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The use of optical sensors inside the needle can improve targeting precision and can bring real-time infor-
mation about the location of the needle tip if necessary, since a needle bends through insertion into the
tissue. Therefore, the precise location of the needle tip is so important in percutaneous treatments. In the
current experiment, a fiber sensor based on a Fabry-Perot (FP) cavity is described to measure the needle
curvature. The sensor is fabricated by producing an air bubble between two sections of multimode fiber.
The needle with the sensor therein was attached at one end and deformed by the application of move-
ments. The sensor presents a sensitivity of �0.152 dB/m�1 to the curvature measurements, with a reso-
lution of 0.089 m�1. The sensory structure revealed to be stable, obtaining a cross-sensitivity to be
0.03 m�1/�C.

� 2019 Elsevier Ltd. All rights reserved.
1. Introduction

Medical applications require minimally invasive sensors, partic-
ularly for in-vivo procedure. For instance, it is very common in sur-
gical medical interventions or even for medical diagnosis the use of
needles for insertion in soft tissues. Therefore, it is extremely
important developing miniaturized sensors that are capable of
being incorporated into such needles and be capable of measuring
physical, chemical, or biochemical parameters [1,2].

The Fabry-Perot (FP) interferometers can be a type of sensing
structure to be explored due to the ability of producing sensing
probes that can be optically interrogated in a reflection configura-
tion [3]. Due to the small dimensions and its optical characteristics
the FP interferometers have great potential, they can be effortlessly
incorporated in innovative structures and are one of the most uti-
lized interferometers [4,5]. It can be employed for detecting an
extensive range of physical parameters, such as, displacement
[6,7], lateral load [8], temperature [9,10], vibration [11,12], refrac-
tive index [10,13] and curvature [5,14,15]. Compared to the other
electrical sensors, the optical fiber sensors afford an important
solution for curvature measurements due to their intrinsic charac-
teristics, such as compact dimensions, lightweight, capability of
multiplexing, immunity to electromagnetic interference, chemical
inertness, and the ability to resist corrosion [16].
Taking into account the concept of modulation, the optical fiber
curvature sensor can be sectioned into different classifications,
namely: frequency modulation [16,17], wavelength modulation
[18] and intensity modulation [19,20]. The first work based on
the fiber micro-bend sensor, was proposed in 1980, by Fields and
Cole [21]. In last years, several optical fiber curvature sensors, have
been developed, including photonic crystal fiber [14,15], fiber
Bragg gratings [22,23], long period fiber gratings [24,25], multi-
core fiber [26,27], fiber tapers and fiber lateral-offset splicing
[28,29] and Fabry-Perot [15,30].

From the literature it is known that different optical fiber curva-
ture sensors have previously been used for medical purposes. For
instance, to monitoring the radius of curvature of rotary endodon-
tic file within an artificial channel [31], and for monitoring the nee-
dle curvature/deflection [1,31–34].

To diagnose certain diseases in patients it is necessary to collect
tissue samples and for this procedure the use of needles is recur-
rent, therefore it is crucial monitored the accuracy of the needle
upon reaching a target tissue, in order to avoid errors in the detec-
tion of target tissue, which could lead to misdiagnoses and
repeated insertions and consequently hemorrhages [35]. For all
these reasons, it is extremely important to monitoring the curva-
ture of the needle to avoid problems when it is introduced toward
into a soft tissue.

In this study, an intensity fiber sensor based on a Fabry-Perot
cavity made by splicing two sections of multimode fiber is
demonstrated. The sensing structure was incorporated into a
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medical needle and characterized for curvature measurements. To
our cognizance, it is the first time that the curvature of a medical
needle with a Fabry-Perot sensor has been studied.

2. Sensing structure and operation mode

The sensors produced in this work were developed by produc-
ing an air cavity between two sections of graded-index multimode
fiber (MMF GIF625). The MMF GIF625, have an Ø62.5 lm cor-
e/Ø125 lm cladding and can be used as a sensor element [36,37].

The technique used to manufacture the sensing structures is
adapted from a previous works presented by the author [8].
Fig. 1 presents a layout of the FP sensor exploited, an image taken
from the microscope of the cavity produced, having a diameter of
225 lm, and a photograph with the insertion of the optical fiber
inside the needle. This sensor structure is manufactured by joining
a multimode fiber fused to a single-mode fiber.

The operation mode of the sensor relies on excitation of higher-
order modes along the graded-index multimode fiber section that
will illuminate the Fabry-Perot cavity.

The back-reflected light traveling through the MMF depends on
the geometry of the microsphere. Then, a part of this light will be
guided back by the SMF, since the acceptance angle acts as a filter
[38].

2.1. Experimental setup and calibration

Fig. 2 displays the layout of the experimental setup used in this
work, for the curvature experiments, in a classic reflection scheme.
The experimental setup consisted on a broadband optical source
centered at 1550 nm, with a bandwidth of 100 nm, an optical spec-
trum analyzer (OSA Yokogama, AQ6370C) with a resolution of
0.01 dB and the sensing structure coupled by means an optical
circulator.

The needle used throughout this work has a 70 mm long and
has an internal diameter of 0.34 mm, whereas the uncoated optical
fiber diameter is 0.125 mm. The FP sensor has been introduced into
the needle and positioned about 10 mm from the tip of the needle.

The axis shown in Fig. 2 indicates the direction of needle dis-
placement in the curvature measurements performed. The y+ and
y- corresponds to the nomenclature right and left presented in
Figs. 3–5.

2.2. Experimental results and discussion

In curvature study the handle of the needle was fixed on the
adjustable platform and piled up on the topside of the ruler and
MMF MMF

air cavity
SMF

225 µm

125 µm

a)

b)

c)

fiber output

Fig. 1. a) Scheme, b) microscope photograph of the FP cavit
one displacement along the needle was applied with a one-
dimensional translation stage. The curvature formulation can be
tailored according to Eq. (1) [39]:

C ¼ 1
R
¼ 2d

d2 þ L2
ð1Þ

where C, R, L and d are curvature, bending radius, distance between
the adjustable platform, and the displacement distance of the plat-
form, respectively.

Fig. 3 presents the spectral behavior of the FP cavity without
curvature. Analyzing the reflection spectrum arranged in the cen-
ter of that Fig. 3, this one can be appraised to a two-wave interfer-
ometer. The free spectral range (FSR), can be calculated by the
subtraction of the wavelengths of adjoining peaks, Dk = k2–k1,
and this FSR is influenced by two parameters, —i.e. by the size of
the cavity, LFP, that can be calculated across the Eq.
Dk ¼ k1k2= 2neff LFP

� �
, and by the effective refractive index (neff

(k)). Taking into account that the manufactured air bubble cavity
is only constituted by air, and by measuring the length of cavity
thru the two adjacent peaks wavelengths extracted from the spec-
tral response, and by the microscope images, it was determined
that the cavity had a size of 225 mm and it was still estimated that
the neff, within the cavity was ~1.00.

A curvature study was carried out using a translation stage and
subjecting the needle with the sensor to curvature variations. The
needle was placed parallel to the translation stage and a displace-
ment was applied (recall Fig. 2). In the inset of Fig. 3 are shown the
reflection spectra of the developed cavity, during the curvature
tests in the needle for one positive (right) and negative (left) dis-
placement, respectively. As it is possible to observe by Fig. 3, in
both cases there is a variation in light intensity. This is due to
the variation of the curvature radius which will influence the cou-
pling efficiency of the FP mirrors.

The optical power response of the both rotations on the needle
is shown on Fig. 4. Taking into account the reproducibility of the
sensor structure, the experiments were all performed 3 times,
(inset of Fig. 4) considering different displacements of curvature
and after analyzing the average of the results was presented
(Fig. 4). Based on the results achieved, it is considered that there
is good repeatability, evidencing the robustness and reversibility
of the sensor. During all cycles a minimum of the correlation factor
of 0.976 and 0.990 were obtained for the left and right curvature
displacements, respectively.

As shown in Fig. 4, it is clear the relationship between the sens-
ing structure and the rotation of the needle. By turning the needle
90�, the sensing structure only has a residual sensitivity to curva-
ture, since it is located in the neutral line, while with a 0� rotation
fiber input

y and c) photograph of the FP inserted into the needle.



Fig. 2. Layout of the experimental setup highlighting top view of needle with FP cavity location, where R, L and d, are bending radius, distance between the adjustable
platform and the displacement distance of the platform, respectively.

Fig. 3. Reflection spectrum of FP cavity without curvature applied (inset: optical
reflective spectra for different displacements on the needle).

Fig. 4. Curvature responses of the FP cavity for different rotations.
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of the needle, a maximum sensitivity of �0.152 ± 0.006 dB/m�1 is
achieved.

Depending on the therapeutic medical intervention, the curva-
ture of the needle is adapted, therefore monitoring this parameter
is extremely important. For instance, if a surgical procedure where
a straight insertion in soft tissue is necessary, the use of rigid nee-
dles is crucial, thus, is so important to be able to monitor small
changes in curvature. However, if it is necessary to reach targets
that may be camouflaged by other tissues, it is necessary to use
very flexible needles, with high curvature, —i.e. with small radius
of curvature.

Fig. 5 presents the relation between the optical and the radius of
curvature. This result shows that the sensor is suitable for radius of
curvature between ~�845 mm and ~820 mm, ideal for different
medical applications [40,41].

The sensor stability was also explored. The sensor was exposed
to diverse curvature measurements, during 90 min at room tem-
perature, and the curvature response was attained each minute.

The optical variations with time, is shown in Fig. 6 and the
mean value was of �53.009 ± 0.001 dB. The minimum value of cur-
vature, dC that the sensor is able to discriminate, is given by Eq. (2),
[42]:
Fig. 5. Radius of curvature responses of the FP cavity.



Fig. 6. Long term stability experiment.
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dC ¼ 2
rPDC
DP

ð2Þ

where rP is the standard deviation of optical power for both values
of curvature, and DC and DP are the variation of curvature and the
mean of optical power between the two steps, respectively. By
applying Eq. (2), a resolution of 0.089 m�1 was obtained. It is impor-
tant to note that this value is also influenced by the spectral resolu-
tion of the equipment used for data acquisition (0.01 dB).

The temperature response of the FP cavity was also studied. The
FP was positioned in a thermal chamber (Model 340, challenge
Angelantoni Industry) , where temperature varied from 10 �C to
100 �C, maintained ca. 30 min at each step ensure temperature sta-
bilization, and the optical power variations were controlled using
the same interrogation scheme as shown in Fig. 2. The same pro-
cess for the cooling was followed, and the proposed sensor exhib-
ited very low thermal dependence (4.87 � 10-3 ± 0.002 dB/�C). A
cross-sensitivity of 0.03 m�1/�C was acquired between the temper-
ature and curvature.

According to the Circadian rhythms, the body temperature of a
healthy individual oscillates throughout the day, reaching a varia-
tion from the beginning of the morning towards the end of the
afternoon, ca. 0.5 �C [43,44]. Assuming the sensitivity obtained at
temperature and curvature, it can be concluded that a body ther-
mal variation of 0.5 �C corresponds to a variation of �0.015 m�1

in curvature, this value still being within the range of error of the
cross-sensitivity obtained, and can thus be negligible.
3. Final remarks

A curvature sensor based on a Fabry-Perot cavity was demon-
strated. The sensing structure was fabricated by using the electric
arc discharge method to create an air bubble between two sections
of multimode fibers. The sensor structure was subjected to tests of
curvature and temperature, obtaining a maximum sensitivity of
�0.152 ± 0.006 dB/m�1. Furthermore, the FP cavity demonstrated
insignificant sensitivity to temperature, demonstrating a maxi-
mum cross-sensitivity of 0.03 m�1/�C. The projected sensor shown
strong stability, the results are repeatable and the manufacturing
technique of the sensing structure, can arise as a substitute to
other techniques, by the ease of reproducibility, the reduced cost
of the manufacturing process and by the fact that no chemical
solutions are involved to do chemical etching in the fibers.

Such measures can be considered an additional value both med-
icine and industry. In the hospital environmental can help in differ-
ent surgical procedures that require precision when inserting the
needles into different soft tissues and also assist health profession-
als to more effectively manage the handling of the needle to avoid
sensitive tissue that might be located along the path to the target.
For industry, this sensor can be used as a complementary test in
bending control in the manufacture of medical needles.
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