
Received July 7, 2020, accepted July 26, 2020, date of publication July 31, 2020, date of current version August 13, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3013328

The ProcessPAIR Method for Automated
Software Process Performance Analysis
MUSHTAQ RAZA 1,2 AND JOÃO PASCOAL FARIA1,3, (Member, IEEE)
1Institute for Systems and Computer Engineering, Technology and Science (INESC TEC), 4200-465 Porto, Portugal
2Department of Computer Science, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
3Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal

Corresponding author: Mushtaq Raza (mushtaq.raza@fe.up.pt)

This work was supported in part by the European Regional Development Fund (ERDF) through the Operational Programme for
Competitiveness and Internationalization COMPETE 2020 Programme under Project POCI-01-0145-FEDER-006961, and in part by the
National Funds through the Portuguese funding agency, FCT - Fundação para a Ciência e a Tecnologia within project UIDB/50014/2020
and Project SFRH/BD/85174/2012.

ABSTRACT High-maturity software development processes and development environments with automated
data collection can generate significant amounts of data that can be periodically analyzed to identify
performance problems, determine their root causes, and devise improvement actions. However, conducting
the analysis manually is challenging because of the potentially large amount of data to analyze, the effort
and expertise required, and the lack of benchmarks for comparison. In this article, we present ProcessPAIR,
a novel method with tool support designed to help developers analyze their performance data with higher
quality and less effort. Based on performance models structured manually by process experts and calibrated
automatically from the performance data of many process users, it automatically identifies and ranks
performance problems and potential root causes of individual subjects, so that subsequent manual analysis
for the identification of deeper causes and improvement actions can be appropriately focused. We also show
how ProcessPAIR was successfully instantiated and used in software engineering education and training,
helping students analyze their performance data with higher satisfaction (by 25%), better quality of analysis
outcomes (by 7%), and lower effort (by 4%), as compared to a traditional approach (with reduced tool
support).

INDEX TERMS Process improvement, performance analysis, performance model, software process.

I. INTRODUCTION
According to Boehm [1], the top two software engineering
challenges are the increasing emphasis on rapid development
and adaptability, and the increasing software criticality and
need for assurance. The need to ensure the quality of soft-
ware products in a cost-effective way drives companies and
organizations to seek to improve their software development
process, as it is becoming more and more accepted in indus-
trial production in general and in the software industry in
particular that the quality of the process directly affects the
quality of the product [2].

Process improvement initiatives, either at the individ-
ual or organizational level, should be driven by perfor-
mance data and performance objectives. As noted in [3],
a paradigm shift is needed from ‘‘process improvement
leads to performance improvement’’ to ‘‘performance is the

The associate editor coordinating the review of this manuscript and

approving it for publication was Resul Das .

primary driver of process improvement’’. In fact, analyzing
process performance data to determine potential areas for
improvement is a required practice for organizations that
implement the industry-standard CMMI model at maturity
levels 4 and 5 [4]. On the other hand, the increasing adoption
of sensor-based data collection in modern development envi-
ronments [5], and the growing aggregation of performance
data in cloud-based project management and application life-
cycle management tools, open new opportunities for applying
performance analysis practices in broader contexts, not lim-
ited to high-maturity organizations.

A. PROBLEM STATEMENT
Performance data, collected in the scope of high-maturity
software development processes and development environ-
ments with sensor-based data collection, can be periodically
analyzed by developers and organizations to identify per-
formance problems, determine their root causes and devise
improvement actions [6]. However, the manual analysis

VOLUME 8, 2020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 141569

https://orcid.org/0000-0003-2890-8072
https://orcid.org/0000-0002-6113-4649

M. Raza, J. P. Faria: ProcessPAIR Method for Automated Software Process Performance Analysis

of performance data for identifying performance problems,
determining their root causes, and devising improvement
actions is challenging because of the amount of data to ana-
lyze [6], the effort and expertise required, and the lack of
benchmarks for comparison. Although tools exist to automate
data collection and help in problem identification and inter-
active performance analysis (e.g., [5], [7]), practically no tool
support exists for automated comparison with benchmarks
and root cause analysis.

B. OBJECTIVE
To overcome that problem, our main research goal is to
develop methods and tools for automating the analysis of
performance data produced in the context of software devel-
opment processes for determining performance problems and
their root causes and devising improvement actions. Our
research hypothesis is that, by taking advantage of perfor-
mance models derived from the performance data of many
process users, it is possible to automatically analyze the per-
formance data of individual developers and identify and rank
performance problems and their root causes, reducingmanual
effort and errors in performance analysis, and improving user
satisfaction.

C. CONTRIBUTION
This article presents the results of such research work:
a novel method with tool support, named ProcessPAIR
(short-name for Process Performance Analysis and Improve-
ment Recommendation), designed to help developers and
organizations analyze their performance data with less effort,
by automatically identifying and ranking performance prob-
lems and potential root causes, so that subsequent manual
analysis for the identification of deeper causes and improve-
ment actions can be properly focused. The analysis is based
on a performance model (PM) that is structured manually
by experts in the process under consideration and calibrated
automatically from the performance data of many process
users. The ProcessPAIR method is supported by the Process-
PAIR tool, freely available at https://blogs.fe.up.
pt/processpair/. To our knowledge, the automated
comparison with benchmarks and the automated causal anal-
ysis, in the context of process performance analysis, are novel
features of our approach.

In previous publications, we presented the derivation of an
example performance model [8] (without automatic calibra-
tion), a previous tool prototype [9], and a validation exper-
iment [10]. The specific contribution of this article is the
presentation of an inside view of the ProcessPAIR method,
detailing its main steps (model definition, model calibration,
and performance analysis), with the help of (meta)models and
examples.

D. OUTLINE
The rest of the article is organized as follows. Background and
related work are presented in Section 2. Section 3 presents
the overall approach. Sections 4, 5, and 6 explain the three

steps of the method (model definition, model calibration,
and performance analysis). Experimental results regarding
the effectiveness of the ProcessPAIR method and tool are
reviewed in Section 7. Section 8 concludes the paper.

II. BACKGROUND AND RELATED WORK
In this section, we start by reviewing some performance
measurement and analysis approaches in software engineer-
ing. Afterwords, we review specific techniques that can be
used for the identification, visualization, and ranking of per-
formance problems and their root causes for processes and
performance improvement.

A. PERFORMANCE MEASUREMENT AND ANALYSIS IN
SOFTWARE ENGINEERING
The industry-standard CMMI V2.0 maturity model [3]
acknowledges a paradigm shift from ‘‘process improvement
leads to performance improvement’’ to ‘‘performance is
the primary driver of process improvement’’, i.e., process
improvement actions should be based on performance mea-
surement and analysis. Amongst the set of practices pro-
posed within the ‘‘Managing Performance and Measurement
(MPM)’’ practice area, the following practices at levels 4 and
5 are closely related to our work:
• MPM 4.3 Use statistical and other quantitative tech-
niques to: develop and analyze process performance
baselines and keep them updated;

• MPM 4.4 Use statistical and other quantitative tech-
niques to develop and analyze process performance
models and keep them updated;

• MPM5.2Analyze performance data using statistical and
other quantitative techniques to determine the organiza-
tion’s ability to satisfy selected business objectives and
identify potential areas for performance improvement.

In our work, we aim at developing methods and tools to
support these practices in a semi-automated way.

Performance measurement and analysis practices can be
applied not only at the organizational level, but also at the
personal and team level, as illustrated by the Personal Soft-
ware Process (PSP) [11] and the Team Software Process
(TSP) [12]. Although the ProcessPAIR method and tool
are process independent, in this article we illustrate their
application for the PSP, for the following reasons: it has
a well-defined measurement framework; there are curated
data sets available with historical PSP data; periodical per-
formance analysis is a recommended practice in the PSP;
existent tools support automated metrics collection (e.g., [5])
and interactive performance analysis (e.g., [7]), but do not
provide automated comparison with benchmarks and causal
analysis.

Agile methods are the dominant paradigm in software
engineering industry and education, often combined with
elements from more classical methods [13]. An example of
metrics collection and analysis in agile project courses is
described in [14]. Some metrics are introduced to measure
the success of three key workflows (merge management,

141570 VOLUME 8, 2020

https://blogs.fe.up.pt/processpair/
https://blogs.fe.up.pt/processpair/

M. Raza, J. P. Faria: ProcessPAIR Method for Automated Software Process Performance Analysis

continuous integration and continuous delivery), giving
instructors and project leaders a quick overview of the
project status and problems which they can react upon. The
main differences with respect to our research work are:
in our research work the goal is to retrospectively ana-
lyze completed projects; we try to identify and rank poten-
tial causes; for problem identification, we use thresholds
derived from large data sets. Nevertheless, the metrics intro-
duced by the authors could be adapted and explored in our
approach.

B. PROBLEM IDENTIFICATION TECHNIQUES
1) CONTROL CHARTS
In Statistical Process Control (SPC), control charts are a
kind of run charts used to graphically represent the behavior
over time of variables that characterize process performance
(i.e., process performance indicators [15], [16]) and help to
assess process stability and capability. Stability has to do
with the level of variability in the variable under analysis,
and is assessed with the help of lower and upper control
limits. Capability has to do with the ability to meet desired
performance levels [17], usually depicted by means of lower
and upper specification limits. In our approach, we use run
charts to display the series of data points for each perfor-
mance indicator (PI) under analysis, together with thresholds
derived from training data, used as specification limits (see
example in Figure 8).

2) BENCHMARK BASED SOFTWARE EVALUATION
In order to enable the automated identification of
performance problems associated with relevant PIs, one
has to decide on the relevant thresholds. One approach for
defining such thresholds is the benchmark-based approach
described in [18], [19] to rate the maintainability of soft-
ware products. The authors claim that the effective use
of software metrics is hindered by the lack of meaning-
ful thresholds. They also note that thresholds have been
proposed for a few metrics only, mostly based on expert
opinion and a small number of observations, or systemat-
ically derived based on unjustified assumptions about the
statistical properties of the metrics (such as normality).
Consequently, they propose a method to empirically derive
in a systematic way metric thresholds from measurement
data (benchmarks), in order to determine risk profiles and
maintainability ratings for products under analysis. They
propose a discrete rating schema (from 1 to 5 stars), based
on thresholds that correspond to the 20%, 40%, 60% and
80% quantiles.

We adapted their approach for process evaluation (instead
of product evaluation), using a similar rating (or classifica-
tion) scheme, but with three levels only (and thresholds for the
33.(3)% and 66.(6)% quantiles), corresponding to the green,
yellow and red colors. In our case, benchmarks are derived
from the performance data of a large community of process
users.

C. ROOT CAUSE IDENTIFICATION AND RANKING
TECHNIQUES
After identifying performance problems, it is important to
find their root causes, so that improvement actions can sub-
sequently be defined to address the relevant causes. In this
section, several techniques that can be used for identifying
root causes are presented.

1) FISHBONE DIAGRAMS
Fishbone diagrams [20] (also called Cause-and-Effect dia-
grams) are a classic technique for helping in manual causal
analysis and for visualizing relationships between causes and
effects. In our approach, we present diagrammatically the
relationships between causes and effects in the ‘‘Cause-Effect
View’’.

2) DEFECT CAUSAL ANALYSIS
An example of applying Fishbone techniques in software
engineering is Defect Causal Analysis (DCA). Many pro-
cess improvement approaches (e.g., Six Sigma [21] or
FMEA [22]) described in the literature and practiced in the
industry include causal analysis activities for determining the
causes of defects and other problems [23]. However, most of
the techniques are essentially manual. Defect Causal Analy-
sis [24] is one of the prominent methods for analyzing defects
and identifying root causes for improvement in software
engineering. Furthermore, the learning capability of DCA
from defects enables improvement of processes and products,
which is a significant benefit in the context of continuous
improvement strategies [25].

The DCA process involves 6 steps to be performed in
DCA workshops [24]: (1) select problem sample; (2) classify
selected defects (e.g., using ODC [26]); (3) identify sys-
tematic errors (e.g., with Pareto charts); (4) determine main
causes (e.g., using Fishbone diagrams); (5) develop action
proposals; (6) document meeting results.

The main problem of DCA is that it is basically a manual
process, and our goal is to automate, at least partially, the root
causes identification of performance problems. The idea is
to automatically drill down from performance problems to
causes up to the level permitted by the data available. Manual
analysis may still be required for identifying deeper causes
not apparent in the available data. Next, we investigate a
technique that can help in automatic causal analysis.

3) PROCESS PERFORMANCE MODELS
In order to be able to automatically identify and rank (prior-
itize) the causes of performance problems, we need to have
some quantitative relationship between factors (causes) and
outcomes (effects). For that purpose, the CMMI proposes the
usage of process performance models (PPM) [4].

In the context of the CMMI process improvement frame-
work, a PPM is a description of the relationship among
attributes of a process or sub-process and its outcomes,

VOLUME 8, 2020 141571

M. Raza, J. P. Faria: ProcessPAIR Method for Automated Software Process Performance Analysis

developed from historical process performance data and cal-
ibrated using collected process and product measures [4].

In the case of continuous variables, a PPM often takes
the form of a regression equation, relating controllable or
uncontrollable factors (x) with outcomes (y), together with
an indicator of the degree of variability in the model, such as
the R2 statistic. In the case of discrete variables, PPMs may
be based on Bayesian networks [27].

PPMs are useful tools for project management and process
management and improvement. In the latter case, PPMs help
organizations identify and leverage important relationships
among process factors and outcomes, and estimate (predict)
the effects of alternative process changes. The creation of
a PPM usually involves the following steps, among others:
(1) decide what outcomes to analyze; (2) hypothesize factors
to investigate; (3) select the modeling techniques to use; (4)
obtain relevant data; (5) fit the model to the data and evaluate
the degree of fitness according to statistical and business
criteria [27], [28].

PPMs can be applied in our work with adaptations. All
the steps discussed above for the creation of PPMs will
be applied, with some adaptations and choices: in step 2,
we follow a hierarchical approach (factors that can, in turn,
be affected by other factors, like in Fishbone diagrams); in
step 3, we use a regression model in case of a statistical
relationship between factors and outcomes, and an exact
formula when there is an algebraic relationship. The types
of regression models applicable to our work are discussed in
section V-C.

As mentioned before, PPMs can be used to estimate (pre-
dict) the effects of alternative process changes. In our case,
PPMs can be used to rank the factors, according to the effect
of changes in single factors on the outcome under analysis.
Since our goal is just to rank the factors, sensitivity analysis
techniques can be used. Sensitivity analysis techniques are
discussed in section V-C.

4) REGRESSION MODELS
Regression analysis is a statistical process that attempts to
determine the strength of the relationship between a depen-
dent variable and one or more independent variables [29].
Traditionally, regression techniques are categorized as lin-
ear or nonlinear. Generally, when using linear regression
models, it is simple to interpret the relationship between
dependent variable and predictors and analyze the correlation
among predictors [30]. Nonlinear regression models [31] are
expressed by functions that are not linear in the independent
variables. Common models of this type include neural net-
works, Support Vector Machines (SVM), Multivariate Adap-
tive Regression Splines (MARS), and tree-basedmodels [32].
In our approach, we use tree-based models.

III. METHOD OVERVIEW
The ProcessPAIR method involves three main steps
(see Figure 1):

FIGURE 1. UML activity diagram depicting the main activities and
artifacts in the ProcessPAIR method.

1) Define: Process experts define the structure of a PM
suited for the development process under considera-
tion. In our approach, a PM comprises a set of top-level
and child performance indicators (PIs), organized hier-
archically by cause-effect relationships.

2) Calibrate (or Learn): The PM is automatically cal-
ibrated by ProcessPAIR based on the performance
data of many process users (developers). The statisti-
cal distribution of each PI and statistical relationships
between PIs are computed from the calibration data
set.

3) Analyze: Once a PM is defined and calibrated, the
performance data of individual developers can be auto-
matically analyzed by ProcessPAIR, to (a) identify
performance problems (in top-levels PIs), (b) iden-
tify potential root causes (related with child PIs), and
(c) rank those potential root causes.

The ProcessPAIRmethod is supported by the ProcessPAIR
tool, with a core framework (process independent) and exten-
sions for the processes of interest. An extension for the PSP,
containing the definition of performance models for the PSP
and data loaders from project management tools used by
PSP developers, was developed for education and training
environments, but extensions for other processes can be easily
developed.

The three steps of our approach are generically interrelated
as described in the next sub-sections.

141572 VOLUME 8, 2020

M. Raza, J. P. Faria: ProcessPAIR Method for Automated Software Process Performance Analysis

A. PROBLEM IDENTIFICATION APPROACH
In order to enable the automated identification of
performance problems in step 3, one has to first decide on
the relevant (top-level) PIs and recommended performance
ranges. The relevant top-level PIs and corresponding optimal
values are identified by the process expert in step 1. In most
cases, the optimal value is implicit in the definition of the
PI (e.g., 0 is the optimal value for defect density). The
recommended ranges of each PI are determined automat-
ically in step 2, based on its statistical distribution in the
calibration data set, according to the following criteria: the 1

3
values closest to the optimal value (for each side) correspond
to ‘‘good’’ performance (no performance problem); the 1

3
values farthest from the optimal value correspond to ‘‘bad’’
performance (clear performance problem); the 1

3 values in
between correspond to intermediate performance (potential
performance problem).

B. ROOT CAUSE IDENTIFICATION APPROACH
In order to enable the automated identification of root
causes of performance problems in step 3, one has to first
decide on the relevant cause-effect relationships. In our
approach, lower-level PIs that may affect, directly or indi-
rectly, top-level PIs according to a cause-effect relationship
are specified by the process expert in step 1. Then, in step 3,
it is possible to recursively drill down from problematic
top-level PIs (with clear or potential performance problems)
to problematic lower-level PIs (with clear or potential per-
formance problems). PIs that can not be further drilled down
indicate the potential root causes (as far as the performance
data allows us to determine).

C. ROOT CAUSE RANKING APPROACH
When multiple potential root causes (problematic child PIs)
are identified for a performance problem in a top-level PI Y ,
it is important to rank (prioritize) them.

Let X1, . . . ,Xn be a set of lower-level PIs that affect the
value of a higher-level PI Y , according to a function Y =
f (X1, . . . ,Xn), representing an exact formula for deriving Y
or a regression formula derived from the calibration data
set. We rank the factors Xi according to the values of a
ranking coefficient ρi that represents a cost-benefit estimate
of improving each factor Xi whilst keeping the other factors
unchanged.

The benefit on Y of a change in the value of a factor Xi can
be expressed by the resulting relative variation in the value
of Y , i.e., 1Y/Y .

As for the cost of changing the value of a factor Xi, intu-
itively, the closest the value is to the optimal value, in terms
of percentiles, the more difficult (and less important) it is to
improve it. Let us denote by Pi(Xi) = Fi(Xi) − Fi(oi) the
percentile distance of Xi to the optimal value, where Fi repre-
sents the approximate cumulative distribution function of Xi,
and oi represents the optimal value of Xi. Our base heuristic

is that equal relative variations in the Pi′s have similar costs.
So, we take as cost estimate the relative variation 1Pi/Pi.

We approximate the cost-benefit ratio using partial deriva-
tives (for small variations) to derive a ranking coefficient (ρi):

1Y
Y
1Pi
Pi

=
1Y
1Xi

(
Xi
Y

)
×
1Xi
1Pi

(
Pi
Xi

)
≈
∂Y
∂Xi

(
Xi
Y

)
×
∂Xi
∂Pi

(
Pi
Xi

)
.

Hence, we can express the ranking coefficient as the
product

ρi = σXi→Y × πXi (1)

with

σXi→Y =
∂Y
∂Xi

(
Xi
Y

)
(2)

πXi =
∂Xi
∂Pi

(
Pi
Xi

)
=
Fi(Xi)− Fi(oi)

XiF ′i(Xi)
(3)

The first factor (σXi→Y) is a sensitivity coefficient [33] that
computes the impact of small variations in the value of a
factor Xi on the value of Y, whilst keeping all the other factors
unchanged.

The second factor (πXi), which we call a percentile coeffi-
cient, computes the impact of small variations in the current
percentile distance (Pi) of Xi to the optimal value (oi) on the
value of Xi. We denote by F ′i(Xi) the first derivative of Fi(Xi),
representing the probability density function.

The optimal value of each PI is provided by the process
expert in step 1. The approximate statistical distribution of
each PI is automatically computed from the calibration data
set in step 2. Regarding the sensitivity coefficients, in case
parent and child PIs have an exact relationship, the sensitivity
coefficient is provided by the process expert in step 1; in
case parent and child PIs are statistically related, a regression
model and corresponding sensitivity coefficients are com-
puted automatically in step 2 from the calibration data set.

The concepts and procedures involved in each step of the
ProcessPAIRmethod are detailed in the next sections with the
help of meta-models and examples.

IV. PERFORMANCE MODEL DEFINITION
A. PERFORMANCE MODEL CONTENTS
A performance model for a development process under con-
sideration is defined by means of the following data (see also
Figure 2):
• set of relevant base measures generated by the develop-
ment process under consideration, at the project level,
with the attributes listed in class Measure of Figure 2:
short name, long name, description, measurement units,
minimum value of the scale, maximum value of the
scale, and number of decimal digits (precision digits);

• set of relevant top-level PIs, described by the same
attributes as the base measures, plus the optimal value
(usually implied by the definition of each PI) and for-
mula for computation from base measures;

VOLUME 8, 2020 141573

M. Raza, J. P. Faria: ProcessPAIR Method for Automated Software Process Performance Analysis

FIGURE 2. UML class diagram depicting the main concepts involved in
model definition and calibration.

• child PIs that affect directly or indirectly (by a
cause-effect relationship) the top-level PIs according to
a formula or statistical evidence;

• sensitivity coefficients σXi→Y , i = 1, . . . , n, for each PI
Y that is affected by child PIs X1, . . . ,Xn according to
an exact formula Y = f (X1, . . . ,Xn).

B. EXAMPLE OF PERFORMANCE MODEL DEFINITION
In this section, we exemplify the derivation of a PM for the
PSP, partially depicted in 3 (more details in [34]).

Beforehand, it is worth noting that the following base
measures are collected in the PSP:
• the estimated (T̂k) and actual time (Tk) (effort) spent per
process phase k (Plan, Design, Design Review, Code,
Code Review, Compile, Unit Test, and Postmortem), and
corresponding totals over all phases (T̂ and T);

• the number of defects injected and removed per process
phase;

• the estimated (Ŝ) and actual size (S) of the deliverable,
measured in an appropriate size unit, such as lines of
code (LOC) or function points (FP).

Since the scope of the PSP is the development of small
programs or components of larger programs, the Require-
ments, High-Level Design, and System Testing phases are
absent (they can be found in the more complete TSP [12]).
In some programming environments, the Compile phase may
be absent. The phases may be performed iteratively.

For top-level PIs, we choose three PIs related to pre-
dictability, quality and productivity.

The major predictability PI in the PSP is the Time Esti-
mation Accuracy, which we measure as the ratio between
actual and estimated values. Because in the PSP’s PROBE
method [11] a time estimate is obtained based on a size esti-
mate of the deliverable (in added or modified size units) and
a productivity estimate (in size per time units), we indicate
in Figure 3 that the Time Estimation Accuracy (TimeEA) is
affected by the Size Estimation Accuracy (SizeEA) and the
Productivity Estimation Accuracy (ProdEA).

FIGURE 3. Outline of an example performance model, with performance
indicators, dependencies and sensitivity coefficients.

These PIs are related by the formula TimeEA =

SizeEA/ProdEA. Because they are multiplicative factors with
powers of 1 and -1, the corresponding sensitivity coefficients
are also 1 and -1, as displayed in Figure 3. This means that the
TimeEA is equally sensitive to SizeEA and ProdEA (although
in opposite directions).

Because in the PROBE method productivity estimates are
based on historical productivity [11], we indicate in Figure 3
that the Productivity Estimation Accuracy is affected by the
Productivity Stability.

Since in the PSP time is recorded per process phase, when
a productivity stability problem is encountered, one can ana-
lyze the productivity stability per phase, in order to determine
the problematic phase(s). Hence, we indicate in Figure 3
a set of PIs for the productivity stability per phase, which
together affect the overall productivity stability. Similarly to
the productivity (to be discussed next), the overall productiv-
ity stability is more sensitive to the productivity stability of
the more time-consuming phases.

141574 VOLUME 8, 2020

M. Raza, J. P. Faria: ProcessPAIR Method for Automated Software Process Performance Analysis

As top-level quality indicator, we choose an aggregated
qualitymeasure—theProcessQuality Index (PQI)—that con-
stitutes an effective predictor of post-delivery defect den-
sity [11], [35] (a common product quality measure [36]).

The PQI is computed from five components, depicted
in Figure 3 as factors that affect the PQI according to a
formula: the ratio of design time to coding time (an indi-
cator of design quality), the ratio of design review time to
design time (an indicator of design review quality), the ratio
of code review time to coding time (an indicator of code
review quality), the ratio of compile defects to a size measure
(an indicator of code quality), and the ratio of unit test defects
to a size measure (an indicator of program quality). The
components are normalized to the [0, 1] interval such that
0 represents poor practice, and 1 represents desired practice.
The sensitivity of the PQI to its components is equal to 1 for
components with value worse than the desired value, and 0 for
components with a value equal to or better than the desired
value (calculation details can be consulted in [34]).

In turn, both the Defect Density in Compile and Unit Test
are affected by the total density of Defects Injected (and
found) and the percentage of defects removed before compile
and test (called Process Yield in the PSP). In fact, high defect
densities in compile and test may be caused by a large number
of defects injected (due to poor defect prevention) or a large
number of defects escaped from previous defect filters (due
to poor design and code reviews).

According to several studies [11], [28], [37], the time spent
in reviewing a work product in relation to its size is a leading
indicator of the review yield (percentage of defects found)
and consequently of the process yield. Hence, we indicate
in Figure 3 that the Process Yield is affected by the Design
Review and Code Review Productivity (measured as size to
time ratios).

In the PSP, productivity is measured in size units delivered
per time units consumed. Any size measure can be used
(function points, LOC, etc.) as long as it correlates with
effort and is objectively measurable [11]. Because in the
PSP time is recorded per process phase, when a productivity
problem is encountered, one can analyze the productivity per
phase, in order to determine the problematic phase(s). Hence,
we indicate in Figure 3 a set of PIs for the productivity per
phase, which together affect the overall productivity.

From the definitions of the overall productivity (P)
and productivity per phase (Pk) as size to time ratios
(P = S/T and Pk = S/Tk , respectively), and the rela-
tion P−1 =

∑
k Pk

−1, we derive the sensitivity coefficients
σPk→P = Tk/T (fraction of project time spent in phase k).
This means that the overall productivity is more sensitive to
the productivity of the more time consuming phases. E.g.,
if a developer spends 40% of the project time in Test, and
reduces the time in Test by 20% (whilst keeping the time spent
in the other phases unchanged), the overall productivity will
improve by 20%× 40% = 8%.
In turn, the time spent in the compile and test phases

(including defect fixing) may be affected by the number of

defects to fix, so we indicate in Figure 3 that the Compile
and the Unit Test Productivity may be affected by the Defect
Density in Compile and Unit Test, respectively.

V. PERFORMANCE MODEL CALIBRATION
The PM is automatically calibrated by ProcessPAIR from
training data sets, containing values of base measures for
many developers and projects. The user has just to select the
performance model to be calibrated, the data set to be used
for calibration, the filtering criteria (if desired), and the XML
file for saving the calibration results.

The following data is generated by the calibration process
(also visible in Figure 2): noitemsep
• approximate statistical distribution of each PI, repre-
sented by a cumulative distribution function;

• recommended performance ranges for each PI, repre-
sented by a map from performance ranges (intervals) to
colors (semaphores);

• regression models and sensitivity coefficients between
related PIs, but not by an exact formula.

A. APPROXIMATE CUMULATIVE DISTRIBUTION
FUNCTIONS
The approximate cumulative distribution function of each PI
could be obtained by computing a theoretical distribution that
best fits the training data, or by linear interpolation between a
few percentiles computed from the training data. Since differ-
ent PIs may follow different types of continuous distributions
or may even follow a hybrid continuous-discrete distribution,
with non-zero probability at the ends of the scale, we opted
for the second method.

To balance fit, smoothing and storage space, we sample
the cumulative frequency distribution of the training data
for the following relative frequencies: 0%, 1%, 5%, 10%,
20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 95%, 99%,
100%, maximum relative frequency for which the observed
value equals the minimum of the scale (if any observed), and
minimum relative frequency for which the observed value
equals the maximum of the scale (if any observed). The
approximate cumulative distribution function of the PI under
consideration is a piecewise linear function that connects the
sampling points, as illustrated in Figure 4. The only cali-
bration information that needs to be stored are the sampling
points (illustrated by red circles in Figure 4).

FIGURE 4. Illustration of the procedure for obtaining an approximate
cumulative distribution function of a PI (example with hybrid
continuous-discrete distribution, and sampling at 20% intervals).

VOLUME 8, 2020 141575

M. Raza, J. P. Faria: ProcessPAIR Method for Automated Software Process Performance Analysis

B. PERFORMANCE RANGES
Performance ranges are needed for classifying values of each
PI of a subject under analysis into three colors: noitemsep
• green - no performance problem;
• yellow - a possible performance problem;
• red - a clear performance problem.
Such ranges are determined automatically from the

approximate cumulative distribution function computed in
the previous step, so that there is an even distribution of
training data points by the colors (1/3 of data points per color).
In case the optimal value is located in one of the extremes
of the scale, the ’green’ range is also located in the same
extreme of the scale, the ’red’ range in the other extreme, and
the ’yellow’ range in the middle. In that case, thresholds are
computed from the cumulative distribution function based on
terciles and subsequently rounded to the number of precision
digits specified for the PI under consideration. In case the
optimal value is located in the middle of the scale, we split the
intervals to the left and the right of the optimal value based
on terciles, in order to derive the performance ranges, as illus-
trated in Figure 5. Denoting by p the cumulative probability
corresponding to the optimal value, the terciles to the left of
the optimal value are spaced at intervals of 1/3p, whilst the
terciles to the right of the optimal value are spaced at intervals
of 1/3(100%-p). Although in our work we considered an even
distribution of training data points by the 3 colors, other
distributions could also be easily supported, depending on the
performance goals.

FIGURE 5. Illustration of the procedure for determining the green (G),
yellow (Y) and red (R) ranges from the cumulative distribution function of
a PI, in case the optimal value lays in the middle of the scale.

C. REGRESSION MODELS AND SENSITIVITY
COEFFICIENTS
Sensitivity coefficients between PIs not related by an exact
formula are computed by first determining a regressionmodel
from the calibration data set and subsequently computing the
corresponding sensitivity coefficients.

Assume that in step 1 the process expert indicated that a
performance indicator Y is affected by X1, . . . ,Xn(n ≥ 1),
but Y is not determined by those factors according to an
exact formula. E.g., in Figure 3, we indicate thatProcess Yield

is affected by Code Review Productivity and Design Review
Productivity based on statistical evidence from literature [37].
In such case, we first compute a regression model Ŷ =

f (X1, . . . ,Xn) from the calibration data set for predicting the
value of Y from the values of (X1, . . . ,Xn).

Because the relationship between the PIs involved may
be nonlinear, instead of computing a global linear model,
we have the option to compute a piecewise linear model
organized as a regression tree [38]. The type of model to use
(global or piecewise linear model) is selected by the process
expert in the first step of our method. A regression tree [38]
is a binary decision tree; at each non-leaf node, the value
of one of the factors (Xi) is compared to a so-called split
value in order to decide the sub-tree to follow. Hence, each
leaf will correspond to a subset (n-dimensional cube or cell)
of the space of possible values of X1, . . . ,Xn. Since we are
interested in computing a piecewise linear model, each leaf
node k has an associated linear model Ŷ = βk,0 + βk,1X1 +
. . .+βk,nXn, computed from the points in the calibration data
set that fall in that cube by linear regression.

In the recursive tree construction process, we use the fol-
lowing split criterion: as suggested in [39], we select the
split variable (Xi) that provides the highest decrease of the
tree SSE (sum of squared errors); for each tentative split
variable Xi, we do a split as closest as possible to a binary
split that guarantees disjoint Xi values on both segments (this
is important to handle repeated values). We use the following
stop criterion: a cell size cannot contain less than a specified
minimum number of training data points (100 for inner cells,
and a number between 100 and 25 for border cells, depending
on the number of borders).

An alternative to regression trees are multivariate adap-
tive regression splines (MARS) [40], which also handle
non-linearities and interactions between factors, and gen-
erate more compact models than regression trees. In the
experiments conducted, we obtained lower mean absolute
errors (MAE) and root mean squared errors (RMSE) with
regression trees as compared to MARS, so we use the
described regression trees, in spite of the higher storage space
required.

In each leaf node k we only have to store the coefficients
βk,0, βk,1, . . . , βk,n of the model. In each non-leaf node,
we have to store the index and value of the split variable. Dur-
ing performance analysis (step 3), once determined the cell k
corresponding to a data point (X1, . . . ,Xn,Y) under consid-
eration, the sensitivity coefficients are simply computed as:

σXi→Y =
∂Ŷ
Xi

(Xi
Y

)
= βk,i

Xi
Y
(i = 1, . . . , n). (4)

D. DATASET FILTERING
Instead of using the full data set for calibration, we have the
option to use only the data points most similar to a given user
profile. This requires that each data point in the calibration
data set, besides values for the base measures, also contains
values for the variables that can be used for filtering. Those

141576 VOLUME 8, 2020

M. Raza, J. P. Faria: ProcessPAIR Method for Automated Software Process Performance Analysis

variables need to be specified by the process expert together
with the PM.

We compute similarity with the Gower similarity
coefficient [41], because it provides a measure of proxim-
ity adequate for mixed data types, combining numeric and
categorical data.

Let n be the number of variables under consideration
(the ones constrained in the supplied profile), and let p and
t be vectors that contain the values of those variables in the
supplied profile and in a data point in the training data set,
respectively.

In the case of a categorical variable k (e.g., programming
language), the similarity sk between t and p regarding k(1 ≤
k ≤ n), is a number between 0 (least similar) and 1 (most
similar) computed as [41]:

sk =

{
1 if tk = pk ,
0 otherwise .

(5)

In the case of a numerical variable with a finite range (e.g.,
programming experience in years), the similarity is computed
as [41]:

sk = 1−
|tk − pk |

rk
(6)

where rk is the range of values for the k-th variable (distance
between minimum and maximum values).

However, many numerical variables of interest have
positive values spread along a wide range, with many small
values and a few large values. Using the above formula,
the similarity would be close to 0 for most of the pairs of
data points. In such cases, the process expert may specify a
monotonic scale transformation function to be applied prior
to using the similarity formula. E.g., the function 1 − e

−x
τ ,

where x is the variable of interest and τ is a constant, trans-
forms the [0,+∞[interval to the [0,1[interval.
Another possibility (that can be selected by the process

expert) is to compute the similarity based on the ranking of
x in the training data set (i.e., the relative position of x in the
sorted multiset of values in the training dataset).

By default, all the variables are given equal weights, so the
similarity s between t and p (considering all the variables)
becomes a simple average:

s =
1
n

n∑
k=1

sk (7)

Regarding the number of most similar data points to select,
we use the following criteria: for statistical significance,
at least 50 data points are selected; additionally, all data points
with a similarity to the given profile greater or equal than
0.9 are selected. These numbers can be configured. Data
points with undefined values for any of the variables under
consideration are discarded.

E. EXAMPLE OF MODEL CALIBRATION
To calibrate the previously described performance model for
the PSP, we used a curated PSP data set from the Software

FIGURE 6. UML class diagram depicting the main concepts involved in
the analysis of subject data.

Engineering Institute (SEI), referring to 31,140 projects con-
cluded by 3,114 engineers during 295 classes of the PSP for
Engineers I/II training courses running between 1994 and
2005. In this training course, targeting professional devel-
opers, each participant develops ten small projects. In this
data set, size is measured in source lines of code, excluding
comments and blank lines.

Calibration results for the Time Estimation Accuracy can
be viewed in Figure 8, namely the cumulative distribution
function (bottom left) and performance ranges (middle right).
In this case, the green range corresponds to the [0.87, 1.20]
interval, that is, an estimation error between -13% (overesti-
mation) and 20% (underestimation), which matches what is
usually considered an acceptable error [42], [43].

Regarding productivity, the green range obtained corre-
sponds to values above 35 LOC/hour, which also matches
recommendations from literature [44].

Regarding defect density in Unit Test and Com-
pile, the green ranges correspond to <= 11 and
<= 15 defects/KLOC, respectively, which are less tight than
the PSP recommendations (<=5 defects/KLOC for Unit Test
and <=10 defects/KLOC for Compile) [11].

VI. PERFORMANCE ANALYSIS
The base performance data of a subject under analysis
(developer, team, etc.) that needs to be uploaded by Pro-
cessPAIR, consists of the values of the base measures
defined in the selected performance model for a series
of projects (see Subject, Project, and ProjectBaseMeasure
in Figure 6). Each project is characterized by a sequence
number (for ordering purposes) and a name (for identification
purposes).

In the sequel, concrete examples of the parameters labeled
with encircled numbers can be consulted in Figures 7 and 8.

VOLUME 8, 2020 141577

M. Raza, J. P. Faria: ProcessPAIR Method for Automated Software Process Performance Analysis

FIGURE 7. Report View example (annotated).

A. PROJECT LEVEL CALCULATIONS
Based on the values of the base measures, ProcessPAIR first
computes the following parameters for each PI i and project
k (see ProjectIndicator and IndicatorInstance in Figure 6):
• value (x(k)i) 1© - computed from the base measures and
PI’s formula; if this value is undefined, the following
parameters are also undefined;

• normalized percentile (N (k)
i) - computed from the previ-

ous value and the statistical distribution of the PI in the
PM, normalized so that 100% corresponds to the optimal
value and 0% corresponds to extreme values to the left
or to the right of the optimal value. Formally, denoting
by Fi and oi the approximate cumulative distribution
function and optimal value of the PI under consideration,
respectively, we have:

N (k)
i =



1 if x(k)i = oi,

Fi(x
(k)
i)

Fi(oi)
if x(k)i < oi,

1− Fi(x
(k)
i)

1− Fi(oi)
if x(k)i > oi.

(8)

• semaphore (color) (s(k)i) 2© - a discretization of the
normalized percentile, for user presentation purposes,
according to the mapping (m1):

[0, 13 [→ Red (clear performance problem)

[13 ,
2
3 [→ Yellow (potential p. problem)

[23 , 1]→ Green (no performance problem)
• percentile coefficient (π (k)

i) - computed according to
equation 3. The percentile coefficient is needed for

computing the ranking coefficient but is hidden from the
normal user.

For each dependency defined in the PM between PIs i
(child) and j (parent) with defined values in project k , the fol-
lowing information is computed (see DependencyInstance
in Figure 6):
• sensitivity coefficient (σ (k)

i→j) - computed from the project
data and the sensitivity formula defined in the PM. The
sensitivity coefficient is needed for computing the rank-
ing coefficient, but is hidden from the normal user;

• ranking coefficient (ρ(k)i→j) - computed as the product

σ
(k)
i→j × π

(k)
i , according to equation 1;

• ranking label (r (k)i→j) - a discretization of the ranking
coefficient in terms of T-shirt sizes, for user presentation
purposes, according to the mapping (m2):

]−∞, 0.01[→ VerySmall
[0.01, 0.1[→ Small
[0.1, 1[→ Medium (or Moderate)
[1, 10[→ Large (or High)
[10,+∞[→ VeryLarge (or VeryHigh)

Such thresholds may be interpreted as follows: consid-
ering an improvement by 10% in the child PI (reduction
of the percentile distance to the optimal value), the esti-
mated improvement in the parent PI will be ≤ 0.1%
(very small), 0.1%-1% (small), 1% - 10% (medium),
10%-100% (large), ≥ 100% (very large).

The following information is also computed between child
indicators i (at any level) and top-level indicators j with
defined values in project k:
• composite sensitivity coefficient (σ ′(k)i→j) - recursively
computed from the (elementary) sensitivity coefficients,
as explained in section VI-C;

141578 VOLUME 8, 2020

M. Raza, J. P. Faria: ProcessPAIR Method for Automated Software Process Performance Analysis

FIGURE 8. Indicator View example (annotated).

• composite ranking coefficient (ρ′(k)i→j) - computed as the

product σ ′(k)i→j × π
(k)
i ;

• composite ranking label (r ′(k)i→j) - computed as the map-

ping m2(ρ′
(k)
i→j).

B. SUBJECT LEVEL CALCULATIONS
For aggregating data, we compute a weighted average of the
values calculated at the project level, using an exponentially
decaying weight for older projects, based on a configurable
memory retention factor f (0 < f < 1, e.g., 0.85). Formally,
denoting by def (a) a predicate that indicates if a is defined,
and by b(1), . . . , b(m) the values to be aggregated, the weighted
average is computed as:

wavg(b(1), . . . , b(m)) =

∑
k∈{1,...,m}∧def (b(k)) f

m-kb(k)∑
k∈{1,...,m}∧def (b(k)) f

m-k (9)

The following summary (aggregate) information is com-
puted for each PI i at the subject level (see SubjectIndicator
and IndicatorInstance in Figure 6):
• minimum 3©,maximum 4©, average 5© - simple statistics
calculated from the values computed at the project level;

• aggregated normalized percentile (Ni) 6© - computed as
wavg(N (1)

i , . . . ,N (k)
i).

• aggregated semaphore (si) 7© - computed by the same
mapping used at the project level, as m1(Ni).

The following aggregated information is computed at the
subject level, for direct dependencies between PIs i (child)
and j (parent):
• aggregated ranking coefficient (ρi→j) - computed as
wavg(ρ(1)i→j, . . . , ρ

(m)
i→j).

• aggregated ranking label (ri→j) - computed by the same
mapping used at the project level, as m2(ρi→j).

The following aggregated information is also computed at
the subject level, for indirect dependencies between a child
PI i (at any level) and a top-level PI j:
• aggregated composite ranking coefficient (ρ′i→j) - com-
puted as wavg(ρ′(1)i→j, . . . , ρ

′(m)
i→j).

• aggregated composite ranking label (r ′i→j) 8© - com-
puted as m2(ρ′i→j).

C. COMPOSITE SENSITIVITY COEFFICIENTS
In the general case, the root causes to be ranked X1, . . . ,Xn
may be indirect children of the problematic top-level PI under
consideration (Y). In this case, the function f that relates
the involved PIs may be expressed as a composite function,
based on the elementary functions that relate each PI with its

VOLUME 8, 2020 141579

M. Raza, J. P. Faria: ProcessPAIR Method for Automated Software Process Performance Analysis

direct children. As a consequence, the sensitivity coefficients
may be computed using the laws of partial derivatives of
composite and multivariate functions.

In general, denoting by C(Xj) the direct child of a PI Xj,
the composite sensitivity coefficient σ ′ between any two PIs
can be computed recursively from the elementary sensitivity
coefficients (σ) as follows:

σ ′Xi→Xj=


σXi→Xj if Xi∈C(Xj),
1 if i = j,∑

k∈C(Xj)
σ ′Xi→Xkσ

′
Xk→Xj otherwise.

(10)

D. ROOT CAUSE SELECTION AND SORTING
In this section, we explain how the relevant root causes of an
identified performance problem are selected and sorted based
on the ranking coefficients and colors, for presentation to the
user (as in Figure 7).
Assume that a problematic top-level PI Y was identified

(with red or yellow color) for a specific project or overall for
a subject under analysis, with a set of direct and indirect child
PIs. The selection of the relevant root causes is performed in
three steps:

1) Cut the child PIs (and their descendants) that have
a green semaphore or a ranking coefficient to parent
below a specified threshold (0.1 by default, to eliminate
nodes with ranking labels ’very small’ or ’small’);

2) Repeatedly cut the leaves that have a composite ranking
coefficient to root (Y) below the specified threshold,
until there are no leaves with that condition;

3) Select the remaining leaves as the relevant root causes
to be presented to the user, sorted according to the
ranking coefficient to root.

E. ANALYSIS VIEWS
The results of performance analysis are presented to the
user through multiple views, some of which are illustrated
in Figures 7 and 8 for a real (anonymized) user. The
user has just to select a previously calibrated performance
model for a process under consideration and provide a
file with his/her base performance measures for a set of
projects.

The Report View (Figure 7) shows in a simple way, over-
all (‘‘Summary’’) or project by project, the most relevant
top-level performance problems (colored red or yellow in
other views) and potential root causes properly prioritized
(according to the ranking coefficients, previously explained).

Intermediate causes can be consulted by unchecking the
‘‘Show only leaf causes’’ checkbox. Comboboxes allow
selecting information for specific projects and/or PIs. The
links skip to the Indicator View, for detailed information
about each PI.

In the example of Figure 7, there is a clear performance
problem (signaled with the red color in other views) with
the ‘‘Productivity’’ PI, and a potential performance problem
(signaled with the yellow color in other views) with the

‘‘Time Estimation Accuracy’’ PI. The top 3 potential root
causes for the first problem are related with problems in the
design phase (‘‘Defects Injected in Design’’ and ‘‘Design
Productivity’’) and the unit test phase (‘‘Defect Removal Rate
in Unit Test’’).

The Indicator View (Figure 8) shows the behavior of
each PI throughout the series of projects under analy-
sis, together with model calibration information (descrip-
tion, optimal value, recommended performance ranges
and statistical distribution). It also supports interactive
analysis.

In the bottom left, the statistical distribution of the PI in the
data set used for calibrating themodel is presented. The colors
correspond to the performance ranges. The actual values in
the file under analysis are also shown, marked with the ‘‘+’’
symbol, for benchmarking purposes.

In the tree-view on the top-left, the user can easily drill
down from problematic top-level PIs (with clear or potential
performance problems, colored read and yellow, respectively)
to problematic lower-level PIs (with clear or potential perfor-
mance problems).

At the bottom, it are presented several statistics, computed
as explained in previous sections.

In the example shown in Figure 8, the yellow circle in
the first PI signals a potential performance problem with the
‘‘Time Estimation Accuracy’’. The run chart on the right
depicts the values of this PI for a sequence of 7 projects
(program 1 to 7), showing a tendency for underestimation,
with an initial trend for improvement followed by a trend in
the opposite direction.

VII. EXPERIMENTAL RESULTS
In this section, we summarize the results of two experiments
conducted in collaboration with Instituto Tecnológico de
Monterrey (ITM) in Mexico to assess the effectiveness of the
ProcessPAIR method and tool. In both experiments, we used
the already described PSP model (with minor modifications)
and PSP data set (for model calibration).

In the ‘‘Software Quality and Testing’’ course at ITM,
master students develop a sequence of 6 or 7 small projects,
collecting several performance measures and following
increasingly elaborated processes (PSP0 to PSP2.1). By the
end of the course, students are requested to analyze their per-
sonal performance data collected throughout those projects
and document their findings and improvement proposals in
a final report (Performance Analysis Report). To guide their
analysis, students are asked to address 30 questions organized
in four categories: size estimating accuracy, time estimating
accuracy, defect and yield analysis, and quality analysis.
Students use Process Dashboard [7] for data collection and
visualization.

A. POSTMORTEM STUDY
In the first experiment [34], we conducted a postmortem
study based on the performance data and reports produced
by 27 students that attended the 2015 edition of the course.

141580 VOLUME 8, 2020

M. Raza, J. P. Faria: ProcessPAIR Method for Automated Software Process Performance Analysis

We fed their performance data to ProcessPAIR and compared
the results of automated analysis (with ProcessPAIR) and
manual analysis (documented by the students in their final
reports), to assess whether ProcessPAIR is able to accurately
identify performance problems (RQ1.1) of individual devel-
opers and their root causes (RQ1.2).

Regarding problem identification (RQ1.1), for the cases
(302) in which students explicitly characterized their per-
formance (regarding a specific PI and a specific project
or all projects), we compared the student assessment with
the tool-based assessment, and got the following overall
results:
• in 96% of the cases, the results of manual and automatic
analysis matched, i.e., both the student and the tool
indicated good performance or bad performance;

• in 3% of the cases, the tool indicated a potential problem,
but the developer indicated no performance problem
(false positives);

• in 1% of the cases, the tool indicated no performance
problem, but the developer explicitly indicated a perfor-
mance problem, based on abnormally tight thresholds
(false negatives).

Hence, we conclude that the automatic analysis produced
similar results as themanual analysis, with 96% accuracy, and
a very small number of false positives (3%).

Regarding root cause identification (RQ1.2), for the
cases (53) of performance problems in top-level PIs identified
both in manual and automated analysis, we compared the
respective root causes and obtained the following overall
results:
• in 21% of the cases, the tool pointed out the same causes
as the developer;

• in 53% of the cases, the tool pointed out intermediate
causes, and the developer pointed out deeper causes;

• in 26% of the cases, the results are inconsistent, because
of faults in the manual analysis.

Hence, we conclude that, in the cases in which the manual
analysis was not erroneous, the tool-based analysis was able
to accurately identify either the same causes or causes in the
same direction as in the manual analysis.

These results suggest that ProcessPAIR may help reducing
errors and effort in manual analysis, by providing a good
starting point for subsequent manual analysis, focused on the
identification of deeper causes and improvement actions.

B. CONTROLLED EXPERIMENT
In the second experiment [10], we conducted a controlled
experiment with 61 students that attended the 2016 edition
of the course, to assess if students that use ProcessPAIR for
performing their final report assignment are more satisfied
with the tool support (RQ2.1), produce higher quality reports
(RQ2.2), and spend less time (RQ2.3) than students that
perform that assignment in a traditional way (using Process
Dashboard only).

To that end, half of the students (selected randomly) used
ProcessPAIR in their final report assignment, and the other

half performed it in a traditional way (using Process Dash-
board only). To measure user satisfaction, we prepared a
web-based survey with 14 questions that was answered by
the students of both groups after concluding the assignment.

We obtained the following overall results:
• User satisfaction (RQ2.1): average score of 4.78 in
a 1-5 scale for ProcessPAIR users, against 3.81 for
non-ProcessPAIR users, representing a 25% improve-
ment (difference statistically significant);

• Quality of analysis reports (RQ2.2): average grade
of 88.1 in a 0-100 scale for ProcessPAIR users, against
82.5 for non-ProcessPAIR users, representing a 7%
improvement (difference statistically significant);

• Time spent (RQ2.3): average of 252 minutes for Proces-
sPAIR users, against 262 minutes for non-ProcessPAIR
users, representing a 4% reduction (difference not statis-
tically significant).

These results show that ProcessPAIR provided significant
benefits in terms of user satisfaction and quality of analy-
sis outcomes, and (to some surprise) marginal benefits only
in terms of the time required to do the analysis. However,
the students that used ProcessPAIR spent a significant part
of their time performing repetitive tasks (copying charts and
data from ProcessPAIR to the analysis report) that we auto-
mated in a subsequent version of the tool.

VIII. CONCLUSION
The results achieved show that ProcessPAIR is able to
automatically analyze the performance data of individual
developers in order to identify and rank performance prob-
lems and potential causes, and, consequently, reduce errors
and effort and improve user satisfaction in performance anal-
ysis, by taking advantage of performance models derived
from the performance data of many process users.

The only manual work needed is the definition, by a pro-
cess expert, of the relevant PIs and dependencies for the
process under consideration (only once per process).

Currently, ProcessPAIR is available as a standalone Java
application. As future work, we intend to deploy Process-
PAIR as a service available on the cloud (SaaS) and inte-
grate it with a cloud-based application lifecycle management
tool. This will increase tool accessibility, facilitate metrics
collection, and enable the automatic recalibration of the per-
formance models based on the performance data of the users.

Currently, ProcessPAIR is successfully used by PSP users.
In the future, we intend to expand the user base by tailoring
ProcessPAIR for other processes, namely, agile and hybrid
methods [13], [14], [45].

Machine learning techniques are increasingly used in
software engineering for performance analysis [46] and pro-
cess improvement [47], [48]. Hence, we intend to explore
machine learning and process mining techniques to further
automate the ProcessPAIR method, e.g., to automatically
calibrate optimal values of PIs, identify relationships between
PIs, and, in general, automate the generation of performance
models. By combining artificial intelligence techniques with

VOLUME 8, 2020 141581

M. Raza, J. P. Faria: ProcessPAIR Method for Automated Software Process Performance Analysis

human expertise (crowdsourcing), we will extend Process-
PAIR with the capability of recommending detailed improve-
ment actions for the identified causes of performance
problems.

ACKNOWLEDGMENT
The authors would like to acknowledge the SEI and Tec
de Monterrey for facilitating the access to the PSP data for
performing this research and AWKUM for their partial initial
grant.

REFERENCES
[1] B. Boehm, ‘‘Some future software engineering opportunities and chal-

lenges,’’ in The Future of Software Engineering. Springer, 2011, pp. 1–32.
[2] Ron S Kenett and Emanuel Baker, Software Process Quality: Management

and Control. Boca Raton, FL, USA: CRC Press, 1999.
[3] CMMI Model V2.0, CMMI Isntitute, Pittsburgh, PA, USA, 2018.
[4] M. B. Chrissis, M. Konrad, and S. Shrum, CMMI for Development: Guide-

lines for Process Integration and Product Improvement, London, U.K.:
Pearson, 2011.

[5] Hackystat. Accessed: Aug. 20, 2019. [Online]. Available: https://hackystat.
github.io/

[6] D. Burton and W. Humphrey, ‘‘Mining PSP data,’’ in Proc. TSP Symp. San
Diego, CA, USA: Carnegie Mellon Univ., Software Engineering Institute,
2006, pp. 1–28.

[7] Tuma Solutions. The Software Process Dashboard Initiative Home Page.
Accessed: Aug. 20, 2019. [Online]. Available: http://www.processdash.
com/

[8] M. Raza and J. P. Faria, ‘‘Amodel for analyzing performance problems and
root causes in the personal software process,’’ J. Software: Evol. Process,
vol. 28, no. 4, pp. 254–271, Apr. 2016.

[9] M. Raza and J. P. Faria, ‘‘ProcessPAIR: A tool for automated performance
analysis and improvement recommendation in software development,’’
in Proc. 31st IEEE/ACM Int. Conf. Automated Softw. Eng. ASE, 2016,
pp. 798–803.

[10] M. Raza, J. A. P. Faria, and R. Salazar, ‘‘Assisting software engineering
students in analyzing their performance in software development,’’ Softw.
Qual. J., vol. 27, no. 3, pp. 1209–1237, 2019.

[11] W. S. Humphrey, PSP (SM): A Self-Improvement Process for Software
Engineers. Reading, MA, USA: Addison-Wesley, 2005.

[12] W. Humphrey and J. Over, Leadership, Teamwork, and Trust: Building a
Competitive Software Capability. Reading, MA, USA: Addison-Wesley,
2010.

[13] M. Kuhrmann, E. Hanser, C. R. Prause, P. Diebold, J. Münch, P. Tell,
V. Garousi, M. Felderer, K. Trektere, F. McCaffery, and O. Linssen,
‘‘Hybrid software and system development in practice: Waterfall, scrum,
and beyond,’’ in Proc. Int. Conf. Softw. Syst. Process ICSSP, 2017,
pp. 30–39.

[14] L. Alperowitz, D. Dzvonyar, and B. Bruegge, ‘‘Metrics in agile project
courses,’’ in Proc. 38th Int. Conf. Softw. Eng. Companion - ICSE, 2016,
pp. 323–326.

[15] A. del-Río-Ortega,M. Resinas, C. Cabanillas, and A. Ruiz-Cortés, ‘‘On the
definition and design-time analysis of process performance indicators,’’
Inf. Syst., vol. 38, no. 4, pp. 470–490, Jun. 2013.

[16] A. del-Río-Ortega, M. Resinas, A. Durán, B. Bernárdez, A. Ruiz-Cortés,
andM. Toro, ‘‘Visual ppinot: A graphical notation for process performance
indicators,’’ Bus. Inf. Syst. Eng., vol. 61, no. 2, pp. 137–161, Apr. 2019.

[17] W. Navidi, Statistics for Engineers and Scientists, 5th ed. New York, NY,
USA: McGraw-Hill, 2020.

[18] T. M. L. Alves, ‘‘Benchmark-based software product quality evaluation,’’
Ph.D. dissertation, School Eng., Univ. Minho, Braga, Portugal, 2012.

[19] T. L. Alves, C. Ypma, and J. Visser, ‘‘Deriving metric thresholds from
benchmark data,’’ in Proc. IEEE Int. Conf. Softw. Maintenance, Sep. 2010,
pp. 1–10.

[20] L. M. Surhone, M. T. Tennoe, and S. F. Henssonow, Ishikawa Diagram.
Betascript Publishing, 2010.

[21] Y. H. Kwak and F. T. Anbari, ‘‘Benefits, obstacles, and future of six sigma
approach,’’ Technovation, vol. 26, nos. 5–6, pp. 708–715, May 2006.

[22] J. Campos, ‘‘Risk management and failure mode and effect analysis for
product development,’’ Rapid Innov. LLC, 2012.

[23] M. Kalinowski, D. N. Card, and G. H. Travassos, ‘‘Evidence-based guide-
lines to defect causal analysis,’’ IEEE Softw., vol. 29, no. 4, pp. 16–18,
Jul. 2012.

[24] D. N. Card, ‘‘Defect-causal analysis drives down error rates,’’ IEEE Softw.,
vol. 10, no. 4, pp. 98–99, Jul. 1993.

[25] D. N. Card, ‘‘Defect analysis: Basic techniques for management and
learning,’’ Adv. Comput., vol. 65, pp. 259–295, 2005.

[26] R. Chillarege, I. S. Bhandari, J. K. Chaar, M. J. Halliday, D. S. Moebus, B.
K. Ray, and M.-Y. Wong, ‘‘Orthogonal defect classification—A concept
for in-process measurements,’’ IEEE Trans. Softw. Eng., vol. 18, no. 11,
pp. 943–956, Nov. 1992.

[27] B. Stoddard and D. Zubrow, ‘‘A tutorial for building CMMI pro-
cess performance models,’’ Softw. Eng. Inst., Carnegie Mellon Univ.,
Pittsburgh, PA, USA, Tech. Rep., Apr. 2010. [Online]. Available:
https://apps.dtic.mil/dtic/tr/fulltext/u2/a558352.pdf

[28] S. Tamura, ‘‘Integrating CMMI and TSP/PSP: Using TSP data to create
process performance models,’’ DTIC, Document, Fort Belvoir, VA, USA,
Tech. Rep. CMU/SEI-2009-TN-033, 2009. [Online]. Available: https://
resources.sei.cmu.edu/asset_files/TechnicalNote/2009_004_001_15089.
pdf

[29] S. Chatterjee and A. S. Hadi, Regression Analysis by Example. Hoboken,
NJ, USA: Wiley, 2015.

[30] M. Kuhn and K. Johnson, Applied Predictive Modeling. New York, NY,
USA: Springer, 2013.

[31] G. A. Seber and C. J. Wild, Nonlinear Regression. New York, NY, USA:
Wiley, 1989.

[32] C. C. Aggarwal, Data Classification: Algorithms and Applications, 1st ed.
London, U.K.: Chapman & Hall, 2014.

[33] A. Saltelli, M. Ratto, T. Andres, F. Campolongo, J. Cariboni, D. Gatelli,
M. Saisana, and S. Tarantola, Global Sensitivity Analysis: Primer. Hobo-
ken, NJ, USA: Wiley, 2008.

[34] M. Raza, ‘‘Automated software process performance analysis and improve-
ment recommendation,’’ Ph.D. dissertation, Dept. Inform. Eng., Univ.
Porto, Porto, Portugal, 2017.

[35] T. Daughtrey, Fundamental Concepts for the Software Quality Engineer.
Milwaukee, WI, USA: ASQ Quality Press, 2002.

[36] C. Jones, Software Assessments, Benchmarks, and Best Practices. Reading,
MA, USA: Addison-Wesley, 2000.

[37] C. F. Kemerer and M. C. Paulk, ‘‘The impact of design and code reviews
on software quality: An empirical study based on PSP data,’’ IEEE Trans.
Softw. Eng., vol. 35, no. 4, pp. 534–550, Jul. 2009.

[38] L. Breiman, ‘‘Classification and regression trees,’’ in The Wadsworth
Statistics/Probability Series. Kennett Square, PA, USA: Wadsworth Inter-
national Group, 1984.

[39] C. Shalizi. Classification and Regression Trees. Accessed: Dec. 2015.
[Online]. Available: http://www.stat.cmu.edu/~cshalizi/ADAfaEPoV/

[40] J. H. Friedman, ‘‘Multivariate adaptive regression splines,’’ Ann. Statist.,
vol. 19, no. 1, pp. 1–67, Mar. 1991.

[41] J. C. Gower, ‘‘A general coefficient of similarity and some of its proper-
ties,’’ Biometrics, vol. 27, no. 4, pp. 857–871, Dec. 1971.

[42] N. Fenton and J. Bieman, Software Metrics: A Rigorous
And Practical Approach. Boca Raton, FL, USA: CRC Press,
2014.

[43] S. McConnell, Software Estimation: Demystifying the Black Art. Red-
mond, WA, USA: Microsoft Press, 2006.

[44] L. Prechelt and B. Unger, A Controlled Experiment on the Effects of
PSP Training: Detailed Description and Evaluation. Karlsruhe, Germany:
Univ., Fak. Für Informatik, 1999.

[45] M. Kuhrmann, P. Diebold, J. Munch, P. Tell, K. Trektere, F. McCaffery,
V. Garousi, M. Felderer, O. Linssen, E. Hanser, and C. R. Prause, ‘‘Hybrid
software development approaches in practice: A European perspective,’’
IEEE Softw., vol. 36, no. 4, pp. 20–31, Jul. 2019.

[46] L. Bodo, H. C. D. Oliveira, F. A. Breve, and D. M. Eler, ‘‘Performance
indicators analysis in software processes using semi-supervised learning
with information visualization,’’ in Proc. 13th Int. Conf. Inf. Technol.,
New Generations, Las Vegas, NV, USA. Cham, Switzerland: Springer,
Apr. 2016, pp. 555–568.

[47] Q. Song, X. Zhu, G. Wang, H. Sun, H. Jiang, C. Xue, B. Xu, and W. Song,
‘‘A machine learning based software process model recommendation
method,’’ J. Syst. Softw., vol. 118, pp. 85–100, Aug. 2016.

[48] S. Dissanayake and M. Ramachandran, ‘‘Machine learning as a ser-
vice for software process improvement,’’ in Software Engineering in
the Era of Cloud Computing. Cham, Switzerland: Springer, 2020,
pp. 299–326.

141582 VOLUME 8, 2020

M. Raza, J. P. Faria: ProcessPAIR Method for Automated Software Process Performance Analysis

MUSHTAQ RAZA received the Ph.D. degree in
computer science specifically in software engi-
neering from the Faculty of Sciences, University
of Porto, Portugal. He was a Researcher with the
Institute for Systems and Computer Engineering,
Technology and Science (INESC TEC), Porto,
Portugal. He is currently an Assistant Professor of
computer science with Abdul Wali Khan Univer-
sityMardan (AWKUM) and aResearchCollabora-
tor with INESC TEC. He has published more than

ten papers in renowned journals and conferences in software engineering. His
research interests include software process improvement, machine learning,
big data analysis, and software engineering. He is a Program Committee
Member of ICSSP, top conference in software engineering, and a Focal
Person of the National Technology Fund at AWKUM.

JOÃO PASCOAL FARIA (Member, IEEE)
received the Ph.D. degree in electrical and com-
puter engineering from the Faculty of Engineering,
University of Porto (FEUP), in 1999. He is cur-
rently an Associate Professor with FEUP, a Senior
Researcher with the Institute for Systems and
Computer Engineering, Technology and Science
(INESC TEC), and the President of the Secto-
rial Commission for Information and Communi-
cations Technology (CS/03) in the scope of the

Portuguese Quality Institute (IPQ). He has more than 25 years of research
and development experience in software engineering, having published more
than 60 papers in several journals and conferences, and obtained 4 best
paper awards. His current research interests include automated performance
monitoring, analysis and improvement recommendation, test automation
for distributed, and heterogeneous and time-constrained systems. He is a
member of ACM.

VOLUME 8, 2020 141583

