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Abstract—Photovoltaic (PV) solar power capacity is growing 
in several countries, either concentrated in medium/large size 
solar parks or distributed by the medium and low voltage 
grid. Solar power forecasting is a key input for supporting 
grid management, participation in the electricity market and 
maintenance planning. This paper proposes a new forecasting 
system that is a hybrid of different models, such as electrical 
and statistical models, as well as different Numerical Weather 
Prediction (NWP) sources. The time horizon is 48 hours 
ahead. The proposed model was operationalized and tested in 
a real PV installation located in North Portugal with 16 kW.  

Keywords; solar power; forecasting; electrical model; 
statistical model; numerical weather predictions. 

I. INTRODUCTION 
The economics of photovoltaic (PV) solar power are 

presently very attractive to final electricity consumers since 
PV generation is reaching grid parity in comparison to 
retailing tariffs [1]. Besides, several European countries are 
designing a regulatory framework to support self-
consumption at the building level [2], the “prosumer” 
concept. The investment in medium/large scale solar plants 
is also growing and their integration in the wholesale 
electricity market is expected. 

In this context, short-term solar power forecasting is an 
important service for both system operators and PV 
installations owners/operators. It can be used in grid 
management functions, such as setting the operating reserve 
requirements [3] and voltage control [4], as well as to define 
electricity market offers. The time horizon of interest for 
these functions is between 48 hours and one week ahead, 
frequently called short-term horizon [5].  

The literature about solar power forecasting is rich in 
machine learning methods applied to extrapolate solar 
power from Numerical Weather Predictions (NWP). For 
instance, Fernandez-Jimenez et al. [6] used NWP as input in 
several machine learning algorithms (i.e., Auto-Regressive 
Integrated Moving Average – ARIMA, k-nearest neighbours 
– kNN, neural networks – NN, and adaptive neuro-fuzzy 
models) to produce solar power forecasts for the next 39 
hours. Zamo et al. [7] compared several regression 
algorithms (e.g., random forests, boosting, support vector 
machines – SVM) that take NWP as input to produce solar 
power forecasts. Chen et al. [8] combined a self-organized 
map (SOM), which classifies the local weather type of 24 

hours-ahead NWP, with a neural network that converts the 
NWP information into solar power. Bacher et al. [9] 
proposed an autoregressive model with exogenous inputs 
(i.e., NWP). 

For the very short-term horizon (e.g., up to ten hours 
ahead), the state of the art consists in ARIMA models with 
past observations of the same time series as input [10]. 
Bessa et al. [11] developed a vector autoregressive model 
(VAR) that combines information from distributed smart 
meters (associated to micro-generation) and remote terminal 
units from a smart grid in order to improve the forecast skill. 
A more detailed literature review can be found in [12]. 

These models should be seen as components in a 
complete forecasting system, which should include different 
types of models and cover multiple time horizons. This 
papers aims to describe the architecture and algorithms of a 
solar power forecasting tool. The proposed architecture has 
two innovative features: 

a. Combines an electrical model (described in 
[13]) of the PV system and a statistical model 
(gradient boosting technique [14]) that converts 
NWP into solar power for the short-term time 
horizon; 

b. Different NWP models are combined with 
information from past observations of the time 
series. 

The forecast time horizon is 48 hours ahead and the final 
output are probabilistic forecasts (i.e., set of quantiles). 
Moreover, a mesoscale NWP model was parameterized for 
Portugal in order to produce high resolution global 
horizontal and direct irradiance predictions. 

It is important to stress that the electrical based model 
provides a better characterization and interpretation of the 
physical system and does not need to know in advance the 
PV plants characteristics as they are estimated by a meta-
heuristic optimization algorithm. Statistical models are 
combined with this module in order to improve the overall 
forecasting skill. 

The paper is organized as follows: section II describes 
the architecture of the forecasting tool; section III describes 
the NWP model and corresponding setup for Portugal; 
sections IV presents the chain of algorithms to produce point 
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forecasts; section V describes the probabilistic forecasting 
algorithm; the test case results are presented in section VI; 
section VII presents the conclusions. 

II. ARCHITECTURE OF THE FORECASTING TOOL 
The architecture of the solar power forecasting tool is 

depicted in Fig. 1. It consists of a hybrid of statistical and 
physical models (e.g., electrical and NWP model).  

For the very short-term horizon (i.e., up to 10 hours-
ahead), an autoregressive model (AR) that takes as input 
past observations from the time series is used. For the short-
term horizon, the information comes from a set of NWP 
models that feed two different types of algorithms (i.e., 
electrical and statistical models) that convert solar irradiance 
into power. 

The solar power forecasts generated by the AR model 
and by the short-term algorithms created with different 
NWP are linearly combined (i.e., linear pool) in order to 
produce a single point forecast. 

Finally, a local quantile regression model produces a set 
of quantile forecasts (e.g., probabilistic forecasts) using as 
input the point forecast generated by the linear pool. This 
final output can be used to derive electricity market offers or 
to plan maintenance operations. 

 
Figure 1.  Architecture of the solar power forecasting tool. 

III. PARAMETRIZATION OF THE NWP MODEL 
The Weather Research and Forecasting (WRF) [15] 

modeling project is a community effort intended to develop 
a next-generation mesoscale forecast model and data-
assimilation system that will advance both the 
understanding and prediction of mesoscale weather, and 
accelerate the transfer of research advances into operations.  

The WRF model is well suited for a wide range of 
applications, from idealized research simulations to 
operational forecasting, and has the flexibility to 
accommodate future enhancements. Although the model is 
designed to improve forecast accuracy across scales ranging 
from cloud to synoptic, the emphasis on horizontal grid 
resolutions of 1-10 km makes WRF particularly well suited 
for newly emerging numerical weather prediction 
applications in the non-hydrostatic regime. 

The weather forecasts used here, come from a Prewind 
operational weather forecast model, which is configured 
with two nested domains using one-way nesting, the outer 
domain with 16 km horizontal resolution and the inner 
domain with 4 km horizontal resolution. 

The model radiation package follows the Rapid 
Radiation Transfer Model (RRTM) [16]. The RRTM 

package aims to calculate shortwave and longwave fluxes 
that simulate the absorption of radiation by water vapor, 
ozone, etc., and simulate phenomena’s like reflection of 
radiation in the Earth surface and clouds, scattering of 
radiation due to the presence of aerosols and clouds. This 
provides the necessary output to calculate all the necessary 
variables to solar power forecasting. 

IV. POINT FORECAST MODELS 

A. Autoregressive Model 
The very short-term model covers a time horizon up to 

10 hours ahead and it is based on the autoregressive (AR) 
process [17]. The AR model for time interval t can be 
interpreted as a regression on past observations (or lags) of 
the time series. For one hour-ahead forecast, the AR model 
is the following: 

 tt
n

ltl
n
t

n
t

n
tt pppp |11210|1ˆ +−−+ +⋅++⋅+⋅+= εββββ  (1) 

where β are the model’s coefficients, l the order of the 
AR model and tt |1+ε  is a white noise process with zero mean 
and constant variance. Note that np  is the solar power time 
series normalized in order to remove the seasonal 
component with the weighted quantile regression model (or 
clear-sky model) described in [9]. 

The coefficients of the model in Eq. 1 are estimated with 
the Recursive Least Squares (RLS) method with forgetting 
factor, as described in [17].  

Since this model is unable to completely remove the 
seasonal component of the model, a diurnal term 
corresponding to lag t-23 (for hourly time series) is 
included. Following the results in [9][11], the lags t and t-1 
are also introduced in the model.  

In this paper, multi-step ahead forecasts are produced. 
Therefore, a different model is fitted for each lead-time, 
ranging between 1 and 10 hours ahead. 

B. Electrical Model 
The electrical model uses NWP has an input and its 

parameters are found by an optimization process aimed at 
reducing the forecast error of the training dataset. This 
model exploits meaningful parameters in opposition with 
black-box, such as neural network, and presents the 
advantage of including user knowledge for the definition of 
the limits of the parameters. 

The model aims at transforming NWP into PV outputs. 
For doing so, it is necessary to separate the forecasted global 
irradiance into three different components to estimate the 
global irradiance on a tilted surface. Then it can be 
converted into PV power output by considering the 
influence of cell temperature and inverter losses according 
to the ambient conditions [18]. 

1) Tilted Plane Global Irradiance 
The three components of the incident global irradiance 

are [19]: (i) the beam component from direct irradiation of 
the tilted surface β,bG , (ii) the diffuse component β,dG  
and (iii) the reflected component that quantifies the radiation 
reflected from the ground to the tilted surface β,rG , i.e., 

 ββββ ,,,, rdbg GGGG ++=  (2) 



The calculation of the tilted direct component β,bG  is 
purely geometrical 
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where 
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is the incidence angle [20], Bn the direct beam referred in 
NWP as the Direct Normal Irradiance (DNI), B the Direct 
Horizontal Irradiance (DHI), β the tilted angle, θz the sun 
zenith angle, θa the sun azimuth angle and φa the surface 
azimuth angle. 

To estimate the diffuse component, one can use the 
model developed at Sandia National Laboratories in order to 
determine the diffuse irradiance from the sky on a tilted 
surface using the surface tilt angle, diffuse horizontal 
irradiance, global horizontal irradiance, and sun zenith angle 
[21].  
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Then, the reflected irradiance from the ground [22] is: 
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2) PV output 
The efficiency of PV panels varies with the cell 

temperature which can be evaluated through [23]. 
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where aT  is the ambient temperature, β,gG  the global 

irradiance on the panel, NOCT
cT  the Normal Operating Cell 

Temperature, NOCT
refG , NOCT

aT the global irradiance and the 
ambient temperature in the NOCT conditions, wV  the 
forecasted wind speed and mη the coefficient which 
summarizes the electrical efficiency and the heat transfer 
capability of PV modules. 

Eq. 8 summarizes the influence on cell temperature on 
the PV output considering installation characteristics, 
weather conditions and cell parameters [23]. 
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Where PDC is the DC power delivered by the PV panels, 
Pinst the rated power of the PV plant, β,gG  the global 

irradiance on the PV panels, STC
refG and STC

refT the Standard 
Tests Conditions global irradiance and cell temperature, Tc 
the cell temperature, γ the power temperature coefficient of 
the cells, μ represents the effect of irradiance influence of 
the PV cell efficiency. 

The inverter losses can be modelled with a quadratic 
function of the DC power. 
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Then, the AC power delivered to the grid is done by 

 inv
lossDCAC PPP −=  (10) 

3) Parameter Optimisation and Forecasting 
To find the optimal parameters, an optimization 

procedure is run Evolutionary Particle Swarm Optimisation 
(EPSO) [24] which is a population-based method and relies 
on a set of moving solutions denoted as particles. In this 
case, a particle is a set of parameters to be applied to NWP 
in order to evaluate the AC PV outputs. 

In this paper, the following parameters have been 
considered during the optimisation procedure: 

• for installation/location characteristics: rated 
power, panel tilt angle, panel orientation azimuth 
and albedo 

• for PV panel parameters: Normal Operating Cell 
Temperature, power temperature efficiency 
coefficient, irradiance efficiency coefficient, 
electrical efficiency and heat transfer coefficient, 
electrical efficiency and heat transfer coefficient 

• inverter losses model coefficients. 

The fitness function to be minimised is the mean 
absolute error (MAE) of the entire set of training data. The 
obtained parameters are then used to forecast the PV output 
from the testing data set NWP. 

C. Statistical Model 
The electrical-based method can take as inputs the 

different components of the GHI, as well as ambient 
temperature and wind speed. However, variables such as the 
cloudiness index cannot be directly included in the model. A 
statistical-based model that includes a larger set of 
explanatory variables was added to the forecasting system. 

It is based on the component-wise gradient boosting 
(GB) technique, which is an ensemble machine-learning 
algorithm for regression [14]. It conducts numerical 
optimization, via steepest-descent, in function space by 
using a user-defined base learner recurrently on modified 
data that is the output from the previous iterations. 
Following the optimization phase, the final solution is a 
linear combination of the base learners.  

The main feature of this algorithm is that the base 
learner selects only one predictor among all in each iteration 
and can includes different types of base learners, such as 
linear effects or smooth effects (e.g., P-splines). Therefore, 
this algorithm is capable of modelling non-linear relations 
and conducts feature selection. 

The following additive model with P-splines as base 
learners is fitted with the component-wise GB from R 
“mboost” package [25]: 
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where f is a cubic smooth P-spline base-learner (function 
“bbs” in “mboost” package) with four degrees of freedom 
and 20 equally spaced knots. 



D. Linear Pool 
The AR produces forecasts for the first lead-times with 

higher skill compared to the ones produced from NWP. 
Moreover, NWP with different parametrizations can be 
combined to improve the overall forecasting skill, as well as 
the electrical and statistical models. In order to produce a 
single forecast, the following linear pool was employed: 
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where β are the model’s coefficients and z the number of 
different NWP models (in this paper, z =2). 

A linear pool model is fitted for each lead-time with the 
RLS algorithm, which makes the model’s coefficients time-
varying. 

V. PROBABILISTIC FORECAST MODELS 
In order to produce probabilistic forecasts, a non-

parametric approach based on local quantile regression is 
used [9][26]. The model for quantile τ consists in the 
following:  

 ( ) tkt
n
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where ω(.) is a coefficient function to be estimated and 
n

tktp |ˆ +
 is the normalized point forecast that includes 

information about the cloudiness level.  

The ω(.) function is estimated at a number of distinct 
reference points by using the kernel-local polynomial 
smoothing method, which means fitting a linear quantile 
regression model locally to each reference point. This allows 
the coefficients to vary smoothly according to the 
explanatory variables and therefore modelling nonlinear 
relations. A first order polynomial is considered and the tri-
cube kernel with Euclidian norm is considered. An adaptive 
kernel bandwidth is defined by the nearest neighbour 
approach. 

The function “rq” from R “quantreg” package [27] is 
used to solve the weighted quantile regression problem. 

VI. RESULTS FROM THE DEMONSTRATION PHASE 

A. Test Case Description 
The solar power dataset used as test case originates from 

a solar power plant located on the north of Portugal with 16 
kW of nominal power.   

For the meteorological dataset two NWP providers were 
used (NWP1 and NWP2). NWP1 does not provide forecasts 
for the DNI and DHI components, therefore the Boland-
Ridley-Lauret model [28] is used to estimate their values.  

This case study considers a dataset with hourly data 
(NWP and solar power) for the period between May 2013 
and November 2014. 

The point forecasts are evaluated with the mean absolute 
error (MAE) and root mean square error (RMSE) 
normalized by the rated power and calculated for each lead-
time. Probabilistic forecasts are evaluated using the 
Continuous Ranked Probability Score (CRPS), described in 
[29]. 

A detailed list of the parameters and search intervals of 
the EPSO algorithm can be found in [13]. 

B. Forecast Skill Results 
Fig. 2 presents the comparison, in terms of RMSE, of the 

electrical model considering as input the NWP from both 
providers considered independently and combined. Even 
though the model with NWP2 outperforms the one with 
NWP1 for all lead-times, the linear pool with both forecasts 
provides an increase of forecast skill, resulting in a smaller 
RMSE. 

 
Figure 2.  RMSE of the electrical model with NWP1, NWP2 and linear 

combination. 

Fig. 3 depicts the RMSE for the electrical and statistical 
models separately and combined through the linear pool, 
using NWP2 as input. The statistical model outperforms the 
electrical model for all lead-times with the exception of the 
initial hours of the day where the electrical model shows 
better results (6h00 and 7h00). Even though the linear pool 
was not able to improve these first hours of the day, it shows 
a considerable decrease in the forecasting error for the rest 
of the day.  

 
Figure 3.  Comparison between electrical, statistical and linear pool 

models. 

The forecasts used to obtain the errors presented in Fig.2 
0and Fig. 3 were launched on a daily basis at midnight, 
hence the similarity between the solar cycle and the error 
curve. 

From Fig. 4 onwards the predictions are updated on an 
hourly basis and integrates the forecasts generated by the 
AR model. Thus the error curve differs from the solar cycle. 
Note that all night-time hours were removed (filtered by the 
solar zenith angle). 

Fig. 4 provides the final error of the forecasting system, 
which is obtained from the linear pool of all models: 



electrical model (with NWP1 and NWP2), statistical model 
(with NWP1 and NWP2) and AR model. The MAE ranges 
from 5.13% at the first lead-time to 10.39% for the last lead-
time. The RMSE has its lower value at first lead-time with 
8.21% and the 13.84% for the last one.  

The lower values of error in the first lead-times are due 
the integration of the AR in the linear pool, which has been 
proved to outperform NWP models for very short-term 
horizon.  

 
Figure 4.  MAE and RMSE results of the forecasting system. 

The performance of this hybrid forecasting tool was 
compared with two naïve models: persistence and diurnal 
model. The persistence model predicts the photovoltaic 
power for the next 48 hours by multiplying the last know 
value of normalized solar power by the clear sky model for 
the forecasting period. The diurnal model uses the last two 
days of measured solar power to predict 48 hours ahead. 

The improvement over the naïve model, depicted in 
Fig.5 and Fig. 6, is obtained as follows: 
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For the first six lead-times, as illustrated in Fig. 5, the 
hybrid forecasting tool outperforms both naïve models. The 
smaller improvement occurs over the persistence model for 
the first lead-time with 9.55%. However, five lead-times 
ahead the improved increases to 63.10%, leading to the 
conclusion that the persistence model is only relevant for the 
first two lead-times.  

Fig. 6 0illustrates the improvement towards the diurnal 
model considering the complete forecasting horizon. The 
persistence model is not represented in this figure, since its 
performance decreases abruptly for longer lead-times.  

The higher improvement towards the diurnal model 
occurs at the first time-horizon reaching a value of 55.69% 
and the lower is at lead-time 20 with 28.07%. 

 
Figure 5.  Point forecast improvement over naïve models. 

 
Figure 6.  Point forecast improvement over diurnal model. 

Fig. 7 0depicts the Continuous Ranked Probability Score 
(CRPS) calculated for each lead-time. It ranges between 
3.35% and 5.17%. 

 
Figure 7.  CRPS calculated for each lead-time. 

  



VII. CONCLUSIONS 
This paper describes a hybrid solar power forecasting 

system that explores the combination of physical and 
statistical models in order to improve the forecasting skill. 

The operational demonstration for a PV installation in 
the north of Portugal showed the following main 
conclusions: 

• Using multiple NWP services has shown relevant 
benefits, since the combination of forecasts from the 
same model but with different NWP inputs reveals 
better performance even when one of them is 
outperformed in all time-horizons; 

• The combination of the electrical and statistical 
models has also demonstrated better performance 
considering that it results in a lower RMSE compared 
to the individual models run separately. 

• Since the AR model is the most efficient model for 
very short-term horizon, its inclusion in the linear 
pool reduces the forecast error for the first lead-
times. 

Furthermore, the average RMSE increases from 9.83%, 
for the first 3 hours, to 13.37% for the rest of the forecasting 
period. Compared to two naïve models, the proposed hybrid 
forecasting tool shows an average improvement of 57.4% 
over persistence and 34.06% over the diurnal model. 

The probabilistic forecast shows a good performance, 
with a CRPS ranging between 3.35% and 5.17% of the rated 
power. 
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