
Full Terms & Conditions of access and use can be found at
http://www.tandfonline.com/action/journalInformation?journalCode=tres20

International Journal of Remote Sensing

ISSN: 0143-1161 (Print) 1366-5901 (Online) Journal homepage: http://www.tandfonline.com/loi/tres20

Vineyard properties extraction combining UAS-
based RGB imagery with elevation data

Luís Pádua, Pedro Marques, Jonáš Hruška, Telmo Adão, José Bessa, António
Sousa, Emanuel Peres, Raul Morais & Joaquim J. Sousa

To cite this article: Luís Pádua, Pedro Marques, Jonáš Hruška, Telmo Adão, José Bessa, António
Sousa, Emanuel Peres, Raul Morais & Joaquim J. Sousa (2018): Vineyard properties extraction
combining UAS-based RGB imagery with elevation data, International Journal of Remote Sensing,
DOI: 10.1080/01431161.2018.1471548

To link to this article:  https://doi.org/10.1080/01431161.2018.1471548

Published online: 10 May 2018.

Submit your article to this journal 

View related articles 

View Crossmark data

http://www.tandfonline.com/action/journalInformation?journalCode=tres20
http://www.tandfonline.com/loi/tres20
http://www.tandfonline.com/action/showCitFormats?doi=10.1080/01431161.2018.1471548
https://doi.org/10.1080/01431161.2018.1471548
http://www.tandfonline.com/action/authorSubmission?journalCode=tres20&show=instructions
http://www.tandfonline.com/action/authorSubmission?journalCode=tres20&show=instructions
http://www.tandfonline.com/doi/mlt/10.1080/01431161.2018.1471548
http://www.tandfonline.com/doi/mlt/10.1080/01431161.2018.1471548
http://crossmark.crossref.org/dialog/?doi=10.1080/01431161.2018.1471548&domain=pdf&date_stamp=2018-05-10
http://crossmark.crossref.org/dialog/?doi=10.1080/01431161.2018.1471548&domain=pdf&date_stamp=2018-05-10


Vineyard properties extraction combining UAS-based RGB
imagery with elevation data
Luís Pádua a, Pedro Marquesa, Jonáš Hruškaa, Telmo Adão a,b, José Bessaa,
António Sousa a,b, Emanuel Peres a,b, Raul Morais a,b and Joaquim J. Sousa a,b

aSchool of Science and Technology, University of Trás-os-Montes e Alto Douro, Vila Real, Portugal; bCentre
for Robotics in Industry and Intelligent Systems (CRIIS), INESC Technology and Science (INESC-TEC), Porto,
Portugal

ABSTRACT
To differentiate between canopy and vegetation cover is particularly
challenging. Nonetheless, it is pivotal in obtaining the exact crops’
vegetation when using remote-sensing data. In this article, a method
to automatically estimate and extract vineyards’ canopy is proposed.
It combines vegetation indices and digital elevationmodels – derived
from high-resolution images, acquired using unmanned aerial vehi-
cles – to differentiate between vines’ canopy and inter-row vegeta-
tion cover. This enables the extraction of relevant information from a
specific vineyard plot. The proposed method was applied to data
acquired from some vineyards located in Portugal’s north-eastern
region, and the resulting parameters were validated. It proved to be
an effective method when applied with consumer-grade sensors,
carried by unmanned aerial vehicles. Moreover, it also proved to be
a fast and efficient way to extract vineyard information, enabling
vineyard plots mapping for precision viticulture management tasks.
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1. Introduction and background

Requirements to optimize vineyards’ (Vitis vinifera L.) performance in a precision viticul-
ture (PV) context are high because both yield and quality should be maximized, while
environmental risks and impacts should be reduced (Proffitt et al. 2006). Therefore,
farmers achieve the utmost control over vineyard management by considering its
variability. Grapevine quality and development directly relate with the vineyards’ spatial
heterogeneity, which depends on several factors associated to the vineyard itself – soil,
crop management, irrigation, nutritional status, pest and disease control, and external
variables, as the climate – to determine the inter-annual and intra-vineyard variability of
both yield and quality (Matese et al. 2015). These factors can lead to the occurrence of
biotic and abiotic issues. Depending on their severity, they can result in a significant
production decrease and consequently in significant economic losses (Baofeng et al.
2016). Recent technological development opened the possibility of implementing both
precision agriculture (PA) and PV, along with the combination of certain procedures, to

CONTACT Joaquim J. Sousa jjsousa@utad.pt School of Science and Technology, University of Trás-os-Montes e
Alto Douro, Vila Real, Portugal

INTERNATIONAL JOURNAL OF REMOTE SENSING, 2018
https://doi.org/10.1080/01431161.2018.1471548

© 2018 Informa UK Limited, trading as Taylor & Francis Group

http://orcid.org/0000-0002-7570-9773
http://orcid.org/0000-0002-2727-0014
http://orcid.org/0000-0002-9269-6855
http://orcid.org/0000-0001-5669-7976
http://orcid.org/0000-0003-2440-9153
http://orcid.org/0000-0003-4533-930X
http://www.tandfonline.com
http://crossmark.crossref.org/dialog/?doi=10.1080/01431161.2018.1471548&domain=pdf


improve the decision-making process in several field-related tasks (Zarco-Tejada,
Hubbard, and Loudjani 2014). Hence, remote-sensing data can provide a better under-
standing of a terrain’s variability and can be applied in the context of PV management
(Bobillet et al. 2003). Indeed, sensors used in remote-sensing platforms provide an
effective way to extract spatial information about crops’ state in a non-destructive
manner (Weiss and Baret 2017).

Regarding vineyards, the usage of remote-sensing platforms is usually related to
grape varieties mapping (Lacar, Lewis, and Grierson 2001); vineyard leaf area index
(LAI) estimation (Johnson et al. 2003; Kalisperakis et al. 2015; Mathews and Jensen
2013); irrigation scheduling and water stress variability (Baluja et al. 2012; Bellvert and
Girona 2012; Bellvert et al. 2013; Zarco-Tejada, Berjón, and Miller 2004); grapevine
phenology monitoring (Fraga et al. 2014; Lamb, Weedon, and Bramley 2004); disease
detection and mapping (Albetis et al. 2017; Matese et al. 2013); grape quality mapping in
vineyards affected by nutrient deficiency (Martín et al. 2015); and chlorophyll estimation
(Zarco-Tejada et al. 2005), among others. However, the use of remote-sensing techni-
ques is challenging due to the alternation of vines’ canopies – which form a set of
parallel rows – along with the presence of bare soil or vegetation cover, within the
vineyard plot (Burgos et al. 2015; Matese et al. 2015). By considering the whole vineyard
terrain, the presence of information other than vines’ canopy is added, i.e. the inter-row
vegetation cover and shadows produced by vines’ canopy and its surroundings. To
detect vine’s canopy, several authors and research teams proposed approaches based
on the use of vegetation indices (VIs) applied to the imagery data provided by remote-
sensing platforms (Albetis et al. 2017; Bellvert and Girona 2012; Fraga et al. 2014;
Johnson et al. 2003; Matese et al. 2015; Naidu et al. 2009; Smit, Sithole, and Strever
2010). VIs are simple arithmetic operations applied to the spectral narrow-band or
broad-band imagery, with information from different parts of the electromagnetic
spectrum (Pádua et al. 2017). However, VIs are often computed over the whole vineyard
or at the plot level. Thus, information not related with vines is present. To produce
correct vineyard maps, a separation of vine pixels from non-vine pixels in the remote-
sensing data is required. Although feasible manually, it is a laborious, error-prone, and
time-consuming task. Still, it is crucial since it heavily contributes to the obtained results’
global accuracy, which, in turn, increases vineyards’ management efficiency by providing
information about crops’ variability. This enables the application of more efficient
treatments to the plants and autonomous guidance for unmanned ground vehicles.

Considering the previously presented requirements, satellite imagery is not suitable for
vineyards’ management tasks. The spatial resolution provided is, in general, too sparse
(Matese et al. 2015) and the data acquisition frequency too low. Manned aircrafts and
Unmanned Aerial Systems (UAS) provide more timely and flexible data acquisition solutions
(Weiss and Baret 2017). While manned aircrafts can cover larger areas with high resolution,
they can be expensive for small-sized projects (Pádua et al. 2017). On the other hand, the
ability of UAS (Unnamed Aerial Vehicle [UAV] + sensors and ground control station) to
perform low-altitude flights – enabling the acquisition of very high-resolution data –makes
them an ideal tool to usewhen versatility, cost-effectiveness, and temporal data are needed.

To overcome the vine’s vegetation identification issue, different studies proposed
(semi)automatic methods, using image-processing techniques on a single-band image,
Vis, or digital elevation models (DEMs). Bobillet et al. (2003) proposed a method to
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classify vine rows based on vineyards’ active contours. This method’s main issue was the
requirement of manual adjustments in pre- and post-processing stages to achieve valid
results. Furthermore, problems identifying vine rows with grass in-between them were
also reported. Chanussot, Bas, and Bombrun (2005) studied the identification of missing
vines and proposed a method that uses the Radon transform of the Fourier spectrum
over a vineyard’s image. This image is computed by subtracting the red band from the
green band of the RGB image. The process allowed finding both the inter-row spacing
and row orientation. Next, a set of morphological operations and a median filter over a
binary image generate an image that signals missing vines. However, this method
reportedly fails when dealing with irregularly spaced, too sparse, or curved plantations.
Comba et al. (2015) proposed a method that benefits from vegetation’s high reflectance
in near-infrared (NIR) imagery to apply the Hough space clustering over an image. This
image is a result of local histogram equalization thresholding to estimate vine’s canopy
vegetation and total least squares technique to estimate vine rows. The method uses
techniques that require a large amount of processing time in big areas or images with
lower ground sample distance (GSD) values. The method developed by Comba et al.
(2015) was also applied in other studies to produce vigour maps (Primicerio et al. 2015)
and to estimate vines positions in a vineyard (Primicerio et al. 2017). In the latter, the
trunk’s position was estimated along with the canopy shape of each individual plant. It
was assumed that the plants are equally spaced along each vine row, which enabled the
application of a machine learning procedure to discriminate between the presence or
the absence of a plant along a row. Nolan et al. (2015) used skeletonization techniques
to accurately segment vineyard rows for vineyard mapping. The proposed method used
single-band images from distinct types of sensors as inputs, with the only requirement
of having a high spatial resolution to distinguish vine rows from soil. The reported failure
rate was related with the presence of trees obscuring vine rows, shadows, and segmen-
tation discontinuities. To detect vine rows, Puletti, Perria, and Storchi (2014) proposed a
method that considers the lower reflectance values from the vineyard canopy red
channel and the soil’s high reflectance. An image obtained by a high-pass filter is then
processed and passed to a modified version of Ward’s technique (Ward 1963), which
provides an unsupervised hierarchical cluster analysis. There were problems reported in
areas with low contrast between vineyard canopy and soil. Poblete-Echeverría et al.
(2017) studied different approaches to perform vineyard vegetation detection, using VIs
and both supervised (artificial neural networks and Random Forests) and unsupervised
(k-means clustering) classification methods in three classes: plant, shadow, and soil. The
obtained results showed that the combination of VIs with artificial neural networks
provided good results. Poblete-Echeverría et al. (2017) stated that supervised classifica-
tion methods needed human intervention for model calibration with a training data set.
On the other hand, VIs complemented with the Otsu’s method (Otsu 1979) for thresh-
olding, had a higher overall accuracy, and performed very well in the detection of
vineyards’ canopy. This resulted in an easy and automatic method for vine vegetation
extraction, even though VIs can also classify vegetation with the same reflectance in
between vine rows.

The problem of inter-row vegetation classification can be surmounted with a more
straightforward method: using DEMs computed from the photogrammetric processing
of UAV-based imagery and by considering the vineyard plot structure’s height. DEMs are
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an accurate representation of the surface elevation. They can provide terrain’s surface
elevation data – digital terrain model (DTM) – and contain elevation data from features
present in the ground surface – digital surface model (DSM). Using this type of data,
Kalisperakis et al. (2015) were able to estimate vineyards’ LAI, achieving good correlation
rates when compared with ground-truth measurements, whereas hyperspectral and RGB
imagery obtained lower correlation rates. Burgos et al. (2015) used this type of data to
separate non-vine pixels from vine pixels, by producing a Digital Differential Model –
that results from subtracting the DTM from the DSM – also known as Canopy Height
Model or Crop Surface Model (CSM), CSM will be the terminology used in this study. To
assess CSM obtained from photogrammetric processing of UAS-based multispectral data
in a vineyard plot, Matese, Gennaro, and Berton 2016 found a relationship between
vines’ heights – obtained from CSM – and normalized difference vegetation index (NDVI)
values: higher vegetation heights coincided with higher NDVI values. Moreover, the
authors also shown that UAS are suitable for vineyard’s biomass estimation. However,
flight altitude allied with the sensor’s resolution caused a smoothness on the DSM,
which lead the authors to consider only a vegetation’s height above 0.5 m. In (Burgos
et al. 2015; Kalisperakis et al. 2015; Matese, Gennaro, and Berton 2016), elevation data
obtained from the UAS proved to be an effective technique to estimate vineyard’s
vegetation, regardless of the terrain slope or outliers. Baofeng et al. (2016) proposed a
method that used the DSM to estimate missing plants and plants potentially affected
from biotic and abiotic problems. The method relied on the DSM’s local normalization
with a sliding window to remove the terrain slope effect, transforming it in a binary
image that differentiates vine from non-vine pixels. This approach requires the image to
be both inverted and rotated to get a vertical row alignment and divided into a grid. If
the non-vine pixels percentage is greater than 90%, it is considered as missing vine,
whereas if it is between 20% and 90%, it is deemed to be affected vine. Weiss and Baret
(2017) processed UAV-based RGB imagery to extract the vineyard’s macrostructure, vine
row orientation, cover fraction, row width, row spacing, percentage of vegetation, and
missing vegetation. The method analyses the percentage of points in the processed
dense-point cloud, where a threshold was used to separate vine row pixels from back-
ground pixels. This method also requires vertical vine row alignment, obtained by
estimating the row orientation using the Hough transform. Thus, row spacing results
from using row peaks’ average value from a horizontal profile line. Moreover, a cover
fraction estimation results from dividing the estimated row width by the row spacing or
by computing the ratio between the number of pixels estimated as vineyard vegetation
and the total number of pixels in the image. Missing plants calculation was done by
individual analysis of each row based on the percentage of non-vegetation pixels. This
procedure, as stated by the authors, is not very sensitive to large variations of row width
and height. However, depending on the flight characteristics (image overlapping, alti-
tude, sensor, and data processing software) and of the vineyard management practices
or its phenological cycle, produced elevation models can be imprecise, rendering them
unable to differentiate accurately between vines and soil.

The aforementioned studies show the diversity of methodologies found in literature
concerning the segmentation of vine rows and vineyard vegetation. Each has their own
strengths and weaknesses, and this work uses them in a complementary way, especially
UAS-based methodologies. Indeed, photogrammetric processing of imagery – acquired
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during an aerial survey, as point cloud(s) – along with individual UAV imagery, can be
used to compute orthophoto mosaics, DTMs, and 3D models of the surveyed area
(Pádua et al. 2017). By combining the very high-resolution outcomes produced from
UAVs imagery, the proposed method’s main goals are to (1) identify and extract vine-
yard’s vegetation by distinguishing it from soil, canopy shadow, and eventual inter-row
vegetation; (2) detect vine rows for a given vineyard plot; and (3) estimate possible
missing vine plants.

The proposedmethod works independently from the type of broadband imagery sensor
coupled to the UAV, the vineyard plot orientation, and terrain slope. In addition, it uses as
few parameters as possible to be robust enough to achieve the defined goals. Finally, the
proposed method also considers the potential of imagery data to estimate vineyard para-
meters. Thus, combining VIs with elevation data to provide accurate vineyard maps may be
used to extract vineyard-related parameters in the scope of PV, helping in both the
management and decision-making tasks. The proposed method proved to be effective
when applied with low-cost consumer-grade sensors carried by UAVs.

This article is structured in six sections. In this section, the motivation and main goals
were described, along with some related works and applications of remote sensing in
PV, which enabled to assess the actual state-of-the-art. Section 2 describes the data
acquisition process, the used UAV platforms, and the vineyard data used in the study.
Section 3 presents an evaluation of the different VIs’ suitability to detect vineyard
vegetation. Then, the proposed method is described in Section 4. Section 5 presents
the results, validation, and discussion of the proposed method, when applied to differ-
ent vineyard plots. Finally, Section 6 points out the main conclusions and future direc-
tions towards new developments and the method’s applicability.

2. Data description

Data used in this study came from vineyards located in Portugal’s north-eastern region,
which has some unique features concerning the size, terrain slope, and management
practices.

Aerial surveys were performed using the low-cost and light-weight (1380 g) rotary-
wing UAV DJI Phantom 4 (DJI, Shenzhen, China), which has a maximum flight time of
approximately 28 min per battery and vertical take-off and landing capabilities. It is
equipped with a remote controller, a Global Navigation Satellite System (GNSS) receiver,
a camera, and a frontal collision avoidance system. Regarding the camera – attached to a
3-axis gimbal that provides stabilization – it has a 12.4 megapixel sensor, which allows
acquiring RGB images with a maximum resolution of 4000 × 3000 pixels. Autonomous
flights were carried out using the Pix4Dcapture app (Pix4D SA, Lausanne, Switzerland)
on an Android smartphone.

This study’s flights took place during June and July 2017, using a double-grid
configuration, at 60-80 m height, from the UAV take-off position and with an image
overlap between 70% and 80%. Acquired data were processed using Pix4Dmapper Pro
(Pix4D SA, Lausanne, Switzerland), which can compute orthophoto mosaics, DSM, and
DTM from a dense point cloud. This type of very high-resolution data provides a general
overview of the whole vineyard. Furthermore, it enables to associate operations – such
as VIs – that allow the enhancement of certain vegetation features by using
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combinations from multiple bands and CSM, which can be computed to obtain surface’s
objects’ heights. The computation of both the photogrammetric and the proposed
method was performed by using a laptop equipped with a 2.6 GHz Intel i7-4720HQ
CPU, 16GB RAM (DDR3, 1600 MHz), and a NVidia GeForce GTX 970m (3GB GDDR5
5000 MHz) GPU.

Aerial surveys included three different vineyards, from which 16 plots were used for
further evaluation. Figure 1 shows the orthophoto mosaics of the three vineyards used
in this study and presents details about the flight characteristics for each vineyard, along
with the boundaries of each analysed plot and the areas used for VIs and method’s
validation. Vineyards B and C are used for commercial purposes, while vineyard A is not.
When compared in-field, plots belonging to vineyard B show better management

Figure 1. Resulting orthophoto mosaics from the three surveyed vineyard plots used to evaluate the
proposed method along with their flight characteristics, surveyed area (SA), flight height (FH),
ground sample distance (GSD), and number of acquired images (#Img). Vineyard A is located at
41°17'08.0"N, 7°44'12.0"W; vineyard B at 41°17'41.5"N, 7°29'51.3"W; and Vineyard C at 41°15'51.5"N,
8°14'12.1"W. The analysed plots are delimited by black lines and areas extracted from the ortho-
photo mosaics being polygons delimited in yellow (used in vegetation indices) and blue (used in the
method’s validation).
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practices or are less affected by biotic issues than vineyards A and C. The latter has more
missing vine plants along the plots. Vineyard C plots have larger areas and are sur-
rounded by trees – that cover part of the rows – at their outer limits. Regarding the
analysed plots, 11 plots were from vineyard A, 2 from vineyard B, and 3 from vineyard C,
as presented in Figure 1.

3. Vineyard vegetation detection using VIs

VI behaviour with different vineyard images, vine rows orientation, shadow presence,
inter-row vegetation, and missing vine plants was observed and compared. Six different
areas within the studied vineyard plots were analysed, as presented in Figure 2.

The evaluation process is composed of the following steps: (1) VIs are computed in
each area, producing a greyscale image from the arithmetic operations done on differ-
ent bands; (2) then, a global threshold is applied on the resulting images to create a
binary image, based on Otsu’s method (Otsu 1979). This method is capable of auto-
matically threshold a single-band image by dividing its histogram in foreground and
background pixels; (3) morphological operations (open and close) are carried out to filter
the binary images (small clusters of pixels are removed), thus improving the results
obtained from VIs; and (4) lastly, the resulting binary image is compared with a manually
segmented image that is used as reference.

Accuracy is computed by comparing the resulting image obtained for each VI by
applying the aforementioned steps with its reference image. Results are calculated by
analysing the value of each pixel, from which one of the three conditions can be
observed: (1) same pixel value in both images (0 or 1), which is classified as ‘exact
detection’; (2) a false detection, if the pixel value of the manually segmented image is
one and in the resulting image is zero, being classified as ‘underdetection’; and (3)
classified as ‘overdetection’ if the situation is opposite to the one described in (2). Based
on the bibliographic review, 13 VIs were selected, which are presented in Table 1, and
evaluated in this process. From these, only some were directly applied to vineyards.

Figure 2. RGB images of the areas used to evaluate VI behaviour (row orientation, shadow presence,
inter-row vegetation, and missed plants were considered).
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An overall average result of 87% of vineyard vegetation exact detection was reached.
The only exception was the Woebbecke Index (WI) that was very inconsistent amongst
the tested areas (from 49% to 89% exact detection), as presented in Table 2. It is worth
to note that many VIs had over 90% accuracy when applied to the different areas.

G% with 91.9%, GLI with 91.8%, RGBVI with 91.6%, and ExG and NGBDI, both with
91.4%, are the VIs with the highest average accuracy. Moreover, while NGBDI reached
4.6% of overdetection, the remaining had lower values – around 2%. These five VIs were
compared to select the most suitable for vineyard’s vegetation detection. Figure 3
presents the evaluation regarding the areas where VIs presented the same value. As
depicted, the five VIs have an overlap of 94% for the six tested areas, which makes their
performance very similar. However, G% has a slightly higher performance and was
therefore selected for this study.

Figure 4 shows the agreement between the automatic threshold value obtained from
the Otsu’s method and a selected fixed threshold value. The obtained results are in line
with the mean values given from the Otsu’s method in the six evaluated areas and the
overall detection percentage assumes only one maximum value, proving the suitability
of the Otsu’s method to automatically estimate a threshold value.

4. Proposed method for vineyard analysis

This section presents the proposed method to identify vineyard vegetation, distinguish-
ing it from non-vineyard features that can be present in a vineyard plot. The main
challenge when regarding vineyard vegetation monitoring is related with the similar
reflectance that other types of vegetation can present, which is especially noticeable in
common RGB imagery and less noticeable in NIR or hyperspectral imagery. Therefore, by
considering the usual vineyards’ row structure and its regularity, the method explores

Table 1. RGB vegetation indices evaluated in the estimation of vineyard vegetation.
Index Formula References

Normalized green red
difference index

NGRDI ¼ Green � Red
Green þ Red

(Falkowski et al. 2005; Gitelson et al.
2002; Kawashima and Nakatani 1998;
Tucker 1979)

Normalized green blue
difference index

NGBDI ¼ Green � Blue
Green þ Blue

(Kawashima and Nakatani 1998)

Modified normalized green
red difference index

MNGRDI ¼ Green2 � Red2

Green2 þ Red2
(Bendig et al. 2015)

Red green blue vegetation
index

RGBVI ¼ Green2 � Blue�Redð Þ
Green2 þ Blue�Redð Þ

(Bendig et al. 2015)

Blue/green pigment index BGVI ¼ Blue
Green

(P. J. Zarco-Tejada et al. 2005)
Blue/red pigment index BRVI ¼ Blue

Red
(P. J. Zarco-Tejada et al. 2005)

Excess green ExG ¼ 2gn � rn � bn (Woebbecke et al. 1995)
Woebbecke index WI ¼ gn� bn

rn� gn
(Woebbecke et al. 1995)

Vegetation index green VARIg ¼ Green � Red
Green þ Red � Blue

(Gitelson et al. 2002)
Green leaf index GLI ¼ 2Green � Red � Blue

2Green þ Red � Blue
(Gobron et al. 2000; Hunt et al. 2013)

Triangular greenness index TGI ¼ Green� 0:39� Red� 0:61� Blue (Hunt et al. 2013)
2G_RGi 2G RGi ¼ 2Green� Redþ Blueð Þ (Richardson et al. 2007)
Green percentage index G% ¼ Green

Red þ Green þ Blueð Þ (Richardson et al. 2007)

where rn ¼ Red
RedþGreenþBlueð Þ ; gn ¼ Green

RedþGreenþBlueð Þ ; bn ¼ Blue
RedþGreenþBlueð Þ and green, red, and blue are the reflectance

values of each band.
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the usage of the different outcomes provided by photogrammetric processing of UAS
imagery in combination with image processing techniques that namely use elevation
data and orthophoto mosaic. This enables the classification of vine vegetation within a
given vineyard plot and distinguish it from vegetation cover, shadows, and bare soil.

Figure 3. Percentage of common pixels to the five-selected VIs in the test areas.

Figure 4. Vine vegetation detection accuracy based on the threshold values for the top five
vegetation indices in area III. It is also presented a table with the averaged results.
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Moreover, the proposed method is also capable to estimate potential missing vine
plants. As inputs, the UAS-based photogrammetric outcomes are used. Feature extrac-
tion from a given vineyard plot is achieved by masking non-vine vegetation.

Figure 5 presents the proposed method’s operation sequences. There are three
distinct steps composing it: (1) vegetation extraction and pixel clustering; (2) vine
rows reconstruction, by means of analysing each formed pixel cluster retrieved in step
1; and (3) vineyard parameters extraction – vine rows, vineyard vegetation, and potential
missing vines. Each step plays an essential role in the process of vineyard vegetation
extraction. All are further detailed in the next subsections. The notation used in this
section is explained in Table 3.

4.1. Step 1: vegetation extraction and pixel clustering

Method’s step 1 aims to extract vine-related pixels from the aerial high-resolution
images of a given vineyard plot, which defines the polygon P (Figure 6(f)). As such,
data that do not represent vine vegetation, such as soil, grass, and possible shadowing
effects caused by vine canopies, trees, and buildings, is discarded. To accurately com-
plete this step, both orthophoto mosaic (Figure 6(a)) and elevation data (Figure 6(b,c))
are used. The former is used to compute the VI (Figure 6(d)). Assuming that in the
produced orthophoto mosaic, vegetation presents higher reflectance values than non-
vegetation areas, a threshold operation can be applied to separate both. The computed
VI is used to create a binary image produced using Otsu’s method (Otsu 1979), as
presented in Equation (1), where V (Figure 6(g)) represents the computed binary
image resulting from the Otsu’s method application, VI represents the image produced
by the VI computation, and T represents the defined threshold from Otsu’s method. For
each (i, j) pixel position in the image, i represents the line number and j represents the

Figure 5. Proposed method’s operation general flow chart.
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column number. In this way, vi;j represents the matrix V entry for the position (i, j). The
same notation is used in the remaining equations.

vi;j ¼ 1; vii;j � T
0; vii;j < T

:

�
(1)

Next, CSM (Figure 6(e)) is computed using elevation data, as shown in Equation (2)
(Holman et al. 2016; Matese, Gennaro, and Berton 2016). Each pixel contains a value h
that corresponds to the height of objects above ground: values close to zero represent
the ground. This operation removes the field’s topography.

CSM ¼ DSM� DTM : (2)

In the same way as V, the computed CSM has a thresholding operation, as represented
in Equation (3), where each height value (h) is analysed according to a height range
(from hmin to hmax), producing a binary image C (Figure 6(h)), only containing pixels
within the values defined for the height range. This process enables a CSM’s pixel-wise
filtering to discard pixels other than vineyard’s vegetation. Knowledge of the analysed
areas allowed the selection of h values ranging from 0.5 to 2 m, thus removing possible
data other than vineyard’s vegetation. However, height range may depend on both the
vineyard’s architecture and the management practices used.

Table 3. Notation table.
Notation Meaning

P Binary image of the polygon of the plot to be analysed
VI Single-band image obtained from vegetation index computation
T Threshold value obtained from Otsu’s method application
V Binary image resultant from VI thresholding step
CSM Single-band image obtained from subtraction of the DTM to the DSM computation
hmax Maximum height range used for CSM thresholding
hmin Minimum height range used for CSM thresholding
C Binary image resultant from CSM thresholding according to hmin and hmax
W Binary image resultant from the conjunction of V, C, and P
B Group of interconnected pixels forming a cluster resultant from pixel clustering
B Set of all detected clusters B in W
α Orientation angle of the cluster B
θ Mean orientation all α values from the set of clusters B
Fθ Structuring element used to dilate W, forming E. It is constituted by a line with orientation θ
E Binary image resultant after dilation of W
D Group of interconnected pixels forming a clusters resultant from the pixel clustering of E
D Set of all detected clusters in E
U Binary image containing estimated inter-row vegetation
L Binary image with all pixels detected in V present in E
L Complement of L
Scentre Line segment that intersects each cluster’s (D) centroid, ends in its extremities, and has its orientation
S Binary image contained all detected Scentre elements
Fr Structuring element used to dilate G, forming Q. It has a disk shape element with radius r
G Binary image produced after intersection of all si;j pixels with �li;j , representing vine row areas with

potential missing vines
Q Binary image produced after G dilation, representing vine rows areas with potential missing vines
K Property intended be used to calculate its area, which can assume the value of the binary images E, L, Q
A Area of a given property to calculate K, which is the sum of all pixel values (0 or 1) of a binary image with

m � n size
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ci;j ¼ 1; hmin � csmi;j � hmax

0; otherwise
:

�
(3)

As shown in the RGB image presented in Figure 7(a) and in the false colour image,
that results from applying G% VI (Figure 7(b)), part of the inter-row vegetation has

Figure 6. Extracted parameters resulting from the proposed method’s step 3. Green colours
represent detected vegetation – light green corresponds to vine row vegetation and dark green
to inter-row vegetation; red represents the estimated missing vegetation; yellow represents the row
centre; and grey the estimated vine rows boundaries.
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almost the same reflectance value of some vine canopies, which is not verified in the
CSM computation, presented in Figure 7(c).

The method’s main steps are summarized in Figure 8, where plot 02 from vineyard A
is used to illustrate its application, from the input data to the final extracted parameters.

Figure 9 presents a fraction of a vineyard plot where the superimposed lines are
related to the thresholded G% – in yellow – (V) and CSM above 0.5 m and below 2 m –
in red (C). The detection of inter-row vegetation is noticeable in V. However, it is
accurate in the row’s vegetation. On the other hand, shadow detection is also consid-
ered in the C threshold but not in V.

By merging both types of data, it is possible to obtain areas where only pixels
considered as vegetation and with a certain height are present, thus removing vegeta-
tion cover that could also be identified as vine vegetation, which would lead to
erroneous classification of vine rows. In this way, the conjunction of the binary images
produced after thresholding (V and C) is used to create a new binary mask image Wð Þ
(Figure 8(k)), according to Equation (4), where P is also considered to discard pixels
outside the area under analysis.

wi;j ¼ 1; if vi;j ¼ 1 ^ ci;j ¼ 1 ^ pi;j ¼ 1
0; otherwise

:

�
(4)

The resulting binary image Wð Þ is submitted to a sequence of morphological operations
(open, close, and removal of small objects) to remove outliers and improve the detection
accuracy. This step can evaluate different properties from each generated group of
interconnected pixels B 2 B, where B represents all the detected clusters at the plot

Figure 7. Different UAS-based outcomes from part of a vineyard plot: (a) RGB image; (b) corre-
sponding false colour image from the green percentage index computation; and (c) CSM line profile
from the line traced upon three vine rows.
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level. Resulting clusters are areas where vine canopies are present. At this stage, each
vine row is not connected and therefore a reconstructive process takes place to join the
unconnected clusters into row shapes.

4.2. Step 2: vine rows reconstruction

Depending on the vineyards’ management practices and on the acquired data resolu-
tion, clusters of pixels obtained in the proposed method’s step 1 do not represent
complete vine rows, requiring a reconstruction process. Therefore, the mean plot
orientation θ is estimated based on the dominant angle of all detected clusters from
the set of clusters B. This angle (θ) is obtained by the orientation α of each detected

Figure 8. Method processing steps applied to the plot 02 from vineyard A, some images are in a
false colour representation for better interpretation.

Figure 9. Visual interpretation of both the thresholding and the masking processes: vegetation
index represented in yellow and the canopy height model in red.
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cluster, which is computed based on the angle between the x-axis and the major axis of
the ellipse containing the same second-moments as B. θ assumes the mean value of all
α 2 B. Then, clusters are submitted to a dilation process, ϕ, using a linear structuring
element Fθ with one-pixel width and orientation θ, obtaining E, which depicts the vine
rows map of the plot under analysis, as represented in Equation (5) (Figure 8(j)). This
forms a new set of clusters D, where D represents a single vine row.

ei;j ¼ ϕFθ wi;j
� �

;where ei;j ^ pi;j ¼ 1 : (5)

By applying this procedure, previously unconnected clusters begin to form a set of
clusters representing the connection of clusters in each row, therefore enabling vine
rows reconstruction.

4.3. Step 3: vineyard parameters extraction

Method’s step 3 relies on the final extraction of vineyard-related information, namely by
estimating vine rows, vineyard vegetation, and areas with missing vine plants (Figure 8(i)).
The resulting vine rows estimation image Wð Þ – obtained after the proposed method’s
step 2 – enables to estimate the number of rows and their occupation area present in P.
After estimating rows, the mask with vegetation Vð Þ is used to detect vine’s vegetation,
where all pixels present in B and contained in D form L, which represents the vine
vegetation.

Vegetation that lies outside vine rows area and that is considered in B is classified as
inter-row vegetation (U). Areas with potential missing vine plants are predicted bymatching
the estimated vine rows mask central lines S with the complement of the estimated vine

vegetation L, forming a new binary image G. S is constituted by Scentre which is a line
segment that intersects each cluster’s (D) centroid and ends at its extremities and has its
orientation. However, detecting possible missing vine plants is typically a more complex
problem, since, in many cases, adjacent vines tend to cover the empty space of the missing
vine canopy, making the estimation more complicate. Next, the clusters pass through a
process of image dilation, represented in Equation (6), to compute a representative map of
the detected areas, Q. However, this time, F is a disk-shaped structuring element whose
radius r is half of the mean value of all cluster’s width (DÞ.

qi;j ¼ ϕFr gi;j
� �

(6)

The area A of each estimated output can be calculated by Equation (7), which represents
the sum of all pixels contained (matrix with m lines and n columns) in the property to
calculate K (vine rows area, vine vegetation, potential missing vine plants, and inter-row
vegetation), multiplied by the squared GSD value.

A ¼
Xi¼1

m

Xj¼1

n

ki:j

 !
GSD2 : (7)

Figure 6 presents the detected vegetation, potential missing vine plants and the
estimated vine rows area. The method’s outputs are an accurate and quick way to
provide vineyard status information in a PV context, to help viticulturists in their
vineyard management activities.
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5. Results and discussion

For validation purposes, the proposed method was applied to 16 plots from three different
vineyards presented in Section 2 (Figure 1). As an accurate manual segmentation of the
vineyard vegetation present in all the selected plots is a highly laborious and time-consum-
ing task, small fractions of eight plots – A.02, A.04, A.10, B.01, B.02, C.01, C.02, and C.03 –
were extracted. This allowed a more precise and quicker process to create precise manual
segmented images. The aforementioned fractions – four per plot, each with an approxi-
mated area of 100 m2 (10 m × 10 m) – were selected assuring diversity in terms of rates of
missing vine plants, rows orientation, and inter-row vegetation.

5.1. Proposed method validation

Regarding vine rows estimation, different parameters were evaluated: (1) good detection
– the row was detected with a high overlap when compared with its real position; (2)
missed detection – the row was not detected; (3) extra detection – wrongly detected
vine row; (4) overdetection – the row was classified in multiple vine rows; (5) under-
detection – multiple vine rows classified as one row; (6) larger detection – row is larger
than its actual size; and (7) smaller detection – vine row is smaller than its actual size.
The proposed method validation occurred by using the extracted vineyard fractions and
comparing the obtained results with the manual segmentation.

As presented in Table 4, the proposed method achieved a good accuracy in vine rows
estimation. Correct row detection was always greater than 90%, with 93.4% mean value.
Moreover, the method could detect successfully all the vine rows, of 353 analysed. On the
analysed fractions, missed, extra, over, or underdetection cases were not found. Regarding
the detected vine rows, 19 were not correctly estimated, and from those, 2.67% were
classified as ‘larger detection’ and 2.88% as ‘smaller detection.’Moreover, the percentage of
real vineyard vegetation contained in the estimated vine rows area was calculated to
further validate vine rows estimation achieving a mean value of 99.7%. This was achieved
by intercepting the manual segmented vineyard fractions with the estimated vine rows.

Finally, vine vegetation extracted by applying the proposed method also underwent a
validation process that consisted in comparing it with the manual segmented images.
Figure 10(a) presents these results. The method achieved a 94.10% mean percentage of

Table 4. Vine row detection accuracy in eight different vineyard plots, with the number of rows
analysed per plot and percentage of detected vineyard vegetation contained in the plot’s estimated
vine rows.

Plot
no.

Number of
rows

Detected vegetation
portion (%)

Type of vine rows detection (%)

1.
Good

2.
Missed

3.
Extra

4.
Over

5.
Under

6.
Larger

7.
Smaller

A.02 28 99.78 92.86 - - - - 3.57 3.57
A.04 34 99.97 91.18 - - - - 5.88 2.94
A.10 45 99.40 95.56 - - - - - 4.44
B.01 43 99.50 97.50 - - - - 2.50 -
B.02 37 99.78 91.89 - - - - 2.70 5.41
C.01 75 99.55 97.30 - - - - 1.35 1.35
C.02 53 99.87 92.59 - - - - 3.70 3.70
C.03 60 99.93 96.72 - - - - 1.64 1.64

Mean detection (%) 99.72 94.45 - - - - 2.67 2.88
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exact vegetation detection, a mean value of 2.93% regarding overclassification, and
2.97% of underclassification. Differences between plots’ fractions were not meaningful.
Indeed, even those with a higher rate of missing vines did not influence the vegetation
extraction process. In what regards the validation of missing vegetation estimation, the
process was the same as that applied to vegetation estimation. However, only the
fractions that have missing vegetation were evaluated. Thus, all plot fractions from
vineyard B, as well as those from plot 02 from vineyard C, were discarded, as they
have low rates of missing vegetation. Results achieved a mean value of 97.04% in exact
classification of missing vegetation, as shown in Figure 10(b).

Figure 11 shows only a fraction of the detected vine vegetation, its manual segmen-
ted image, and the comparison between both. Most of the non-detected vegetation lies
in the vine plants’ borders. In vineyard B plots’ fractions, variations are less noticeable
than in the other vineyards’ fractions. This is due to fewer regions with missing vine
vegetation in this vineyard. In vineyards A and C, there are cases where the presence of
shadows and grass in the row is also considered in the estimation of vine vegetation.

These results are satisfactory, since the method proved to be able to accurately detect
vine rows with vegetation in almost all scenarios: present inside the estimated vine rows
(99.72%); to exactly estimate the actual vine vegetation (94.10%); with a low percentage

Figure 10. Results from validation of the vine vegetation extraction process (a) and potential
missing vine vegetation process (b).
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of underdetection of vegetation (2.97%); and missing vine vegetation also achieved a
good accuracy (97.04%). The various parameters automatically extracted by applying the
proposed method support the generation of accurate vineyard maps and vine rows-
related properties, such as percentage of vineyard vegetation, missing vines, and inter-
row vegetation. This proves that the proposed method is useful in PV management and
in its decision-making tasks. Furthermore, obtained results are in line with those of
previous works (Comba et al. 2015; Nolan et al. 2015), which made use of different
image acquisition sensors (NIR) – more expensive when compared with the sensors used
in this study – to obtain imagery data.

5.2. Proposed method application

The proposed method was applied to 16 plots from vineyards A, B, and C. In all plots, the
following parameters were extracted: vine rows estimation, vine vegetation, and missing
vines plants estimation. Figure 12 presents an overall view of the evaluated plots. In
vineyard A, vine rows occupation area ranged from 40% to 55%; in vineyard B from 37%
to 49%; and in vineyard C, from 53% to 61%. As expected, a higher percentage of
missing vine vegetation was found in vineyard A (plot A.01 to A.11), with an average of
28% of missing vineyard vegetation. On the other hand, vineyard B presented only 1% of
missing vegetation, while vineyard C presented approximately 7%.

Figure 13 presents a visual interpretation, based on the results obtained by applying
the proposed method to plots A.04, A.06, A.07, B.02, and C.03. These plots differ in size
and in vine rows coverage area. Some of the noticed limitations are related with the
absence of vegetation or highly affected vines that did not developed properly. These

Figure 11. Comparison between the estimated vine vegetation with manually segmented plot
fractions. Represented in green are exact classifications, in blue overclassifications, and in red
underclassifications.
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issues resulted in lower heights that correspond to low vine rows formed. For example,
in plot A.06 that was not classified, as can be seen in Figure 13(b). Green vegetation
cover was considered as vegetation in plot A.07 (shown in Figure 13(c)). In plot B.02,
vegetation absence in the estimated row centre caused an overestimation of missing
vine vegetation (shown in Figure 13(d)).

The processing time spent in each vineyard was 8 min and 45 s for vineyard C and
5 min and 32 s for vineyard A. Noticeably in vineyard B, the method took about 47 s to
complete the analysis due to the lower number of plots and the lesser amount of
images’ detail – lower number of pixels due to the higher flight altitude that results in
a lower GSD. Processing time is not related with the number of plots under analysis but
with the areas’ characteristics. This can be observed in the time spent during the
vineyard C processing (only 3 plots were analysed) in comparison with vineyard A (11
plots analysed): vineyard C took 3 min more to be completed. The average plot proces-
sing time was 30 s for vineyard A, 23 for vineyard B, and almost 3 min for vineyard C.

6. Conclusions and future work

In this article, a method to extract vineyard vegetation from high-resolution aerial
imaginary is presented. It combines the benefits of VIs and CSM along with image
processing techniques to automatically extract vine plot-related parameters, overcoming
the presence of inter-row vegetation and canopies shadowing effects. The method is
able to estimate missing vegetation and its correspondent overall percentage. It pro-
vides useful information about the current vineyard state, which can be used as a tool to
be effectively applied in the management process within PV scope. The usage of
relatively low-cost UAV with an RGB sensor proved to have enough accuracy to detect

Figure 12. Area of the evaluated vineyard plots, along with vine rows occupation area, vines, and
potential missing vines percentage.
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vineyard vegetation, being a cost-effective alternative to more expensive UAS and
sensors used in PA surveys. The results obtained by applying the proposed method in
RGB orthophoto mosaics and DTMs with very-high resolution (GSD from 2.4 to 3.8 cm)
demonstrated its efficiency in the estimation of vine rows (94.45%), vine vegetation
(94.10%), and missing vines plants (97.04%). These results are in line with other methods
that use imagery data from more expensive sensors types, such as NIR. Misclassifications
were noticeable in areas where vine vegetation suffered from neighbouring trees
shadows and in vine rows constituted only by dead vine plants. Small variations in
vegetation detection were noticeable in vine rows’ edges.

Figure 13. Results obtained by applying the proposed method to plots 4, 6, and 7 from vineyard A,
plot 2 from vineyard B, and plot 3 from vineyard C. Faded RGB images are used as background;
detected vegetation is represented in black and highlighted rows areas; and detected missing
vegetation areas are represented in light red.
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As future work, the proposed method will be applied at a multi-temporal level to
detect possible biotic and abiotic problems in the vineyard and to study its in-season
and inter-season evolution dynamics. Even though the used data was RGB, the
method is also suitable to be applied alongside with multi-spectral or thermal
UAS-based data. More parameters can be accurately estimated, such as vine vegeta-
tion vigour and water status, crucial to assist in the application of crop-variable
treatments and irrigation scheduling. The presented method has also potential to
be applied in different crops with the same row-oriented plantation structure, as fruit
orchards and vegetable crops. The usage of UAVs can be useful to automate vine-
yard management using unmanned ground vehicles and/or ground sensors, from soil
and meteorological data. It is also intended to provide the ability to automatically
detect vine plots and to interpret its plantation shape type, so that correct meth-
odologies can be applied in vine vegetation detection and analysis. Data acquisition
parameters must be studied (altitude, image overlap, UAV speed, camera angle, or
resolution) to evaluate its influence in the photogrammetric processing to ensure
maximum data quality.
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