
Early identification of software causes of use-related
hazards in medical devices

[Invited Paper]

Paolo Masci
Queen Mary University of
London, United Kingdom
p.m.masci@qmul.ac.uk

Paul Curzon
Queen Mary University of
London, United Kingdom

p.curzon@qmul.ac.uk

Harold Thimbleby
Swansea University

United Kingdom
harold@thimbleby.net

ABSTRACT
A hazard is a potential source of physical injury or damage to
people or environment, and a hazard analysis is the process
of identifying all known and foreseeable hazards and their
causes in a system. In this paper, we illustrate our ongoing
work in collaboration with the FDA on defining a hazard
analysis technique for early identification of the causes in
user interface software design of use-related hazards. The
technique integrates human cognitive process models and
general interaction design principles, and uses a model-based
approach for systematic exploration of potential hazards.
Preliminary experiments suggest that this hazard analysis
technique can substantially improve the identification of use-
related hazards at the early stages of software design as com-
pared to standard hazard analysis techniques.

Categories and Subject Descriptors
D.2 [SOFTWARE ENGINEERING]: Requirements/Spec-
ifications; K.6.3 [Software Management]: Software devel-
opment

General Terms
Medical systems, Hazard analysis, Use error

1. INTRODUCTION
User interface design flaws are a primary cause of use er-
rors with medical devices [2, 4]. While user interface issues
are traditionally addressed as human factors issues, there
is growing evidence that they are in fact a manifestation
of poor user interface software design and engineering. For
example, a study carried out by engineers at the US Food
and Drug Administration (FDA) highlighted that software
not designed to support clinical workflows is one of the main
causes of software-related recalls of medical devices [13]. In
our work on the analysis of user interface software we have
also identified plausible causal relationships between soft-

ware design defects in medical devices and use errors [9, 6,
8, 7, 1].

To develop safe and effective medical device software, device
manufacturers follow the risk management process described
in ISO14971. The process includes five main steps. First, a
hazard analysis is performed to identify all known and fore-
seeable hazards and their causes, where a hazard is defined
as a potential source of physical injury or damage to people
or environment. The standard does not mandate a specific
hazard analysis technique. Second, risk estimation is per-
formed to assess the probability of occurrence and severity
of harm of each hazard, the combination of which is defined
as risk. Third, risk evaluation is conducted to decide if every
identified risk is acceptable based on pre-defined acceptabil-
ity criteria. Fourth, if a risk is decided as unacceptable, con-
trol measures are designed and implemented to eliminate it
or to mitigate it to an acceptable level. Finally, verification
and validation activities are conducted to ensure that the
designed control measures are effective. These five activities
iterate and interleave until the device’s overall residual risk
after mitigation is acceptable.

To check that a device submitted for premarket review meets
basic levels of safety, regulators need to assess the quality
of the hazard analysis, as it constitutes the first step of the
risk management process, and provides the basis for subse-
quent activities. Currently, hazard analysis techniques are
not standardised in industry. In fact, each device manufac-
turer crafts its own version of a hazard analysis technique [3].
This creates a regulatory challenge, because hazard analysis
results are hard to assess and to replicate during the pre-
market review process. A standard method is needed that
in particular gives a strong process for identifying use-related
hazards.

Contribution. We outline our ongoing work in collabora-
tion with the FDA on establishing a reference hazard analy-
sis technique for early identification of the causes in user in-
terface software of use-related hazards. The aim of this work
is to obtain a systematic method that can be used by man-
ufacturers early in the development process to check that
common software sources of use-related hazards have been
considered and weeded out from their products. Similarly,
regulators can use the same method during the pre-market
review process, to check that common causes of use-related
hazards have been considered by the manufacturer.



Figure 1: Overview of the analysis approach.

2. BACKGROUND
Our approach for early identification of software causes of
use-related hazards combines analytical methods for hazards
identification with heuristic evaluation.

Analytical methods for hazards identification are based on
the idea of developing a description of the system that can
be checked against tasks carried out by end users in typical
use scenarios. THEA [12] is an example analytical method.
The technique defines templates that provide guidance to
developers for describing use scenarios and tasks. Potential
issues in the system design are identified using a standard
task analysis. This analysis is guided by a structured ques-
tionnaire that challenges the user interface design against
general human factors concerns, such as mode visibility, and
feedback. In our work, we draw ideas from THEA, and cre-
ate a new analytical technique tailored for the identification
of use-related hazards in software design (see Section ref-
sec:method).

Heuristic evaluation is an analysis method used by human
factors experts to evaluate user interface design against recog-
nised design principles. Example design principles that are
usually checked include: visibility, which is the ability of a
system to make relevant information perceptible; saliency,
defined as the ability of a system to make relevant infor-
mation prominent and easy to notice; feedback, which is the
ability of a system to provide sufficient information about
what has been achieved; and consistency, which is the abil-
ity of a system to support similar tasks using similar op-
erations and similar user interface elements. In our work,
we use heuristic evaluation to slice the analysis of the sys-
tem into focused sub-analyses that can help analysts to ex-
plore and articulate hypotheses about causal relationships
between hazards and software design flaws.

3. OUR ANALYSIS METHOD
A diagrammatic view of the main steps of our analysis method
is in Figure 1. The analysis takes as input user interface
software design documents. A model-based analysis is thus
performed for identifying use-related hazards and potential
causes in software design. The output of the model-based
analysis are potential use errors and problematic interac-
tions, as well as possible causal relationships between haz-
ards and software design flaws. These outputs are used as
inputs in standard hazard analysis techniques, with the aim

to extend the depth of the analysis of use-related hazards.

The model-based analysis includes three main steps:

• Step 1: Slicing. The aim of this first step is to slice
the analysis into focused sub-analyses that facilitate
reasoning about common types of use-related hazards
that are commonly caused by software-related design
flaws. Interaction design principles commonly used in
heuristic evaluation are used to slice the analysis and
ensure that at least a core set of common classes of
critical problems are considered in the analysis.

• Step 2: Identification of use hazards. For each
sub-analysis, hypotheses are formulated about use er-
rors using models of human cognitive process and guide-
words. In particular, we use the execution-evaluation
model [10], and guidewords such as forgotten, wrong
type, wrong order. An example use hazard gener-
ated with this method for infusion pumps is, for exam-
ple, the user forgets to configure infusion parameters,
where forgets is the guideword, and configure infusion
parameters is the goal (according to the execution-
evaluation model of the user’s cognitive process).

• Step 3: Identification of design issues/flaws. For
each sub-analysis, hypotheses are formulated about
software design issues that could lead to use-related
hazards. This is done by exploring which software
features could hamper the cognitive steps followed by
users (according to the execution-evaluation model)
with respect to the specific design principle consid-
ered in the sub-analysis. For example, for infusion
pumps, the following software design issue can be ar-
ticulated for the sub-analysis related to the visibility
principle: input fields for configuring infusion param-
eters are rendered off screen or hidden behind a noti-
fication window when infusion parameters need to the
configured.

It is worth noticing that the basic idea behind the approach
is to check that software design features create constraints
that can facilitate correct trajectories of device use. This
perspective is advocated in modern hazard analysis tech-
niques such as STPA [5], as it helps to reason about logic
errors in the system design — that is, cases where the system
fails but its components are not faulty.



4. PRELIMINARY RESULTS
In our previous work [9], we carried out a preliminary hazard
analysis focusing on the number entry software of infusion
pumps. A substantial set of root causes of use-related haz-
ards in software design was identified (results are reported
in [11]). We repeated this preliminary hazard analysis us-
ing our model-based technique. We found that the technique
allowed us to articulate and explore subtle causes of use haz-
ards in a systematic way, helping us to identify additional
hazards and related causes that were accidentally omitted
in the original analysis. Initial experiments suggest that 3
times more use-related hazards and related causes in soft-
ware design can be identified when using the model-based
approach, as compared to the standard hazard analysis tech-
nique.

5. CONCLUSION
In this paper we outlined our ongoing work with the FDA
on defining a systematic hazard analysis technique for early
identification of potential causes in software design of use-
related hazards. Our current focus is on infusion pumps and
data entry software, but the technique is based on general
concepts and can be applied to other devices and other user
interface software components.

Acknowledgements. This work was funded by EPSRC
on research agreement, EP/G059063/1. We would like to
thank Paul Jones and Yi Zhang for supporting this work
and contributing to its improvement.

6. REFERENCES
[1] A. Cauchi, A. Gimblett, H. W. Thimbleby, P. Curzon,

and P. Masci. Safer ”5-key” number entry user
interfaces using differential formal analysis. In BCS
HCI, pages 29–38. British Computer Society, 2012.

[2] A. for the Advancement of Medical Instrumentation
et al. Infusing patients safely: priority issues from the
AAMI/FDA infusion device summit. AAMI,
Association for the Advancement of Medical
Instrumentation, 2010.

[3] P. Jones, J. J. III, A. T. Jr., and M. Weber. Risk
management in the design of medical device software
systems. Journal of Biomedical Instrumentation and
Technology, 36(4):237–266, 2002.

[4] L. L. Leape and D. M. Berwick. Five years after to err
is human: what have we learned? Jama,
293(19):2384–2390, 2005.

[5] N. Leveson. Engineering a safer world: Systems
thinking applied to safety. Mit Press, 2011.

[6] P. Masci, P. Oladimeji, P. Curzon, and H. Thimbleby.
Tool demo: Using PVSio-web to demonstrate software
issues in medical user interfaces. In 4th International
Symposium on Foundations of Healthcare Information
Engineering and Systems (FHIES2014), 2014.

[7] P. Masci, R. Ruksenas, P. Oladimeji, A. Cauchi,
A. Gimblett, Y. Li, P. Curzon, and H. Thimbleby. The
benefits of formalising design guidelines: a case study
on the predictability of drug infusion pumps.
Innovations in Systems and Software Engineering,
11(2):73–93, 2015.

[8] P. Masci, Y. Zhang, P. Jones, P. Curzon, and
H. Thimbleby. Formal verification of medical device
user interfaces using pvs. In S. Gnesi and A. Rensink,
editors, Fundamental Approaches to Software
Engineering, volume 8411 of Lecture Notes in
Computer Science, pages 200–214. Springer Berlin
Heidelberg, 2014.

[9] P. Masci, Y. Zhang, P. Jones, H. Thimbleby, and
P. Curzon. A generic user interface architecture for
analyzing use hazards in infusion pump software. In
Proceedings of Medical Cyber Physical Systems
Workshop (MedCPS2014). OpenAccess Series in
Informatics (OASIcs, Dagstuhl series), 2014.

[10] D. A. Norman. The design of everyday things. Basic
books, 2002.

[11] P. Masci et al. A preliminary hazard analysis for the
GIP number entry software.
http://www.eecs.qmul.ac.uk/ masci/works/GIP-UI-
PHA.pdf,
2014.

[12] S. Pocock, M. Harrison, P. Wright, and P. Johnson.
THEA: a technique for human error assessment early
in design. In INTERACT, volume 1, pages 247–254,
2001.

[13] L. K. Simone. Software-related recalls: An analysis of
records. Biomedical Instrumentation & Technology,
47(6):514–522, 2013.


