can be
annotated with architectural and behavioural properties to be
checked during the proper analysis stage (not shown).

HAROS provides a minimalistic, message-based specifi-
cation language5 for behavioural properties (HPL) [7], al-
though others can be plugged-in. With HPL, users can spec-
ify safety properties, e.g., ‘globally: no /bumper {data <

0 or data > 7}’, or liveness properties, e.g., ‘globally:
/bumper causes /stop_cmd’. The former restricts valid values
for bumper states, while the latter states that a bumper message
causes the system to respond with a stop command, eventually.

After processing command-line arguments and the project
file, HAROS proceeds to an indexing stage, during which it
builds instances of its metamodel. It locates packages and files
in the file system, and then extracts information from these
artefacts. If enabled, it parses the launch files corresponding
to each configuration at this point. These dictate which nodes

4https://github.com/git-afsantos/haros_tutorials
5https://github.com/git-afsantos/hpl-specs

Fig. 1. Workflow of the HAROS static analysis framework.

1 project: Fictibot
2 packages: ["fictibot_drivers", "fictibot_msgs",

"fictibot_controller", "fictibot_multiplex"]
3 configurations:
4 multiplex:
5 launch: ["fictibot_controller/launch/multiplexer.launch"]
6 hints:
7 nodes:
8 /ficticontrol:
9 publishers:

10 - topic: "/controller_cmd"
11 msg_type: "std_msgs/Float64"

Fig. 2. Project file with a configuration and extraction hints.

(binary executables) make up the target system, and how they
are orchestrated. The CMake files are used afterwards, to
associate binaries with source code. Lastly, C++ and Python
files are parsed, to identify topics, services and parameters that
nodes use at runtime. This step by step procedure yields, in the
end, a complete model, from source artefacts to the network
of runtime entities, without ever executing code.

Naturally, given the complexity of C++ and Python code,
the extraction process is not complete. It covers most of the
common use cases, but some elements of the extensive ROS
API are not yet covered (e.g., abstractions provided by packages
such as tf2). Also, in some cases, it is impossible to determine
dynamic values ahead of time. HAROS addresses this by taking
into account (optional) user-provided extraction hints specified
in the project file (shown in Fig. 2). Hints are partial, i.e., it is
not necessary to specify the full system. In the example, hints
state that the node /ficticontrol should publish messages of
type std_msgs/Float64 on topic /controller_cmd.

Once all models are instantiated, the analysis step begins.
Despite its name, the HAROS analyser simply delegates
analyses to any installed plug-ins. This accomplishes three

https://github.com/git-afsantos/haros_tutorials
https://github.com/git-afsantos/hpl-specs


Fig. 3. Issue listing with the HAROS visualizer.

goals: (i) reuse of existing tools, if possible (plug-ins can be
simple wrappers for other tools); (ii) adaptability to various
use cases (not all users want all analysis capabilities); and (iii)
homogeneity of issue reports (all plug-ins register their results
via a single interface). Plug-ins are installed independently
of the main tool, and can be blacklisted via user-provided
arguments. Section III presents some of the available plug-ins.

Lastly, in the reporting stage, HAROS exports JSON data
files containing, e.g., extracted runtime models and analysis
issues aggregated by package. Plug-ins can also generate arbi-
trary files at this stage (e.g., source code), for later use.

B. HAROS Visualizer
The HAROS visualizer produces an interactive report based

on the exported JSON data files. It defaults to a dashboard
page where summary data is provided for a selected project.
This page sorts the information in three panels: source code
statistics (e.g., number of packages and files), analysis statistics
(e.g., total number of issues) and history of several metrics.
Other pages include: a package overview, where packages
are drawn in a dependency graph; a list of issues reported
by plug-ins, organized by category (Fig. 3 shows issues of
the multiplex configuration); and interactive models of the
extracted runtime configurations (Fig. 4 shows the multiplex

configuration). Conditional entities (e.g., under if) in the model
are drawn in dashed lines (top left in the diagram). Subjects
of issues can also be highlighted (bottom right, shown in red).

III. HAROS ANALYSIS PLUG-INS

HAROS users are able to create plug-ins to fit their needs.
Here we list some plug-ins that we know to be freely available.

A. Static Analysis
These plug-ins6 take in C++ and Python code directly. They

are based on existing tools for general-purpose analyses. Some
tools, often called linters (e.g., cpplint and pylint), detect
various issues, mostly related to formatting, according to some
coding standards. Others, like cppcheck, detect small and
common bugs, such as uninitialized variables and out-of-bounds
errors. Yet others, like lizard and radon, measure a number
of quality metrics, such as cyclomatic complexity, and report
violations of these metrics against popular quality standards.

6https://github.com/git-afsantos/haros_plugins

Fig. 4. Runtime model with issue highlights in the HAROS visualizer.

B. Architectural Queries

This plug-in7 is a query engine over the extracted run-
time models that checks user-defined structural rules. Ba-
sic use cases include ensuring that every topic has at
most one publisher (a common guideline in many sys-
tems), or detecting the use of conditional publishers and
subscribers (Issue #6, shown in Fig. 3). The latter is
given by the pattern ‘nodes/publishers[self.conditions]
| nodes/subscribers[self.conditions]’, that matches pub-
lishers or subscribers with associated conditions (e.g., an if).
A more complex example is a compile-time type-checking
system for ROS topics and services, a feature that ROS lacks.

C. Model Checking

The main goal of this plug-in8 is to verify system-wide
behavioural properties in ROS applications, i.e., properties that
span a whole configuration, rather than single node behaviour.
Node behaviour must be axiomatized with additional properties,
to make system-wide verification possible (e.g., what the node
publishes, dependencies between messages). Verification of
node-specific behaviour is delegated to other plug-ins, such as
the testing plug-in we present next. The proposed technique
formalizes models and HPL properties in Electrum9 [8], a
model checker for relational first-order temporal specifications.

D. Testing and Runtime Verification

Taking in HPL behavioural specifications, this plug-in10

generates runtime monitors and property-based tests. It converts
each property into a testing schema – a strategy to narrow
down traces of messages that falsify the input property. Then,
it uses Hypothesis11 to convert schemas into input generators,
and to explore the input space repeatedly. Counterexample
message traces are detected with runtime monitors, minimized
(or shrunk) with Hypothesis, and then presented to the user.

7https://github.com/git-afsantos/haros-plugin-pyflwor
8https://github.com/nmacedo/haros_plugin_mc
9http://haslab.github.io/Electrum/
10https://github.com/git-afsantos/haros-plugin-pbt-gen
11https://hypothesis.works/

https://github.com/git-afsantos/haros_plugins
https://github.com/git-afsantos/haros-plugin-pyflwor
https://github.com/nmacedo/haros_plugin_mc
http://haslab.github.io/Electrum/
https://github.com/git-afsantos/haros-plugin-pbt-gen
https://hypothesis.works/


IV. RELATED WORK

To the best of our knowledge, there are no existing tools
directly comparable to HAROS, in terms of performing ROS-
specific property checks using a variety of analysis techniques.
There are, however, many approaches focusing on a subset
of the problems HAROS addresses. For instance, Statick12 is
similar to HAROS, in concept. It is a plug-in based tool with
domain knowledge about ROS packages. It integrates a number
of analysis tools and unifies their reports, but it focuses only on
ROS-agnostic static analyses (e.g., linters and quality metrics).

Automatic model extraction from ROS source code, using
static analysis has been done in [9] and [10]. However, these
approaches focus only on the publisher-subscriber aspect,
neglecting ROS services and parameters. They are also not
aimed at enabling other general-purpose analyses; HAROS not
only builds models but makes them available to users.

Witte and Tichy [11] propose a process to extract runtime
models that uses static analysis for launch files and dynamic
analysis for node interfaces. Nodes run within a sandboxed
environment that intercepts calls to build topics and services.
A limitation of this approach, in addition to executing code,
is the assumption that nodes follow a standard life cycle, in
which topics and services are created during set up. This is
not necessarily true; resources can be created at any time.

Verification of behavioural properties in ROS is commonly
tackled via runtime verification. Some of the most prominent
tools are ROSRV [12], ROSMonitoring [13] and DeRoS [14].
The first does not offer a property specification language;
properties are programmed manually. The second uses a
relatively low-level, domain-agnostic specification language
based on regular expressions and events as JSON objects.
The third provides a language to specify both architecture
and properties; monitors are capable of enforcing temporal
properties and safety actions, albeit without formal semantics.

V. CONCLUSION

This paper presented HAROS, a plug-in driven framework
to analyse properties of ROS systems. One of its core features
is the semi-automatic extraction of runtime architectures at
compile time. The extracted models not only offer visual
feedback to developers, but also enable model-based analyses
via plug-ins, such as verifying structural properties via queries,
verifying behavioural properties via model checking, or using
the models to generate property-based tests.

HAROS has been tested on multiple real-world case studies,
including academic examples [6] (e.g., TurtleBot213), commer-
cial products [3] (e.g., Care-O-bot 414) and industrial robots [7],
[15]. Despite its limitations, especially regarding plug-ins based
on behavioural properties, we have observed good results,
overall. For instance, the model extractor has required hints
only for one in every ten entities, on average. In addition,
our property-based testing plug-in has been able to unveil

12https://github.com/sscpac/statick
13https://www.turtlebot.com/turtlebot2/
14https://www.care-o-bot.de/en/care-o-bot-4.html

safety bugs in a hillside vineyard agricultural robot, one of the
industrial case studies, that have been since reported and fixed.
A repository of HAROS case studies and tangible artefacts that
are possible with the presented workflow can be found at:
https://github.com/git-afsantos/haros-case-studies

Regarding the future of HAROS, firstly, we intend to alleviate
extraction hints, extending HAROS’s domain knowledge to
cover standard ROS packages and the new, fast-developing
ROS2. Then, we intend to reduce the number of user-specified
configurations, integrating Feature Models and variability-aware
analyses. Lastly, we plan on developing new plug-ins, e.g., to
verify HPL intra-node properties based on control flow analysis
and software model checking, or to profile energy consumption.

DATA AVAILABILITY

HAROS, the HPL specification language and the repository
of case studies and analysis artefacts are openly available in
zenodo.org at the following addresses, respectively:

https://doi.org/10.5281/zenodo.4569751

https://doi.org/10.5281/zenodo.4570107

https://doi.org/10.5281/zenodo.4569749

REFERENCES

[1] M. Quigley, K. Conley, B. P. Gerkey, J. Faust, T. Foote, J. Leibs,
R. Wheeler, and A. Y. Ng, “ROS: An open-source Robot Operating
System,” in ICRA Workshop on Open Source Software, 2009.

[2] A. Alami, Y. Dittrich, and A. Wasowski, “Influencers of quality assurance
in an open source community,” in Int. Workshop on Cooperative and
Human Aspects of Software Engineering (ICSE), 2018, pp. 61–68.

[3] N. H. Garcia, L. Delval, M. Lüdtke, A. Santos, B. Kahl, and M. Bor-
dignon, “Bootstrapping MDE development from ROS manual code -
part 2: Model generation,” in ACM/IEEE Int. Conf. on Model Driven
Engineering Languages and Systems (MODELS). IEEE, 2019, pp.
95–105.

[4] D. Jackson, “A direct path to dependable software,” Communications of
the ACM, vol. 52, no. 4, pp. 78–88, 2009.

[5] A. Santos, A. Cunha, N. Macedo, and C. Lourenço, “A framework for
quality assessment of ROS repositories,” in IEEE/RSJ Int. Conf. on
Intelligent Robots and Systems (IROS), 2016, pp. 4491–4496.

[6] A. Santos, A. Cunha, and N. Macedo, “Static-time extraction and analysis
of the ROS computation graph,” in IEEE Int. Conf. on Robotic Computing
(IRC), 2019, pp. 62–69.

[7] R. Carvalho, A. Cunha, N. Macedo, and A. Santos, “Verification of
system-wide safety properties of ROS applications,” in IEEE/RSJ Int.
Conf. on Intelligent Robots and Systems (IROS). IEEE, 2020.

[8] J. Brunel, D. Chemouil, A. Cunha, and N. Macedo, “The electrum
analyzer: Model checking relational first-order temporal specifications,”
in ACM/IEEE Int. Conf. on Automated Software Engineering (ASE).
ACM, 2018, pp. 884–887.

[9] R. Purandare, J. Darsie, S. G. Elbaum, and M. B. Dwyer, “Extracting
conditional component dependence for distributed robotic systems,” in
IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS), 2012, pp.
1533–1540.

[10] N. Sharma, S. G. Elbaum, and C. Detweiler, “Rate impact analysis in
robotic systems,” in IEEE Int. Conf. on Robotics and Automation (ICRA),
2017, pp. 2089–2096.

[11] T. Witte and M. Tichy, “Checking consistency of robot software
architectures in ROS,” in IEEE/ACM Int. Workshop on Robotics Software
Engineering (RoSE), 2018, pp. 1–8.

[12] J. Huang, C. Erdogan, Y. Zhang, B. M. Moore, Q. Luo, A. Sundaresan,
and G. Rosu, “ROSRV: runtime verification for robots,” in Int. Conf. on
Runtime Verification (RV), 2014, pp. 247–254.

[13] A. Ferrando, R. C. Cardoso, M. Fisher, D. Ancona, L. Franceschini, and
V. Mascardi, “ROSMonitoring: A runtime verification framework for
ROS,” in Towards Autonomous Robotic Systems (TAROS), ser. Lecture
Notes in Computer Science, vol. 12228. Springer, 2020, pp. 387–399.

https://github.com/sscpac/statick
https://www.turtlebot.com/turtlebot2/
https://www.care-o-bot.de/en/care-o-bot-4.html
https://github.com/git-afsantos/haros-case-studies
https://doi.org/10.5281/zenodo.4569751
https://doi.org/10.5281/zenodo.4570107
https://doi.org/10.5281/zenodo.4569749


[14] M. S. Adam, M. Larsen, K. Jensen, and U. P. Schultz, “Rule-based
dynamic safety monitoring for mobile robots,” Journal of Software
Engineering for Robotics, vol. 7, no. 1, pp. 120–141, 2016.

[15] T. Neto, R. Arrais, A. Sousa, A. Santos, and G. Veiga, “Applying software
static analysis to ROS: the case study of the FASTEN european project,”
in Iberian Robotics Conf. - Advances in Robotics (ROBOT), ser. Advances
in Intelligent Systems and Computing, vol. 1092. Springer, 2019, pp.
632–644.


