
Index-based semantic tagging
for efficient query interpretation

José Devezas and Sérgio Nunes

INESC TEC & DEI, Faculdade de Engenharia, Universidade do Porto
Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal

{jld,ssn}@fe.up.pt

Abstract. Modern search engines are evolving beyond ad hoc document
retrieval. Nowadays, the information needs of the users can be directly
satisfied through entity-oriented search, by ranking the entities or at-
tributes that better relate to the query, as opposed to the documents that
contain the best matching terms. One of the challenges in entity-oriented
search is efficient query interpretation. In particular, the task of semantic
tagging, for the identification of entity types in query parts, is central
to understanding user intent. We compare two approaches for semantic
tagging, within a single domain, one based on a Sesame triple store and
another one based on a Lucene index. This provides a segmentation and
annotation of the query based on the most probable entity types, leading
to query classification and its subsequent interpretation. We evaluate
the run time performance for the two strategies and find that there is a
statistically significant speedup, of at least four times, for the index-based
strategy over the triple store strategy.

Keywords: Entity-oriented search; query segmentation; semantic anno-
tation; query interpretation

1 Introduction

In the last few years, search engines have been evolving from full-text document
search into a richer, more entity-oriented search. Entity-oriented or semantic
search [2] is a step towards a more direct answer to the user’s information needs;
it differs from regular full-text search, as results are expected to be entities
or attributes, as opposed to full-text search, where results are expected to be
documents. Several new problems emerged from the need for entity retrieval.
Full-text indexing techniques proved inadequate or insufficient, ranking strategies
posed new challenges, as an expanding world of linked data could now contribute
to determine the relevance of entities, and the traditional keyword query as a
set of terms became unsuitable to support entity-oriented search. When we are
looking for entities, we can’t necessarily find them through their content, like
we do with documents, but rather through their features (e.g., attributes, types,
relations). Thus, there is a need to somehow capture and use this information
during the search process.

2 José Devezas and Sérgio Nunes

The search process begins with the query, making query analysis essential
to extract additional information, such as the parts of the query that represent
entities, as well as their types or attributes, and the parts of the query that
represent traditional keywords. Identifying entities in a query through segmen-
tation, as well as matching them to a particular category is frequently called
semantic tagging [5]. In our system, query interpretation is fully supported by
the information obtained from semantic tagging. This enables the subsequent
construction of knowledge base queries to retrieve entities, types or attributes
matching the text and identified category of each query part. The resulting
ranked set of candidates can then be used to support the interpretation of the
query, helping in the final query answering process.

In this paper, we evaluate the efficiency of the candidate retrieval subtask,
based on a Sesame triple store, using SPARQL queries, as well as on a Lucene
index, optimized for this task, using keyword queries.

2 Reference Work

Pound et al. [6] have provided a relevant contribution to entity-oriented search
by structuring the queries for ad hoc object retrieval into five categories: entity
query (directly find a specific entity), type query (find entities of a given type),
attribute query (find values of an attribute of an entity or type), relation query
(discover how two or more entities or types are connected) and keyword query
(for any traditional full-text query that doesn’t fit the other categories).

Guo et al. [4] proposed a new application of named entity recognition in
the context of search queries, based on a Weakly Supervised Latent Dirichlet
Allocation (WS-LDA) algorithm that used partially labeled entities as seeds. The
idea was to use a query log, discovering queries that contained a given entity
and class, to obtain an associated context (remaining terms). Based on a context
“document” and a class “topic”, they generated training data that could be used
to learn a topic model and reiterate with new seeds to improve the overall model.

Blanco et al. [3] presented an extremely effective and efficient algorithm for
entity linking in queries (Fast Entity Linking, or FEL) that took advantage of
context (using word2vec), based on query logs and Wikipedia articles on the
entity (as determined by the anchor text linking to the Wikipedia article). While
the methodology we present here does not seem to outperform FEL (the mean run
time for our whole search process is 49 ms for a different dataset), our technique
might have a lower implementation cost, as it easily builds on top of existing
information retrieval frameworks like Lucene.

Aggarwal and Buitelaar [1] focused on the interpretation of natural language
queries to facilitate querying over linked data, with languages like SPARQL. Their
pipeline included: entity annotation (supported on two indexes, one for labels
and URIs of all DBpedia instances and another one for all DBpedia classes), deep
linguistic analysis (at this stage, a central entity, as well as the dependencies be-
tween all entities, were identified), and semantic similarity/relatedness (similarity

Index-based semantic tagging for efficient query interpretation 3

was defined on the basis of is-a relations of concepts, while relatedness covered
other types of relations).

3 Data Characterization

The work we present here aimed at improving search within the University of
Porto. We implemented an entity-oriented search system capable of answering
queries by taking advantage of the untapped underlying linked data present in
the current information system. We considered search tasks like the discovery
of the department for a given staff member or the finding of students enrolled
in two given courses. We first tackled this problem at a faculty level and then
extended our support to the fourteen schools of the University of Porto.

The main performance issues that led us to explore an alternative to directly
using the triple store for query analysis were identified when we scaled from
faculty-centric entities to university-centric entities. Growing from a dataset
restricted to the students at the Faculty of Engineering to a dataset including the
students for all the schools at the University of Porto meant growing our triple
store from 546,760 to 2,594,511 statements. Including the students for the whole
university had a tremendous impact in the growth of our dataset, translating
into 139,640 more students, associated with 193,650 additional enrollments, 1,166
more courses, 14 more academic years and 10 more faculties.

4 Semantic Tagging in Queries

Semantic tagging in queries is the act of annotating queries with entity types,
for query understanding. We followed this approach by segmenting the query
and annotating groups of sequential terms (n-grams) with the most probable
category (entity, attribute, type or keyword), based on a set of matching candidate
labels from the knowledge base. In this work, we focused on the efficiency of
two alternative methodologies for candidate retrieval, one based on a Sesame
triple store and SPARQL querying, and another one based on a Lucene index
and keyword querying. The techniques we describe here can easily be used to
also identify entity types or to establish entity links.

The first step for query analysis was to build a collection of all n-grams for
n ∈ [1, n]. We used n = 6 as the maximum n-gram size, given it provided a
coverage of 94.28% for the labels of our entities, resulting in a good compromise
between performance and accuracy (a higher number of n-grams would result in
additional candidate retrieval queries). The second step was to retrieve matching
candidates for each n-gram. We did this either by using the Sesame triple store
or the specialized Lucene index. We also computed the number of candidates
per class using either technology. This enabled us to calculate the probability of
associating a given candidate to an n-gram: 1−|Cx

t | / |Ct|, where Cx
t is the set of

candidates for n-gram x and type t, and Ct is the set of candidates for type t. The
probability is higher when the fraction of candidates is smaller, which means that
rarer labels will have priority over common labels, resulting in better precision.

4 José Devezas and Sérgio Nunes

Finally, in the last step, we selected the n-gram with the highest probability,
keeping only the longest n-gram in case of term overlap between selected n-grams.
Each candidate could be directly categorized into entity, attribute or type. This
information was used to classify the query based on templates for these three
categories.

Our first attempt at retrieving matching candidates was directly based on the
Sesame triple store. This contained our knowledge graph and was the obvious
choice for an initial approach. As described in Section 3, we first experimented
with a knowledge base containing 546,760 statements or facts. While this approach
did not allow for sub-second query times, it resulted in a reasonable query time of
under 5 seconds. The SPARQL query we built returned four columns associated
with candidate entities: Label, URI, Class and Category. This was obtained
from the union of three sub-queries for entity, attribute and type individuals,
associating the value of the property rdfs:label, or equivalent, to the Label
column. These results were filtered using a case insensitive regular expression
that matched the n-grams generated from the search query.

As an alternative for better performance, we built a Lucene index based on
the triple store data, combining documents for entities, attributes and types. Each
document contained four fields: Label, URI, Class and Category. We iterated
through the same items returned by the SPARQL query described above, dropping,
however, the regular expression filter. This enabled us to create an index of query
parts, as supported by our knowledge base. We then queried this index in order
to return the results for each n-gram generated from the search query. We used
proximity search within n = 6 terms of distance (the same as the n-gram size)
and ensured that the query was parsed in order. For each query to the index, we
only returned the top-N results. Specifically we used N = 10, which is a low
value that results in high performance.

5 Evaluation

We compared the performance of both candidate retrieval strategies by measuring
overall search time over a set of synthetic test queries. We synthetically built
a query test set by combining terms from randomly selected individuals of the
ontology with terms from a Portuguese dictionary with over 400,000 words. Our
generation method required five parameters: the number of queries to generate,
the minimum and maximum number of terms associated with ontology individuals,
and the minimum and maximum number of keyword terms. For this evaluation
process, we generated 1,000 queries with the number of terms associated with
ontology individuals ranging from 3 to 8, and with a number of keyword terms
ranging from 0 to 2, resulting in queries with a minimum of 3 terms and a
maximum of 10 terms overall.

5.1 Comparing Query Analysis Time for the Retrieval Strategies

We did several runs based on the same set of synthetic queries. In particular, we
did one run based on the Sesame triple store strategy, that we directly compared

Index-based semantic tagging for efficient query interpretation 5

with a run based the Lucene index strategy for the top-N results. We picked
N = 10 since it provided a near-optimal speedup, also having a positive impact
on the quality of the results for a small set of manually tested queries.

Table 1: Statistics for the query analysis time of the Sesame triple store and the
Lucene index strategies, using N = 10 for the Lucene index.

Sesame triple store Lucene index

Avg. 7.435765s 0.048580s
Std. ±3.206806s ±0.019115s

Speedup 153.062268 (∼ 153× faster)
Mann-Whitney U Test p-value ≈ 0� 0.01

In Table 1, we show the mean query analysis time (Avg.) along with the
standard deviation (Std.), in seconds, for the 1,000 synthetically generated test
queries. These tests were ran on a laptop with a dual core Intel R© CoreTM i7-
5600U, 16 GB of RAM and a 256 GB solid-state drive. We calculated the speedup
of the Lucene index strategy over the Sesame triple store strategy, concluding that
it was about 153 times faster, for N = 10. Increasing the parameter N resulted
in lower, but still positive, speedup values, as will be shown in Section 5.2.

5.2 Influence of N over the Speedup

Sesame

N=1e+01

N=1e+02

N=1e+03

N=1e+04

N=1e+05

N=1e+06

0.1 1.0 10.0

Seconds

R
u
n
s

Strategy
Sesame
Lucene

(a) Run times for the Sesame and Lucene
strategies (log scale for the x-axis).

0

50

100

150

100 10,000 1,000,000

Top size N

S
p
ee
d
u
p

(b) Speedup for different values of N (log
scale for the x-axis).

Fig. 1: Efficiency evaluation of the overall search process. The same 1,000 synthetic
queries were used in each run.

Fig. 1a shows a run time comparison between the Sesame strategy (all
matching results) and various N values of the Lucene strategy (top-N results).

6 José Devezas and Sérgio Nunes

As we can see, the index-based strategy outperforms the triple store strategy even
when retrieving the top N = 1 million matching candidates. Fig. 1b illustrates
the evolution of the speedup for growing values of N . Higher values for the
parameter N were expected to result in a lower speedup. However, by analyzing
the progression of N , from 10 to 1 million, we found that the speedup actually
increased, from N = 10 to N = 20. This can be explained by the fact that
our testing routine continuously read from the same location in disk, to load
the index before running each set of queries, which resulted in better read
performance through system caching. However, as expected, for N > 20, the
speedup consistently decreased, nearly stabilizing at 4× faster.

6 Conclusions

We approached the problem of efficient query interpretation and understanding for
entity-oriented search. Based on our practical implementation of a semantic search
engine, we proposed a probabilistic methodology for segmenting and annotating
query parts with categories, in order to facilitate subsequent interpretation.

We proposed two different strategies for the efficient retrieval of matching
candidates from a knowledge base, one of them directly supported on a SPARQL
query over a Sesame triple store, and another one supported on a Lucene index
directly created from the statements in the knowledge base and built for the spe-
cific task of finding candidates that matched different query parts. We evaluated
both strategies regarding run time and showed that the index-based strategy
outperformed the direct querying of the triple store by a minimum speedup of 4,
when retrieving the top 1 million results, and a maximum speedup of over 100,
when retrieving a smaller number of results. Based on a synthetic test set of
variable length queries, we have shown, with a confidence of over 99%, that the
difference in run times between the two strategies was statistically significant.

References

1. Aggarwal, N., Buitelaar, P.: A system description of natural language query over
DBpedia. CEUR Workshop Proceedings 913(Ild), 96–99 (2012)

2. Bautin, M.: Entity Oriented Search. Tech. rep., State University of New York at
Stony Brook (2007)

3. Blanco, R., Ottaviano, G., Meij, E.: Fast and Space-Efficient Entity Linking for
Queries. Proceedings of the Eighth ACM International Conference on Web Search
and Data Mining - WSDM ’15 pp. 179–188 (2015)

4. Guo, J., Xu, G., Cheng, X., Li, H.: Named entity recognition in query. In: Proceedings
of the 32nd International ACM SIGIR Conference on Research and Development in
Information Retrieval (SIGIR 2009). pp. 267–274 (2009)

5. Liu, J., Pasupat, P., Wang, Y., Cyphers, S., Glass, J.: Query Understanding Enhanced
By Hierarchical Parsing Structures. In: IEEE Workshop on Automatic Speech
Recognition and Understanding (ASRU 2013). pp. 72–77 (2013)

6. Pound, J., Mika, P., Zaragoza, H.: Ad-hoc object retrieval in the web of data. In:
Proceedings of the 19th international conference on World wide web WWW 10. p.
771 (2010)

	Index-based semantic taggingfor efficient query interpretation
	Introduction
	Reference Work
	Data Characterization
	Semantic Tagging in Queries
	Evaluation
	Comparing Query Analysis Time for the Retrieval Strategies
	Influence of N over the Speedup

	Conclusions

