Using Iterative Deepening for
Probabilistic Logic Inference

Theofrastos Mantadelis and Ricardo Rocha

CRACS & INESC TEC & Faculty of Sciences, University of Porto
Rua do Campo Alegre, 1021, 4169-007 Porto, Portugal
{theo.mantadelis;ricroc}@dcc.fc.up.pt

Abstract. We present a novel approach that uses an iterative deepening
algorithm in order to perform probabilistic logic inference for ProbLog,
a probabilistic extension of Prolog. The most used inference method for
ProbLog is exact inference combined with tabling. Tabled exact infer-
ence first collects a set of SLG derivations which contain the probabilis-
tic structure of the ProbLog program including the cycles. At a second
step, inference requires handling these cycles in order to create a non-
cyclic Boolean representation of the probabilistic information. Finally,
the Boolean representation is compiled to a data structure where infer-
ence can be performed in linear time. Previous work has illustrated that
there are two limiting factors for ProbLog’s exact inference. The first
factor is the target compilation language and the second factor is the
handling of the cycles. In this paper, we address the second factor by
presenting an iterative deepening algorithm which handles cycles and
produces solutions to problems that previously ProbLog was not able
to solve. Our experimental results show that our iterative deepening ap-
proach gets approximate bounded values in almost all cases and in most
cases we are able to get the exact result for the same or one lower scaling
factor.

Keywords: Probabilistic Logic Programming, Inference Engine, Cycle Han-
dling, Iterative Deepening, ProbLog.

1 Introduction

ProbLog [8] is a probabilistic framework that extends Prolog with probabilistic
facts. ProbLog’s most fundamental task is the efficient computation of a query’s
success probability and, for that, ProbLog employs several inference methods
and uses several different state-of-the-art technologies. The most used inference
method for ProbLog is exact inference. ProbLog is also able to compute con-
ditional probabilities, solve multiple queries and compute the probabilities of
answers. State-of-the-art Probabilistic Logic Programming (PLP) systems, such
as ProbLog, often use a three step inference mechanism: (i) SLD/SLG logic
resolution; (ii) Boolean formula preprocessing; and (iii) knowledge compilation.



Inference in PLP systems impose several challenges which still have not been
fully addressed. Currently, an important limitation is the efficiency of knowledge
compilation of highly connected graphs. At the Boolean formula preprocessing
step, big cyclic graph based problems are also almost intractable. Motivated by
the need of providing a solution for these problems, several approximation meth-
ods have been proposed. One of the most prominent and used for ProbLog is pro-
gram sampling [8]. Program sampling is able to compute a result for many queries
that would be intractable for exact inference, but program sampling is usually
much more time consuming than exact inference when the problem is tractable,
making it often an unusable inference method. Initial work in ProbLog []], pro-
posed an approach based in the k-best derivations. This approach works for the
calculation of lower bound probabilities with a small k. The early stopped deriva-
tions which are used to compute the upper bound probability become intractable
even for a small k. The scaling of k-best derivations approach was proven in most
cases worst than tabled exact inference, thus making it unusable.

SKILL [4], a Stochastic Inductive Logic Learner which produces First Or-
der Logic theories from probabilistic annotated data, uses MetaProbLogﬂ as
its inference engine to analyse the probabilistic data. In particular, SKILL uses
MetaProbLog’s exact inference to compute the success probability of induced
theories. When exact inference for a theory is intractable, SKILL then computes
the probability of that theory by using MetaProbLog’s program sampling infer-
ence. Whenever SKILL resolves to program sampling, the time overhead is signif-
icant. Motivated by the above observations and SkILL’s usage of MetaProbLog,
we have identified the need to be able to compute an approximation for in-
tractable queries in speeds comparable to exact inference.

To address the mentioned problems, we propose a new inference method
based on iterative deepening search. The underlying idea is to perform the
Boolean formula preprocessing step in a bounded fashion producing two Boolean
formulae: one more specific and one more general than the exact Boolean for-
mula. Afterwards, we compute the probability of the two bounded formulae as
lower and upper bounded probabilities. Finally, after completing an iteration,
we can increase the bound and compute the next iteration until we either reach
an exact probability, a desirable bound interval, a maximum bound, or time
out. Our approach thus incrementally computes the Boolean formula prepro-
cessing step and as a result generates and compiles subformulae that incremen-
tally grow/shrink towards the exact formula creating a lower/upper probability
bound, respectively. In this way, we are able to compute good approximations
in a very fast way even for the hardest problems.

The main contributions of this paper are:

1. The application of iterative deepening to handle cycles in probabilistic logic
programs in order to compute lower and upper bounds.

! MetaProbLog is an implementation of the ProbLog semantics and can be found
at: www.dcc.fc.up.pt/metaproblog. Other implementations are ProbLogl and
ProbLog2 and can be found at: |dtai.cs.kuleuven.be/problogl
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2. The full integration and compatibility of the new algorithm with all existing
optimizations and system features in MetaProbLog, such as: variable com-
paction [I2], general (stratified) negation, multiple queries and evidence.

3. An experimental evaluation of iterative deepening using three key datasets
against exact inference and program sampling inference. The iterative deep-
ening algorithm clearly over performed the other inference methods in two
datasets and equally performed with exact inference at the third dataset.

The rest of the paper is structured as follows. First, we briefly introduce
ProbLog and the distribution semantics in Section We then present AND-
OR graphs, which are a fundamental step for our method, in Section The
detailed description of our algorithm is given in Section [3] Section [4] contains the
experimental evaluation. Finally, future work and conclusions are presented in
Section

2 ProbLog

We start by giving a brief introduction to ProbLog which follows the distribu-
tion semantics [16], and by defining the success probability of logic programs.
Then, we describe the exact inference method and how the collective proofs are
represented as AND-OR graphs.

2.1 ProbLog and the Distribution Semantics

ProbLog programs use the syntax of Prolog and extend it with probabilistic
facts [8]. A ProbLog program T consists of a set of facts annotated with prob-
abilities p; :: pf; (called probabilistic facts) together with a set of standard
definite clauses or definite clauses that also contain positive and/or negative
probabilistic facts in their body h : —by,...,b, (called background knowledge
(BK)). A probabilistic fact pf, is true with probability p;. These facts corre-
spond to random variables, which are assumed to be mutually independent. We
define Ly = {p1 == pfy,...,pn = pf,} as the set of all probabilistic facts in a
ProbLog program. Formally, a ProbLog program is of the form T'= Ly U BK.
Finally, as syntactic sugar, ProbLog implementations allow probabilistic heads
to definite clauses.

We define as possible world L = Liyye UL farse and Liyye N Lfaise = (0, where
Lrye and Lygqise are the sets containing all probabilistic facts of the ProbLog
program 7" that are set to true and false, respectively. It is clear that a ProbLog
program 7' has a number of possible worlds exponential to the number of prob-
abilistic facts (2 where N is the number of probabilistic facts).

The probability of a possible world (Pyoria) equals to the product of the
probability of all probabilistic facts in Ly, and 1 - probability of all probabilistic
facts in Lyqse, i€,

Pworld = H Di - H (1 _pj)?

Pipfi€Ltrue pjiPfi €L faise



where Lyyye U Lgise = Lt and Lypye N Lygise = 0. The sum of the probabilities
of all possible worlds equals to:

Z P, = 1.0.

w;eWorlds

The most fundamental task of ProbLog is to calculate the success prob-
ability of a query. In ProbLog, inquiring the success probability of a query
means asking for the probability that a randomly selected possible world sat-
isfies that query. Such worlds contain the probabilistic facts needed to satisfy
the query, but can also contain more probabilistic facts. The success probabil-
ity Ps(q|T) of a query ¢ is the summation of the probabilities of all possible
worlds for which there exists a substitution € such that ¢f is entailed by T,
e, Ps(qIT) = > u cwortas P(alwi) - Pu,, where P(qlw;) = 1.0 if there exists
a substitution ¢ such that w; U BK = ¢f and P(q|w;) = 0.0 otherwise. The
equation states that we are able to calculate the success probability of a query
by summing the probabilities of all worlds that satisfy the query.

The naive approach of enumerating all possible worlds and then summing the
ones that satisfy the query quickly becomes computationally intractable. For that
reason ProbLog uses different strategies to calculate the success probability of a
query. The most used inference method of ProbLog is the exact inference method
with general (stratified) negation and tabling support. ProbLog complies to the
closed world assumption and for that reason the ProbLog’s general negation
mechanism is limited to stratified programs [I0]. Exact inference is a three step
inference approach:

1. SLG resolution is used to prove the query and collect the proofs that
compactly represent the possible worlds where the query succeeds. For the
purpose of this paper, we will use SLG resolution for ProbLog programs as
presented in [10].

2. Boolean formula preprocessing takes the compact representation of the
possible worlds in order to perform cycle handling [I0] and optimize it as a
Boolean formula [11].

3. Knowledge compilation is used to compile the collected Boolean formula
to Reduced Ordered Binary Decision Diagrams (ROBDDs) [I], or to smooth
decomposable Deterministic Negated Normal Form (sd-DNNF) [7], or to
Sentient Decision Diagrams (SDDs) [6].

2.2 AND-OR Graphs

We represent the collected proofs as an AND-OR graph. An AND-OR graph
is a directed graph composed by AND and OR nodes. An AND node indicates
that all child nodes must be true, while an OR node indicates that at least one
of the child nodes must be true. The SLG derivations of a query ¢ with respect
to a logic program can be represented as an AND-OR graph. To solve a query
g, the different clauses (¢ie1..m @ —li1,-.;lin.) of the predicate ¢ are processed
as follows. For each different clause c; all literals /; ; in the body are grouped as



children of an AND node. The different AND nodes are then grouped as children
of an OR node labeled with gq.

An AND-OR graph of a query has the following characteristics: (i) cycles
that appear in the logic program also appear in the AND-OR graph; (ii) for
each subgoal g there is only one OR node; (iii) an OR~node has multiple parents
if the subgoal is repeated and goals proven as facts are represented by special
OR nodes without children, called terminal nodes; and (iv) the edge from a child
node to a parent node states that the parent depends on the child node.

Formally, an AND-OR graph for a query ¢ is a directed graph G = (Vand, Vor,
Vierm, E) with Vg4 a set of AND nodes, V. a set of labeled OR nodes, Vierm C
Vor a set of terminal nodes, Vyonterm = Vor \ Vierm and E C R a set of directed
edges, where R = (Vana X Vor) U Vaonterm X Vand) U (Vanonterm X Vor) and the
OR node with label ¢ as root.

In order to compile the collected proofs, ProbLog must first process the
AND-OR graph and produce a Boolean formula that does not contain cyclic
references but, often, converting a cyclic AND-OR graph to a non cyclic one
is a hard task [I0]. Furthermore, compiling an AND-OR graph to any of the
knowledge compilation approaches has complexity exponential to the tree width
of the AND-OR graph [7]. In this paper, we propose a new method to iteratively
compute the Boolean formula to two Boolean formulae, one more specific and
one more general. In that way, we are able to compute lower and upper bounds
with lower complexity than computing the exact probability.

Figure [T] presents the probabilistic graph for the following ProbLog program,
which will be used as our running example.

0.5::e(a,b). 0.4::e(a,c). 0.6::e(a,f).
0.2::e(b,a). 0.8::e(b,c). 0.7::e(b,f).
0.9::e(c,a). 0.1::e(c,b). 0.3::e(c,f).

pX, V) - e(X, V).
p(X, Y) = e(Xs Z), Z \= Y’ P(Z, Y)-

In order to prove the query p(a, f), SLG resolution collects the AND-OR
graph presented in Fig. 2] The query defines the entry point of the AND-OR
graph which we annotate by shading the node gray. With rhombus we annotate
the AND nodes; with ellipses we annotate the OR nodes (notice that all OR
nodes are labeled with a logical goal); and with rectangles we annotate the
leaf nodes which are the probabilistic facts. The AND-OR graph represents not
only the relevant information used to proven the query by SLG resolution but
also any cycle found in the proving. For example, observe that the OR nodes
{p(a, f); p(b, f); p(c, f)} all have paths (by following the directed edges) through
AND nodes that would return to the initial OR node, thus creating the cycles.

When computing the exact probability of query g, one requires to handle the
cycles that are introduced in the AND-OR graph. ProbLog uses the algorithm
presented at [10], which treats positive cycles [3] as failures. The algorithm is
implicitly transforming the AND-OR graph to a larger one (in the worst case



{e(c, a); 0.9}

Fig. 2: The AND-OR graph collected by SLG resolution for query p(a, f) for the
probabilistic graph of Fig. [I}

exponentially larger). Figure [3| presents the transformed graph where the cycles
have been fully handled; we annotate the detected cycles with double octagons.
The reader can notice that some nodes, such as {p(b, f); p(c, f)}, appear in dif-
ferent paths and that others, such as {p(a, f) = cycle,p(b, f) = cycle}, are
characterized as cycles when they appear twice in the same path. The cycle
handling algorithm, uses a set of logical rules and memoization that permits
the re-usage of computations. This re-usage allows a significant reduction of the
work and size of the expansion. Still, the cycle handling remains an exponentially
hard task and often generates a very large AND-OR graph where the knowledge
compilation step often fails.

3 Iterative Deepening Cycle Handling

The proposed approach does not modify at all the first step (SLG resolution); it
introduces a new cycle handling algorithm at the second step (Boolean formula
preprocessing) which is fully compatible with all existing optimizations; and it
modifies the third step by calling it multiple times in order to compute the
probabilities of different bounds.

The underlying idea of our approach is similar to the iterative deepening
depth first search (DFS) algorithm but, instead of searching for a specific node,
we are interested in traversing the whole graph structure (or as much of it as
possible) and transform it to a cyclic free graph.

Algorithm [T presents the generalized AND-OR graph to ROBDD definitions
approach with iterative deepening modifications, which includes the relevant
parts of the original cycle handling algorithm together with the extensions re-
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Fig. 3: The cyclic free AND-OR graph that ProbLog produces before ROBDD

compilation.

quired to implement an iterative deepening strategy. Optimizations and the han-
dling for general negation has been omitted for simplification. The extensions
are noted as underlined text. Our inference method calls Alg. [T]for a user-defined
number of iterations and, at each iteration, the bound is increased by a user-
defined step.

Algorithm [1| recursively traverses the AND-OR graph structure calling at
each recursion level the auxiliary procedure PREPROCESSING _METHOD() (line
2 in Alg. [1)), which is responsible of handling an AND-OR, graph that contains
a single OR node. ProbLog supports several different preprocessing methods.
In this work, we used the Recursive Node Merging preprocessing method [IT].
The preprocessing procedure is responsible for writing the AND-OR graph as a
depth breadth trie. MetaProbLog uses depth breadth tries in order to perform
optimizations on the writing of Boolean formulae. For the purposes of this paper,
the reader can assume that a depth breadth trie is a simple representation of
the Boolean formula. For more details on the preprocessing methods we direct
the reader to [II]. We note that these optimizations are independent from this
work but our implementation is fully compatible and fully supports them.

Whenever an AND-OR subgraph Tesieq is found, the algorithm needs to
choose the appropriate of four different conditions. First, the algorithm verifies
if Thestea introduces a positive cycle [3] and handles it as a failure [I0] (lines
5-6 in Alg. . The second condition occurs when the T},csteq has been processed
earlier and the results can be reused (lines 7-10 in Alg. . If neither the first nor
second condition apply, the algorithm checks whether T;,csteq Was encountered
within the introduced bound of the iteration. If Tj,csteq 1S within the bound
(lines 11-15 in Alg. , then the algorithm will recursively try to compute the
newly found reference. Otherwise, if it is out of the bound (lines 16-20 in Alg. ,
then the algorithm will assume either false or true depending on whether it is a
lower or upper iteration. After replacing the AND-OR subgraph, the algorithm



Algorithm 1 The generalized AND-OR graph to ROBDD definitions approach

with iterative deepening

input The AND-OR graph T, the depth breadth trie DBT where the gener-
ated ROBDD definitions are stored, the ancestor AND-OR graphs Ar of
the AND-OR graph 7', the reference Lycgin to the next free ROBDD defini-
tion, the current depth (Depth) in the AND-OR graph, the available bound
(Bound) of this iteration and a Boolean starting value for Assumed.

output Updates DBT to contain the ROBDD definitions generated for 7" and
returns the representative reference L, and the Boolean variable Assumed
that indicates whether an assumption was taken.

call as (Lend7 Assumed) = PROCESSAND_OR(T, DBT, @, Lbegina 1, Bound,

false).

1: function PROCESSAnD-or(T, DBT, Ar, Lpegin, Depth, DBound,
Assumed)

2: (Lend; Thested) := PREPROCESSING _ METHOD(T', DBT', Liegin)
3 if Thestea # null then {T contains a sub AND-OR graph Tpested}
4: AT, epreq = AT U {T}
5: if Thested € AT, .,., then {Tcsteq introduces a cycle}
6: Replace the occurrence of Tj,csreq in AND-OR graph T with false.
7: else if IS MEMOIZED (T ested, AT, ,.p0q, Bound — Depth) then
8: (L1, ,0u, Assumedr,,,,.,) = GET_MEMOIZED _RESULT(Tyested,
Ar.,....., Bound — Depth)
9: Replace the occurrence of Th,esteq in AND-OR graph T' with Lr_,.,-
10: Assumed := Assumed U Assumedr,,_,.,
11: else if Depth < Bound then {T,csteq s not a cycle, neither is memo-
ized and current depth is still in bound}
12: (LTnesmd, AssumedTnemd) = PROCESSAND-OR(Tnested7 DBT,
AT,..reas Lena+1, Depth+1, Bound, Assumed)
13: Replace the occurrence of Thesteq in AND-OR graph T with L, _,_,.
14: Leng = L1, .04
15: Assumed := Assumed U Assumedr,,,.,
16: else { Current depth is out of bound}
17: Assume L, , is false for lower inference and true of upper inference
18: Replace the occurrence of Thesteq in AND-OR graph T with Ly, _,.,.
19: Leng = LTnested
20: Assumed := true
21: return PROCESSanp.or(T, DBT, Ar, Lena+1l, Depth+1, Bound,
Assumed)
22:  else {T is fully processed}
23: MEMOIZE(T, Ay, Bound — Depth, Lepng, Assumed)

24: return (L4, Assumed)




continues recursively by increasing by one the used depth (line 21 in Alg. .
Finally, when an AND-OR graph is fully processed (contains a single node), the
result is memoized for reuse and the result is returned (lines 22-24 in Alg. .

For cyclic handling, we use a memoization technique that compares the sub-
sets of the ancestors of AND-OR graphs [I0]. This technique allows us to discover
cycles and to widen our re-usage compared with the normal DFS strategy. When
the algorithm memorizes a computed AND-OR graph, it keeps track of the an-
cestors in list Ar (called the ancestor list) of the AND-OR graph in order to
identify the possibly introduced cycles. With iterative deepening, the algorithm
also requires to memoize the number of recursions remaining (Bound — Depth)
and whether an assumption was taken (Assumed) for computing the AND-OR
graph (line 23 in Alg. . When the algorithm checks whether a memoized re-
sult can be reused, in addition of checking the ancestor list, it also needs to
check whether the number of used recursions of the stored AND-OR graph is
equal or greater than the currently remaining recursions. In case the memo-
rized recursions are less than the currently remaining recursions, it means that
the memorized AND-OR graph reference contains less probabilistic information
than what the current iteration is able to compute and thus the memorized re-
sult is not reused. This way we can allow iterations with different bounds to use
previously computed results.

For example, assume that the AND-OR graph ¢(1) with the ancestor list
Ay1) at the lower iteration with Bound = 5 in the recursion with Depth = 3
has been computed as the ROBBD defintion L) with no assumptions. The
algorithm then memoizes the term: and — or_graph(t(1), Ayy,2, Ly, false)
and can reuse this computations of ¢(1) in any lower iteration with ancestor list
A;‘(‘fﬁ’ as long Bound — Depth < 2 and At(l) - Azl(ef)“

When the current depth equals the bound of the current iteration, any oc-
currence of a sub graph is assumed to be false for lower bounded iterations and
true for upper bounded iterations. In this way, we lose probabilistic information
but we ensure that the probability will be a lower/upper bound of the exact
probability. This simple strategy gives us lower and upper bounds for AND-OR
graphs that do not contain general negation. By memorizing and returning for
each AND-OR subgraph whether an assumption was taken to compute the re-
sult, we know if the stored result of the AND-OR graph is the equivalent of the
exact result for that AND-OR graph. This allows us to detect when we computed
an iteration that provides an equivalent to exact Boolean formulae regardless the
actual probability results.

Returning to our example, we illustrate how the AND-OR graph of Fig.
would appear for the first two iterations of our iterative deepening algorithm.
The first iteration would produce the AND-OR graph presented in Fig. [f]and the
second iteration would produce the AND-OR graph presented in Fig. [5] For this
specific example, on the third iteration, the computed AND-OR graph would
be identical with the AND-OR graph computed by the exact method, which is
presented in Fig. |3l With octagons we annotated the nodes that the iterative
deepening approach assumed true or false.
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Fig.4: AND-OR graph after one iteration of the iterative deepening algorithm.

{e(a, £ 0.6) {e(a, ©); 0.4} ‘

{e(c, £); 0.3} {e(c, a); 0.9}

Fig.5: AND-OR graph after two iterations of the iterative deepening algorithm.

After each iteration of the iterative deepening algorithm, ProbLog compiles
the computed Boolean formulae using a knowledge compilation approach in order
to efficiently compute the probability. For our implementation and description,
we used ROBDDs.

Finally, this algorithm is executed iteratively with the user being able to
choose: (i) the starting bound; (ii) the step; and (iii) several ending conditions,
such as, specific bound, lower to upper probability difference being less than a
value, or reach a time limit. The algorithm also automatically terminates if it
detects the computation of the exact probability.

Implementation-wise, we have introduced three different inference methods
that the user can use, namely: lower iterative; upper iterative; and bounded iter-
ative (the combination of the two). These new methods are compatible with all
features and optimization techniques that exact inference uses.

3.1 General Negation & Conditional Probability

ProbLog programs with general negation impose a complication to the iterative
algorithm assumption taking. Whenever the algorithm takes an assumption, the
number of enclosing negations of the assumed subgraph define whether the as-
sumption should be false or true. If the enclosed graph is an odd number of
times enclosed then we must assume true for lower bound and false for upper



bound. In order to handle the above complication, the moment we encounter
a general negation, we need to push it deeper in the computation by using De
Morgan’s laws, i.e., in practice we are transforming the next AND-OR subgraph.
This mechanism causes a small overhead when general negation is encountered.

ProbLog queries that have evidence impose the interesting theoretical ques-
tion whether the results are bounded. In ProbLog, we define the probabil-

ity of a query ¢ with evidence e as P(qle) = Pl(f(:)e ). Our iterative method

computes lower and upper bounds, P;(qle) = P}(i:)e ) Pu.(qle) = P};(q(:)e ) re-

spectively. We would like to prove that Pi(gle) < P(qle) < P,(¢le). Unfor-
tunately, we can prove the opposite by using set theory. Assume two sets @,
E such that (i) at lower iteration 4, Q; = Q and () # E; C F and that (ii)
Q:NE; = QN E then clearly P(Q;NE;) = P(QNE) and P,(E;) < P(E) result-
ing in P(Qi|E;) > P(Q|E). For example, if Q@ = Q; = {pfl Upf2Upf3},
E = {pflu (pf2npfa)} and E; = {pfl U (pf2n false)} = {pf1} then
PUQIE:) = s =1 > P(QIE) = prpmoidstirryy. Similarly one can
miss proof P,(gle) > P(qle).

Thus, the proposed algorithm does not compute lower and upper bounded
probabilities for queries with evidence. Our solution to this problem is to swap
the divisors of the lower and upper iterations and compute the probabilities

as follows: P;(qle) = IEE"ZS) and P,(gle) = min(P;;l((q!)e),l). Clearly, as P,(e) >
P(e), Pi(gne) < P(gNe) then Pj;f?((;f) < Pl(gq(z)e) (similarly for the upper bound).

4 Experimental Results

For the purpose of this paper, we have implemented the proposed algorithm in
MetaProbLog. MetaProbLog is an efficient implementation of ProbLog that is
closely integrated with Yap Prolog [5] and is used in SKILL [4]. MetaProbLog
supports both ROBDDs and sd-DNNFs as a knowledge compilation language.
Previous experimental evaluations have shown that ROBDDs are able to solve
more problems than sd-DNNFs in the context of MetaProbLog and sd-DNNFs
only perform better in conditional queries [I2JI7]. For that reason, in our exper-
iments we use ROBDDs.

We have experimented with 3 benchmark sets, namely Alzheimer, Smokers
and Grid, which have been previously used for testing the performance of differ-
ent ProbLog implementations. The Alzheimer benchmark set [§] was generated
from a real-world biological dataset of Alzheimer genes. Due to the complexity
and importance of this dataset, it has been established as the most used testing
ground for ProbLog. We used three different queries (Q1, Q2, Q3) and their
reversed instances (Q1, Q2, @ In order to see the scaling of the inference
methods based on the size of the graph, we increased the number of edges by

2 Q1 = p(hgnc_983,hgnc_ 620), @ = p(hgnc_620,hgnc_983),
Q2 = p(hgnc_582,hgnc_620), @2 = p(hgnc_620,hgnc_582),
Q3 = p(hgnc_ 983 hgnc_582) and Q3 = p(hgnc_582,hgnc_ 983).



300 in each scale step starting from 1500 edges until 6000 edges (16 scale steps
in total). The Smokers benchmark set [I4] was introduced for testing multi-
ple queries and queries with evidence. The scale parameter for Smokers is the
number of persons in the social network, currently our dataset has up to 51 peo-
ple. The Grid benchmark set [I7] was constructed as a worst case scenario for
ProbLogl and MetaProbLog inference and is a fully connected grid that always
contains the probabilistic information at the deepest step and, as such, it is the
worst case scenario for our iterative algorithm.

The environment for our experiments was a Supermicro AS-2042G-72RF4
server with four AMD Opteron(tm) Processor 6376 (16 cores each, 64 cores in
total) and 256GB of RAM memory. The benchmarks where executed concur-
rently and each had a total of one hour for time out.

The foremost target of our approach is to enable us to compute an approx-
imation in queries where exact inference is unable to compute any result. Fur-
thermore, we would like our iterative inference method to be able to compute
the exact inference and detect its computation when that is possible. Further
than simply comparing our approach with the usual exact inference, we also used
variable compaction for the Alzheimer dataset as presented in [I2]. We noticed
that variable compaction permitted us to compute more upper bounded queries
and that, in general, variable compaction improved the performance (decreased
the runtime) of the iterative inference method.

Table [I] presents the scaling results of our approach compared with exact
inference. The queries Q1 to Q3 are sorted from easier to hardest. One can
notice that, for Alzheimer queries, exact inference usually times out at after
3000 edges. The presented iterative approach almost always computes results
for all Alzheimer queries and in most cases computes the exact result for at
least one scaling factor lower than what exact inference would compute. From
a theoretical point of view, we were expecting iterative deepening to be able to
compute the N — 1 iteration of all benchmarks that exact inference was able to
return the result. Theoretically, the complexity of computing iterations from 1
to N — 1 is equal to O(N) for iterative deepening strategies. Finally, we notice
that computing upper bounded Boolean formulae is a significantly harder task
than computing lower bounded Boolean formulae and some times even harder
than computing exact Boolean formulae.

Regarding the Smokers datasets, we see similar behavior as with the Alzheimer
dataset. The exact inference stops at queries with up to 40 people while our it-
erative deepening approach computed results for all our queries. Finally, for the
Grid dataset our approach behaved as we expected. Our iterative deepening ap-
proach is able to compute the same queries as with exact inference. This was
expected as the Grid problems push the probabilistic information very deep in
the iterations and always time out on the knowledge compilation step. The re-
sults for the program sampling inference method show that it underperforms in
the Alzheimer dataset problems, but it is ideal to solve problems like the ones
introduced by the Grid dataset, where it easily solves the 15x15 graph.



Dataset / Exact |Program Lower Iterative Upper Iterative
Query no comp|Sampling no comp no comp
Alzheimer Q1|6000 6000 6000 {6000 (6000) 6000 (6000)|6000 (6000) 6000 (6000)
Alzheimer Q1|5100 3900 3300 |6000 (3300) 6000 (3300)|2700 (2700) 3900 (2700)
Alzheimer Q2(3000 3300 6000  [6000 (3000) 6000 (2700)|6000 (3000) 6000 (3000)
Alzheimer Q2|3000 3300 2100  [6000 (2400) 6000 (2400)|2400 (2400) 3900 (2700)
Alzheimer Q3[3000 3000 2700|6000 (2400) 6000 (2400)|6000 (2400) 6000 (2400)
Alzheimer @3|2400 2400 3900 5700 (2100) 6000 (2100) 6000 (2100) 6000 (2100)
Smokers 40 - 51 (40) - 1 (40) -
Grid <7 - 15x15 7x7 (7x7) - 7X7 (7x7) -

Table 1: Highest scaling results for exact, program sampling, lower iterative,
and upper iterative inference methods over the three datasets (columns no).
For the Alzheimer dataset, we also present the results with variable compaction
(columns comp). In parenthesis, we present the highest scaling factor at which
the iterative inference detected that it has computed the exact probability.

The second question we want to answer is how good is our approximations.
Theoretically, it is difficult to answer this question, as we do not have a way to
compute the amount of probabilistic information the next iterations would add.
Practically, for most queries, we are able to compute both an upper and lower
bound giving an indication of how good our approximation is. We use the same
notion of precision as used in [I8], but we also distinguish the queries where we
are able to compute the exact probability. Table [2| shows the results.

Alzheimer |Smokers

Precision no comp |[no

Exact (< 0.00001) 40 (49) 41 (+9)[304
Almost Exact ([0.00001,0.01)) 0 2 22

Tight Bounds ([0.01,0.25)) 29 26 27

Loose Bounds (>= 0.25) 27 (-9) 27 (-9) |4

# Queries Solved by Iterative Deepening|96 96 357

# Queries Solved by Exact Inference 48 46 305

# Queries Solved by Program Sampling |55 - -

Table 2: Precision results of computed bounds by iterative deepening inference
(columns no). For the Alzheimer dataset, we also present the results with vari-
able compaction (column comp). In brackets are the results where exact prob-
ability is computed but is not detected. For program sampling we count the
number of programs that reached a 95% confidence to be within a 0.01 interval.

For the Alzheimer dataset, we can see that there is a beneficial impact from
enabling variable compaction. The impact comes from improved results in the
upper bound computations. We also want to note that sometimes, even if the
computed upper bounds are high, the computed lower bound probabilities are
the exact probability but our system could not detect that (in brackets we present
how the results would be affected if we could identify those cases).



In this regard, the Alzheimer Q1 imposes an interesting problem for discus-
sion. For that specific query, exact inference managed to compute the probability
for graphs with up to 5100 edges. Our iterative deepening approach is able to
compute the exact probability (as a lower bound) of that query for graphs with
any number of edges in a identical execution time, but it fails to compute up-
per bound probabilities and it is also unable to automatically detect that the
exact probability has been computed. The underlying reason for the complexity
of this specific query is that it contains a complex graph that always leads to
cycles but do not contributes to the query. The iterative deepening approach
for the lower bound is able to drop this graph but is unable to detect that it is
actually computing the exact probability. On the other hand, the upper bound
computation is assuming that the complex graph contributes to the probability
mass and always returns a probability of 1.0.

5 Related Work

Lately, there has been a growing interest in combining probabilistic information
with logic expressions, giving rise to different PLP systems, such as PRISM [16],
IBAL [I3], Alchemy [14], ProbLog [8] and PITA [I5], among others. These sys-
tems use both exact and approximate inference methods in order to compute
the marginal or/and conditional probabilities.

A similar inference method with our proposal is mentioned in [2]. Their
iterative method is not described in detail and the authors only mention that it
underperforms exact inference. By examining the provided source code, we have
derived that their iterative method is used to generate growing subformulae that
are given for knowledge compilation, i.e., their system handles the cycles before,
at the logic part, assuming that the probabilistic derivations do not contain
any cyclic information. Thus, their method does not generate a cyclic structure
when representing the Boolean formulae like is in our proposal. As they conclude,
exact inference or a k-best approximation is more appropriate in their setting
(lack of cycles). Another similar approach is the anytime (approzimate) inference
method [I8]. The main difference to our approach is that anytime inference fully
constructs a CNF formula by executing the exact Boolean formula preprocessing
step once and, then, performs incrementally the knowledge compilation step to
a set of chosen subformulae. Theoretically, iterative deepening inference and
anytime inference could be combined in order to improve the results of each
other. Iterative deepening could be used in the Boolean formula preprocessing
step and anytime inference in the knowledge compilation step and, in that way,
the two approaches could be seen as the complement of each other. Finally [I3]
mentions the use of an iterative deepening algorithm in order to provide anytime
inference for IBAL but the details of the algorithm are omitted from the paper.



6 Conclusions & Future Work

We have introduced a new approximate inference method for probabilistic logic
programs based on a iterative deepening algorithm that, at each iteration, com-
putes lower and upper bounds. Our algorithm is able to detect when an itera-
tion would compute the exact probability either because the bounds converge
or because the iteration examines the complete AND-OR graph. The proposed
inference method can be used for any logic based system that collects SLG-
derivations and needs to extract a cycle free Boolean formula from the deriva-
tions. This includes the PLP systems ProbLogl, ProbLog2, MetaProbLog, PITA
and a version of PRISM that uses MTBBDs. Furthermore, some ASP systems
use similar technology to handle Non-tight programs [9].

We also discuss how the new inference method is able to handle condi-
tional queries and queries with general negation. Furthermore, our new inference
method is compatible with all optimizations that the current system supports
and, specifically, when it is combined with variable compaction, it is able to
compute deeper iterations that enables us to get better bounds. The current
implementation in MetaProbLog provides three new inference methods, namely:
problog_lower_iterative/2, problog_upper_iterative/2 and the combina-
tion of the two problog_bounded_iterative/2.

We performed a set of experiments on important applications of ProbLog
that cover a wide range of different problems and we showed how our method
enables us to solve queries that for exact inference were intractable. With the
Alzheimer dataset, we presented the beneficial impact of variable compaction
for our method. We used the Smokers dataset in order to compare our method
against exact inference in the tasks of conditional and multiple queries. Our
method clearly outperforms the exact inference being able to return results for
all queries tests and returning the exact result for all but one query that ex-
act inference could compute. Finally, we used the Grid dataset as a worst case
scenario problem for our approach. Using Grid, we showed that in a worst case
scenario our method performs similarly with exact inference, as expected.

For future work, we will extend the algorithm to use multi-threading in order
to perform multiple knowledge compilations at the same time; investigate how
to theoretically tighten the bounds of conditional queries; and take advantage of
previous iterations compiled ROBDDs for incremental compilation. The devel-
opment of this inference method was motivated by the SKILL system [4] and, as
such, we intent to integrate the new method in SKILL. Finally, we are studying
the combination of our approximate method with T» —Compilation [18] in order
to boost even further the knowledge compilation step.
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