
P. Fontaine, D. Nantes-Sobrinho (Eds.):
Logical and Semantic Frameworks with Applications 2022 (LSFA’22)
EPTCS 376, 2023, pp. 3–15, doi:10.4204/EPTCS.376.3

© Cruz, Madeira & Barbosa
This work is licensed under the
Creative Commons Attribution License.

Paraconsistent Transition Systems*

Ana Cruz
INESC TEC, University of Minho, Portugal

Alexandre Madeira
CIDMA, University of Aveiro, Portugal

Luı́s S. Barbosa
INESC TEC, University of Minho, Portugal

Often in Software Engineering a modelling formalism has to support scenarios of inconsistency
in which several requirements either reinforce or contradict each other. Paraconsistent transition
systems are proposed in this paper as one such formalism: states evolve through two accessibility
relations capturing weighted evidence of a transition or its absence, respectively. Their weights come
from a specific residuated lattice. A category of these systems, and the corresponding algebra, is
defined providing a formal setting to model different application scenarios. One of them, dealing
with the effect of quantum decoherence in quantum programs, is used for illustration purposes.

1 Introduction

Dealing with application scenarios where requirements either reinforce or contradict each other is not
uncommon in Software Engineering. One such scenarios comes from current practice in quantum com-
putation in the context of NISQ (Noisy Intermediate-Scale Quantum) technology [11] in which levels of
decoherence of quantum memory need to be articulated with the length of the circuits to assess program
quality.

In a recent paper [7], the authors introduced a new kind of weighted transitions systems which
records, for each transition, a positive and negative weight which, informally, capture the degree of
effectiveness (‘presence’) and of impossibility (‘absence’) of a transition. This allows the model to
capture both vagueness, whenever both weights sum less than 1, as usual e.g. in fuzzy systems, and in-
consitency, when their sum exceeds 1. This last feature motivates the qualifier paraconsistent borrowed
from the work on paraconsistent logic [9, 5], which accommodates inconsistency in a controlled way,
treating inconsistent information as potentially informative. Such logics were originally developed in
Latin America in the decades of 1950 and 1960, mainly by F. Asenjo and Newton da Costa. Quickly,
however, the topic attracted attention in the international community and the original scope of mathe-
matical applications broadened out, as witnessed in a recent book emphasizing the engineering potential
of paraconsistency [2]. In particular, a number of applications to themes from quantum mechanics and
quantum information theory have been studied by D. Chiara [4] and W. Carnielli and his collaborators
[1, 6].

This paper continues such a research program in two directions. First it introduces a suitable no-
tion of morphism for paraconsistent labelled transition systems (PLTS) leading to the definition of the
corresponding category and its algebra. Notions of simulation, bisimulation and trace for PLTS are also
discussed. On a second direction, the paper discusses an application of PLTS to reason about the effect
of quantum decoherence in quantum programs.

*This work is supported by by FCT, the Portuguese funding agency for Science and Technology with the projects
UIDB/04106/2020 and PTDC/CCI-COM/4280/2021

http://dx.doi.org/10.4204/EPTCS.376.3
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/

4 Paraconsistent Transition Systems

Paper structure. After recalling the concept of a PLTS and defining their morphisms in section 2,
section 3 discusses suitable notions of simulation, bisimulation and trace. Compositional construction of
(pointed) PLTS are characterised in section 4 by exploring the relevant category, following G. Winskel
and M. Nielsen’s ‘recipe’ [13]. Section 5 illustrates their use to express quantum circuits with decoher-
ence. Finally, section 6 concludes and points out a number of future research directions.

2 Paraconsistent labelled transition systems

A paraconsistent labelled transition system (PLTS) incorporates two accessibility relations, classified
as positive and negative, respectively, which characterise each transition in opposite ways: one repre-
sents the evidence of its presence and other the evidence of its absence. Both relations are weighted
by elements of a residuated lattice Σ = 〈∧,∨,�,→,1,0〉, where, 〈A,∧,∨,1,0〉 is a lattice, 〈A,�,1〉 is
a monoid, and operation � is residuated, with →, i.e. for all a,b,c ∈ A, a� b ≤ c⇔ b ≤ a→ c. A
Gödel algebra G = 〈[0,1],min,max,min,→,0,1〉 is an example of such a structure, that will be used in
the sequel. Operators max and min retain the usual definitions, whereas implication is given by

a→ b =

{
1, if a≤ b
b, otherwise

.

Our constructions, however, are, to a large extent, independent of the particular residuated lattice chosen.
The definition below extends the one in reference [7] to consider labels in an explicit way. Thus,

Definition 1. A paraconsistent labelled transition system (PLTS) over a residuted lattice A and a set
of atomic actions Π is a structure 〈W,R,Π〉 where, W is a non-empty set of states, Π is a set of la-
bels, and R ⊆W ×Π×W × A× A characterises its dynamics, subjected to the following condition:
between two arbitrary states there is at most one transition involving label a, for every a∈Π. Each tuple
(w1,a,w2,α,β) ∈ R represents a transition from w1 to w2 labelled by (a,α,β), where α is the degree to
which the action a contributes to a transition from w1 to w2, and β , dually, expresses the degree to which
it prevents its occurrence.

The condition imposed in the definition above makes it possible to express relation R in terms of a
positive and a negative accessibility relation r+,r− : Π−→ AW×W , with

r+(π)(w,w′) =

{
α if (w,π,w′,α,β) ∈ R
0 otherwise

and r− defined similarly. These two relations jointly express different behaviours associated to a transi-
tion:

• inconsistency, when the positive and negative weights are contradictory, i.e. they sum to some
value greater then 1; this corresponds to the upper triangle in the picture below, filled in grey.

• vagueness, when the sum is less than 1, corresponding to the lower, periwinkle triangle in the same
picture;

• consistency, when the sum is exactly 1, which means that the measures of the factors enforcing or
preventing a transition are complementary, corresponding to the red line in the picture.

Cruz, Madeira & Barbosa 5

Tr
an

si
tio

n
is

pr
es

en
t

Transition is absent

0 1
0

1

Morphisms between PLTS respect, as one would expect, the structure of both accessibility relations.
Formally,

Definition 2. Let T1 = 〈W1,R1,Π〉, T2 = 〈W2,R2,Π〉 be two PLTSs defined over the same set of actions
Π. A morphism from T1 to T2 is a function h : W1→W2 such that

∀a∈Π, r+1 (a)(w1,w2)≤ r+2 (a)(hw1,hw2) and r−1 (a)(w1,w2)≥ r−2 (a)(hw1,hw2)

Example 1. Function h = {w1 7→ v1,w2 7→ v2,w3 7→ v3} is a morphism from M1 to M2, over Π =
{a,b,c,d}, depicted below

w1

w2 w3

w4

(a,0.7,0.2)
(b,0.3,0.5)

(c,0.2,0.3)
(d,0.5,0.8)

v1

v2 v3

v4

v5

(a,0.9,0.1)
(b,0.5,0.2)

(c,0.6,0.1)
(c,0.8,0.4)

(a,0.4,0.7)

3 Simulation and Bisimulation for PLTS

Clearly, PLTSs and their morphisms form a category, with composition and identities borrowed from
Set. To compare PLTSs is also useful to define what simulation and bisimulation mean in this setting.
Thus, under the same assumptions on T1 and T2,

Definition 3. A relation S⊆W1×W2 is a simulation provided that, for all 〈p,q〉 ∈ S and a ∈Π,

p
(a,α,β)−−−−→T1 p′⇒ 〈∃q′∈W2 .∃γ,δ∈[0,1]. q

(a, γ, δ)−−−−−→T2 q′ ∧ 〈p′,q′〉 ∈ S ∧ γ ≥ α ∧ δ ≤ β 〉

which can be abbreviated to

p
(a,α,β)−−−−→T1 p′⇒ 〈∃q′∈W2 . q

(a, γ: γ≥α , δ : δ≤β)−−−−−−−−−−−−→T2 q′ ∧ 〈p′,q′〉 ∈ S〉

Two states p and q are similar, written p. q, if there is a simulation S such that 〈p,q〉 ∈ S.

Whenever one restricts in the definition above to the existence of values γ (resp. δ) such that γ ≥ α

(resp. δ ≤ β), the corresponding simulation is called positive (resp. negative).

6 Paraconsistent Transition Systems

Example 2. In the PLTSs depicted below, w1 . v1, witnessed by

S = {〈w1,v1〉,〈w2,v2〉,〈w3,v2〉,〈w4,v3〉,〈w5,v4〉}

w1 w2

w3

w4

w5

(a,0.4,0.7)

(a,0.3,0.6)

(b,0.2,0.8)

(c,0.2,0.9)

v1 v2 v3

v4

(a,0.5,0.5) (b,0.3,0.5)

(c,0.5,0.5)

Finally,

Definition 4. A relation B⊆W1×W2 is a bisimulation if for 〈p,q〉 ∈ B and a ∈Π

p
(a,α,β)−−−−→M1 p′⇒ 〈∃q′ ∈W2 : q

(a,α,β)−−−−→M2 q′∧〈p′,q′〉 ∈ B〉

q
(a,α,β)−−−−→M2 q′⇒ 〈∃p′ ∈W1 : p

(a,α,β)−−−−→M1 p′∧〈p′,q′〉 ∈ B〉

Two states p and q are bisimilar, written p∼ q, if there is a bisimulation B such that 〈p,q〉 ∈ B.

Example 3. Consider the two PLTSs depicted below. Clearly, w1 ∼ v1.

w1

w2 w3

(a,0.5,0.3)

(a,0.7,0.2)

(c,0.2,0.3)

(c,0.4,0.5)(c,0.4,0.5)

v1

v2

(a,0.7,0.2)

(c,0.4,0.5)

Lemma 1. Similarity, ., and bisimilarity, ∼, form a preorder and an equivalence relation, respectively.

Proof. The proof is similar to one for classical labelled transition systems (details in [8]).

As usual, a trace from a given state w in a PLTS T is simply the sequence s of tuples (a,α,β) labelling
a path in T starting at w. A first projection on such a sequence, i.e. π∗1 (s) retrieves the corresponding
sequence of labels that constitutes what may be called an unweighted trace. More interesting is the
notion of weighted trace which appends to the sequence of labels, the maximum value for the positive
accessibility relation and the minimum value for the negative accessibility relation computed along the
trace s. Formally,

Definition 5. Given a trace s in a PLTS T , the corresponding weighted trace is defined by

tw(s) = 〈π∗1 ,
∧
(π∗2),

∨
(π∗3)〉(s)

where, πn denotes the n projection in a tuple, 〈 f ,g,h〉 is the universal arrow to a Cartesian product, f ∗

is the functorial extension of f to sequences over its domain, and
∧

(resp.
∨

) are the distributed version
of ∧ (resp. ∨) over sequences.

Definition 6. A weighted trace t = 〈[a1,a2, ...,am],α,β 〉 is a weighted subtrace of t ′= 〈[b1,b2, ...,bn],γ,δ 〉
if (i) sequence [a1,a2, ...,am] is a prefix of [b1,b2, ...,bn], (ii) γ ≥ α and (iii) δ ≤ β . The definition lifts to
sets as follows: given two sets X and Y of weighted traces,

X v Y iff ∀t∈X .∃t ′∈Y . t is a weighted subtrace of t ′

Cruz, Madeira & Barbosa 7

Example 4. Consider again the two PLTSs given in Example 2. The weighted traces from w1 are {t1 =
〈[a,b],0.2,0.8〉, t2 = 〈[a,c],0.2,0.9〉} and the ones from v1 are {t ′1 = 〈[a,b],0.5,0.5〉, t ′2 = 〈[a,c],0.5,0.5〉}.
Clearly, t1 (resp. t2) is a weighted subtrace of t ′1 (resp. t ′2).
Lemma 2. Consider two PLTSs, T1 = 〈W1,R1〉 and T2 = 〈W2,R2〉. If two states p ∈W1 and q ∈W2 are
similar (resp. bisimilar), i.e., p. q (resp. p∼ q), then the set of weighted traces from p, X, and the set
of weighted traces from q, Y , are such that X v Y (resp. coincide).

Proof. If p . q each trace t from p is a prefix of trace t ′ from q. Let [α1,α2, ...,αm] and [β1,β2, ...,βm]
be the sequences of positive and negative weights associated to t. Similarly, let [α ′1,α

′
2, ...,α

′
n] and

[β ′1,β
′
2, ...,β

′
n] be the corresponding sequences for t ′; of course m≤ n. As (p,q) belongs to a simulation,

α ′i ≥ αi and β ′i ≤ βi, for all i≤ n. So, Min[α ′1,α
′
2, ...,α

′
m]≥Min[α1,α2, ...,αm] and Max[α ′1,α

′
2, ...,α

′
m]≤

Max[α1,α2, ...,αm]. Note that Min and Max correspond to
∧

and
∨

in a Gödel algebra. Thus,

〈t,Min[α1,α2, ...,αn],Max[α1,α2, ...,αn]〉

is a weighted subtrace of 〈t ′|m,Min[α ′1,α
′
2, ...,α

′
n],Max[α ′1,α

′
2, ...,α

′
n]〉, where t ′|m is the subsequence of

t with m elements. The statement for ∼ follows similarly.

Note that the converse of this lemma does not hold, as shown by the following counterexample.
Example 5. Consider the PLTS depicted below.

w1 w2 w3

(a,0.5,0.3) (b,0.7,0.2)

v1 v2 v3

(a,0.7,0.2) (b,0.5,0.3)

X = {〈[a],0.5,0.3〉,〈[a,b],0.5,0.3〉} is the set of weighted traces from w1. Similarly,
Y = {〈[a],0.7,0.2〉,〈[a,b],0.5,0.3〉} is the corresponding set from w2. Clearly 〈[a],0.5,0.3〉 is a weighted
subtrace of 〈[a],0.7,0.2〉. Thus X v Y . However, w1 6. w2.

4 New PLTS from old

New PLTS can be built compositionally. This section introduces the relevant operators by exploring the
structure of the category of Pt of pointed PLTS, i.e. whose objects are PLTSs with a distinguished initial
state, i.e. 〈W, i,R,Π〉, where 〈W,R,Π〉 is a PLTS and i ∈W . Arrows in Pt are allowed between PLTSs
with different sets of labels, therefore generalizing Definition 2 as follows:
Definition 7. Let T1 = 〈W1, i1,R1,Π〉 and T2 = 〈W2, i2,R2,Π

′〉 be two pointed PLTSs. A morphism in
Pt from T1 to T2 is a pair of functions (σ : W1 → W2, λ : Π →⊥ Π′) such that1 σ(i1) = i2, and, if
(w,a,w′,α,β) ∈ R1 then (σ(w),λ (a),σ(w′),α ′,β ′) ∈ R2

⊥, with α ≤ α ′ and β ′ ≤ β , where, for an
accessibility relation R, R⊥ = R∪{(w,⊥,w,1,0) | w ∈W} denotes R enriched with idle transitions in
each state.
Clearly Pt forms a category, with composition inherited from Set and Set⊥, the later standing for the
category of sets and partial functions, with Tnil = 〈{∗},∗, /0, /0〉 as both the initial and final object. The
corresponding unique morphisms are ! : T → Tnil, given by 〈∗,()〉, and ? : Tnil→ T , given by 〈i,()〉, where
() is the empty map and notation x stands for the constant, everywhere x, function.

An algebra of PLTS typically includes some form of parallel composition, disjoint union, restriction,
relabelling and prefixing, as one is used from the process algebra literature [3]. Accordingly, these
operators are defined along the lines proposed by G. Winskel and M. Mielsen [13], for the standard,
more usual case.

1Notation λ : Π→⊥ Π′ stands for the totalization of a partial function by mapping to ⊥ all elements of Π for which the
function is undefined.

8 Paraconsistent Transition Systems

Restriction. The restriction operator is intended to control the interface of a transition system, preserv-
ing, in the case of a PLTS, the corresponding positive and negative weights. Formally,
Definition 8. Let T = 〈W, i,R,Π〉 be a PLTS, and λ : Π′→Π be an inclusion. The restriction of T to λ ,
T � λ , is a PLTS 〈W, i,R′,Π′〉 over Π′ such that R′ = {(w,π,w′,α,β) ∈ R | π ∈Π′}.

There is a morphism f = (1W ,λ) from T � λ to T , and a functor P : Pt→ Set⊥ which sends a
morphism (σ ,λ) : T → T ′ to the partial function λ : Π′ → Π. Clearly, f is the Cartesian lifting of
morphism P(f) = λ in Set⊥. Being Cartesian means that for any g : T ′→ T in Pt such that P(g) = λ

there is a unique morphism h such that P(h) = 1Π′ making the following diagram to commute:

T ′

T � λ T

h
g

f

Note that, in general, restriction does not preserve reachable states. Often, thus, the result of a restriction
is itself restricted to its reachable part.

Relabelling. In the same group of interface-modifier operators, is relabelling, which renames the labels
of a PLTS according to a total function λ : Π→Π′.
Definition 9. Let T = 〈W, i,R,Π〉 be a PLTS, and λ : Π′→ Π be a total function. The relabelling of T
according to λ , T{λ} is the PLTS 〈W, i,R′,Π′〉 where R′ = {(w,λ (a),w′,α,β) | (w,a,w′,α,β) ∈ R}.

Dually to the previous case, there is a morphism f =(1W ,λ) from T to T{λ}which is the cocartesian
lifting of λ (= P(f)).

Parallel composition. The product of two PLTSs combines their state spaces and includes all syn-
chronous transitions, triggered by the simultaneous occurrence of an action of each component, as well
as asynchronous ones in which a transition in one component is paired with an idle transition, labelled
by ⊥, in the other. Formally,
Definition 10. Let T1 = 〈W1, i1,R1,Π1〉 and T2 = 〈W2, i2,R2,Π2〉 be two PLTS. Their parallel composi-
tion T1×T2 is the PLTS 〈W1×W2,(i1, i2),R,Π′〉, such that Π′ = Π1×⊥Π2 = {(a,⊥) | a∈Π1}∪{(⊥,b) |
b ∈Π2}∪{(a,b) | a ∈Π1,b ∈Π2}, and (w,a,w′,α,β) ∈ R if and only if (π1(w),π1(a),π1(w′),α1,β1) ∈
R1
⊥, (π2(w),π2(a),π2(w′),α2,β2) ∈ R2

⊥, α = min(α1,α2) and β = max(β1,β2).
Lemma 3. Parallel composition is the product construction in Pt.

Proof. In the diagram below let gi = (σi,λi), for i = 1,2, and define h as h = (〈σ1,σ2〉,〈λ1,λ2〉),
where 〈 f1, f2〉(x) = (f1(x), f2(x)) is the universal arrow in a product diagram in Set. Clearly, h lifts
universality to Pt, as the unique arrow making the diagram to commute. It remains show it is in-
deed an arrow in the category. Indeed, let T = 〈W, i,R,Π〉, T1 = 〈W1, i1,R1,Π1〉, and define T1 ×
T2 = 〈W1 ×W2,(i1, i2),R′,Π′〉 according to defintion 10. Thus, for each (w,a,w′,α,β) ∈ R, there is
a transition (σ1(w),λ1(a),σ1(w′),α1,β1) ∈ R1

⊥ such that α ≤ α1 and β ≥ β1; and also a transition
(σ2(w),λ2(a),σ2(w′),α2,β2) ∈ R2

⊥ such that α ≤ α1 and β ≥ β2. Moreover, there is a transition

(〈σ1,σ2〉(w),〈λ1,λ2〉(a),〈σ1,σ2〉(w′),min(α1,α2),max(β1,β2)) ∈ R′

Thus, there is a transition (〈σ1,σ2〉(w),〈λ1,λ2〉(a),〈σ1,σ2〉(w′),α ′,β ′))∈ R′, for any (w,a,w′,α,β)∈ R
, such that α ≤ α ′ and β ≥ β ′. Furthermore, 〈σ1,σ2〉(i) = (σ1(i),σ2(i)) = (i1, i2). This establishes h as
a Pt morphism.

Cruz, Madeira & Barbosa 9

T1 T1×T2 T2

T

Π1 Π2

hg1 g2

Example 6. Consider the two PLTSs, T1 and T2, depicted below.

i1 w

(a,0.7,0.2)

i2 v

(b,0.4,0.2)

Their product T is the PLTS

(i1, i2) (w, i2)

(w,v)(i1,v)

((a,⊥),0.7,0.2)

((⊥,b),0.4,0.6)

((a,b),0.4,0.2)
((⊥,b),0.4,0.6)

((a,⊥),0.7,0.2)

A suitable combination of parallel composition and restriction may enforce different synchronization
disciplines. For example, interleaving or asynchronous product T1 9 T2 is defined as (T1×T2) � λ with
the inclusion λ : Π→ Π1×⊥Π2 for Π = {(a,⊥) | a ∈ Π1}∪{(⊥,b) | b ∈ Π2}. This results in a PLTS
〈W1×W2,(i1, i2),R,Π〉 such that R = {(w,a,w′,α,β) ∈ R′ | a ∈Π}.

Similarly, the synchronous product T1⊗T2 is also defined as (T1×T2) � λ , taking now Π = {(a,b) |
a ∈Π1 and b ∈Π2} as the domain of λ .

Example 7. Interleaving and synchronous product of T1 and T2 as in Example 8, are depicted below.

(i1, i2) (w, i2)

(w,v)(i1,v)

((a,⊥),0.7,0.2)

((⊥,b),0.4,0.6)((⊥,b),0.4,0.6)

((a,⊥),0.7,0.2)

(i1, i2) (w, i2)

(w,v)(i1,v)

((a,b),0.4,0.2)

T1 9T2 T1⊗T2

Sum. The sum of two PLTSs corresponds to their non-determinisitic composition: the resulting PLTS
behaves as either of its components. Formally,

Definition 11. Let T1 = 〈W1, i1,R1,Π1〉 and T2 = 〈W2, i2,R2,Π2〉 be two PLTSs. Their sum T1 +T2 is the
PLTS 〈W,(i1, i2),R,Π1∪Π2〉, where

– W = (W1×{i2})∪ ({i1}×W2) ,

10 Paraconsistent Transition Systems

– t ∈R if and only if there exists a transition (w,a,w′,α,β)∈R1 such that t = (ι1(w),a, ι1(w′),α,β),
or a transition (w,a,w′,α,β) ∈ R2 such that t = (ι2(w),a, ι2(w′),α,β)

where ι1 and ι2 are the left and right injections associated to a coproduct in Set, respectively.

Sum is actually a coproduct in Pt (the proof follows the argument used for the product case), making
T1 +T2 dual to T1×T2.

Example 8. The sum T1 +T2, for T1,T2 defined as in Example 8 is given by

(i1, i2) (w, i2)

(i1,v)

(a,0.7,0.2)

(b,0.4,0.6)

Prefixing. As a limited form of sequential composition, prefix appends to a pointed PLTS a new initial
state and a new transition to the previous initial state, after which the system behaves as the original one.

Definition 12. Let T = 〈W, i,R,Π〉 be a PLTS and wnew a fresh state identifier not in W. Given an
action a, and α,β ∈ [0,1], the prefix (a,α,β)T is defined as 〈W ∪ {wnew},wnew,R′,Π∪ {a}〉 where
R′ = R∪ (wnew,a, i,α,β).

Since it is not required that the prefixing label is distinct from the ones in the original system, prefix-
ing does not extend to a functor in Pt, as illustrated in the counterexample below. This is obviously the
case for a category of classical labelled transition systems as well. In both cases, however, prefix extens
to a functor if the corresponding categories are restricted to action-preserving morphisms, i.e. in which
the action component of a morphism is always an inclusion

Example 9. Consider two pointed PLTS T1 and T2

i1 w

(a,0.7,0.2)

i2 v

(b,0.8,0.1)

connected by a morphism (σ ,λ) : T1→ T2 such that σ(i1) = i2, σ(w) = v and λ (a) = b. Now consider
the prefixes (a,1,0)T1 and (a,1,0)T2 depicted below.

i i1 w

(a,1,0) (a,0.7,0.2)

i′ i2 v

(a,1,0) (b,0.8,0.1)

Clearly, a mapping from the actions in (a,1,0)T1 to the actions in (a,1,0)T1 does not exist so neither
exists a morphism between the two systems.

Functorial extensions. Other useful operations between PLTSs, typically acting on transitions’ posi-
tive and negative weights, and often restricted to PLTSs over a specific residuated lattice, can be defined
functorially in Pt. An example involving a PLTS defined over a Gödel algebra is an operation that uni-
formly increases or decreases the value of the positive (or the negative, or both) weight in all transitions.
Let

a⊕b =


1 if a+b≥ 1
0 if a+b≤ 0
a+b otherwise

Thus,

Cruz, Madeira & Barbosa 11

Definition 13. Let T = 〈W, i,R,Π〉 be a PLTS. Taking v ∈ [−1,1], the positive v-approximation T⊕+v is
a PLTS 〈W, i,R′,Π〉 where

R′ = {(w,π,w′,α⊕ v,β) | (w,π,w′,α,β) ∈ R}.

The definition extends to a functor in Pt which is the identity in morphisms. Similar operations can be
defined to act on the negative accessibility relation or both.

Another useful operation removes all transitions in a pointed PLTS for which the positive accessi-
bility relation is below a certain value and the negative accessibility relation is above a certain value.
Formally,

Definition 14. Let T = 〈W, i,R,Π〉 be a pointed PLTS, and p,n∈ [0,1]. The purged PLTS Tp↑↓n is defined
as 〈W, i,R′,Π〉 where

R′ = {(w,π,w′,α,β) | (w,π,w′,α,β) ∈ R and α ≥ p and β ≤ m}

Clearly, the operation extends to a functor in Pt, mapping morphisms to themselves.

5 An application to quantum circuit optimization

In a quantum circuit [10] decoherence consists in decay of a qubit in superposition to its ground state
and may be caused by distinct physical phenomena. A quantum circuit is effective only if gate opera-
tions and measurements are performed to superposition states within a limited period of time after their
preparation. In this section pointed PLTS will be used to model circuits incorporating qubit decoherence
as an error factor. Typically, coherence is specified as an interval corresponding to a worst and a best
case. We employ the two accessibility relations in a PLTS to model both scenarios simultaneously.

An important observation for the conversion of quantum circuits to PLTS is that quantum circuits
always have a sequential execution. Simultaneous operations performed to distinct qubits are combined
using the tensor product ⊗ into a single operation to the whole collection of qubits which forms the
state of the circuit. The latter is described by a sequence of executions e1,e2,e3, ... where each ei is the
tensor product of the operations performed upon the state at each step. The conversion to a PLTS is
straightforward, labelling each transition by the tensor of the relevant gates O1⊗·· ·⊗Om, for m gates
involved, but for the computation of the positive and negative accessibility relations, r+ and r−.

The weights of a transition corresponding to the application of a gate O acting over n qubits q1 to qn

are given by

v(O) =

{
(1,0) if qubits q1, · · ·qn are in a definite state
(Maxi fmax(qi),Mini fmin(qi)) otherwise

where fmax(q) =
τmax(q)−τprep(q)

100 and fmin(q) =
τmin(q)−τprep(q)

100 , τmax(q) and τmin(q) are the longest and short-
est coherence times of q, respectively, and τprep(q) is the time from the preparation of q’s superposition
to the point after the execution of O. The latter are fixed for each type of quantum gate; reference [14]
gives experimentally computed values for them as well as for maximum and minimum values for qubit
decoherence.

Consider, now, a transition t labelled by a O1⊗ ...⊗Om Then, r+ = Maxn
i=1{π1(v(Oi))} and r− =

1−Minn
i=1{π2(v(Oi))}.

Example 10. Consider the following circuits designed with IBM Quantum Composer:

12 Paraconsistent Transition Systems

Assume that the execution time of a single qubit gate is τG = 20µs and of a two qubit gate is
2τG = 40µs [14], and that both qubits have the same coherence times τmax(q1) = τmax(q2) = 100µs
and τmin(q1) = τmin(q2) = 70µs. Thus the circuit on the left (resp. right) translates into T1 (on the left)
and T2 (on the right).

q[0];q[1]

q[0];q[1]

q[0];q[1]

q[0];q[1]

(H⊗ I,1,0)

(I⊗H,0.8,0.5)

(CNOT,0.4,0.9)

q[0];q[1]

q[0];q[1]

q[0];q[1]

(H⊗H,1,0)

(CNOT,0.6,0.7)

As both circuits implement the same quantum algorithm and our focus is only on the effectiveness of
the circuits, we may abstract from the actual sequences of labels and consider instead T1{λ} and T2{λ},
for λ mapping each label to a unique label ?. Their maximal weighted traces 2 are

tT1{λ} = 〈[∗,∗,∗],0.4,0.9〉 and tT2{λ} = 〈[∗,∗,∗],0.6,0.7〉

Clearly tT1{λ} is a weighted subtrace of tT2{λ}, therefore suggesting a criteria for comparing the effec-
tiveness of circuits. Indeed, a circuit is more effective (i.e. less affected by qubit decoherence) than
other if the maximal weighted trace of its (relabelled) PLTS is a weighted subtrace of the corresponding
construction in the other.

The second circuit is obviously more efficient than the first. This suggests we could use the weighted
subtrace relation as a metric to compare circuit quality, for circuits implementing equivalent algorithms.

Reference [14] introduces a tool which tried to transform a circuit so that the lifetime of quantum
superpositions is shortened. They give several examples of circuits and show how the application of the
tool results in a circuit performing the same algorithm but with a reduced error rate. Our next example
builds on one of their examples, computes the corresponding PLTS and compare the maximal weighted
traces.

Example 11. Consider the following circuits reproduced from [14], which in ideal quantum devices
would be indistinguishable.

2Such maximal traces are easily identifiable given the peculiar shape of a PLTS corresponding to a quantum circuit.

Cruz, Madeira & Barbosa 13

These circuits are represented as

s1

s2

s3

s4

s5

s6

s7

s8

(H1⊗H2,1,0)

(CX2,3,0.6,0.7)

(H2⊗H6,0.8,0.5)

(CX1,2⊗CX6,11,0,1)

(H6⊗H1,0.8,0.5)

(CX6,11,0.6,0.7)

(CX2,6,0,1)

r1

r2

r3

r4

r5

r6

(H2⊗H6,1,0)

(CX2,3⊗CX6,11,0.6,0.7)

(H1⊗H2⊗H6⊗H11,0.8,0.5)

(CX1,2⊗CX6,11,0.6,0.7)

(CX2,6,0.6,0.7)

where H and CX are indexed by the numeric identifiers of the qubit(s) to which they apply in each
execution step. The maximal weighted trace of the (relabelled PLTS corresponding to) circuit in the
right, 〈[∗,∗,∗,∗,∗,∗,∗],0.6,0.7〉, is a weighted subtrace of the one corresponding to circuit in the left,
〈[∗,∗,∗,∗,∗],0,1〉. Thus, the former circuit is more effective than the latter, as experimentally verified in
[14].

Example 12. As a final example consider two circuits differing only on the time points in which mea-
surements are placed.

14 Paraconsistent Transition Systems

The corresponding PLTS, computed again with the values given in reference (where execution time of a
measurement is τM = 300ns∼ 1µs), are depicted below

s1

s2

s3

s4

s5

s6

s7

(H1⊗H2,1,0)

(M3,0.99,0.31)

(M2,0.98,0.32)

(CX0,1,0.58,0.72)

(M1,0.99,0.31)

(M0,0.98,0.32)

r1

r2

r3

r4

r5

r6

r7

(H1⊗H2,1,0)

(CX0,1,0.6,0.7)

(M3,0.99,31)

(M2,0.98,0.32)

(M1,0.97,0.33)

(M0,0.96,0.34)

The maximal weighted trace 〈[∗,∗,∗,∗,∗,∗,],0.6,0.7〉 corresponding to the circuit on the right is a
weighted subtrace of the corresponding one for the circuit on the left, 〈[∗,∗,∗,∗,∗,∗,],0.58,0.72〉. This
shows that measuring can be safely postponed to the end of a circuit, as experimentally verified.

6 Conclusions and future work

The paper introduced a category of a new kind of labelled transition systems able to capture both vague-
ness and inconsistency in software modelling scenarios. The structure of this category was explored to
define a number of useful operators to build such systems in a compositional way. Finally, PLTS were
used to model effectiveness concerns in the analysis of quantum circuits. In this case the weight cor-
responding to the ‘presence’ of a transition captures an index measuring its effectiveness assuming the
best case value for qubit decoherence. On the other hand, the weight corresponding to the ‘absence’ of a
transition measures the possibility of non-occurrence, assuming qubit decoherence worst case value.

A lot remains to be done. First of all, a process logic, as classically associated to labelled transition
systems [12], i.e. a modal logic with label-indexed modalities, can be designed for pointed PTLS. This
will provide not only yet another behavioural equivalence, based on the set of formulas satisfied by two
systems, but also a formal way to express safety and liveness properties of these systems.

This will be extremely useful to express and verify properties related to the effectiveness of quantum
circuits, therefore pushing further the application scenario proposed in section 5. Finally, automating the
construction of a pointed PLTS for a given circuit, parametric on the different qubit coherence and gate
execution time found experimentally, and adding a prover for the logic suggested above, will provide an
interesting basis to support quantum circuit optimization. Reliable, mathematically sound approaches
and tools to support quantum computer programming and verification will be part of the quantum re-
search agenda for the years to come. Indeed, their lack may put at risk the expected quantum advantage
of the new hardware.

Cruz, Madeira & Barbosa 15

References
[1] Agudelo, J.C.A., Carnielli, W.A.: Paraconsistent machines and their relation to quantum computing. J. Log.

Comput. 20(2), 573–595 (2010), https://doi.org/10.48550/arXiv.0802.0150
[2] Akama, S. (ed.): Towards Paraconsistent Engineering, Intelligent Systems Reference Library, vol. 110.

Springer (2016), https://doi.org/10.1007/978-3-319-40418-9
[3] Baeten, J.C.M., Basten, T., Reniers, M.A.: Process Algebra: Equational theories of communicating pro-

cesses. Cambridge Tracts in Theoretical Computer Science (50), Cambridge University Press (2010), https:
//doi.org/10.1017/CBO9781139195003

[4] Chiara, M.L.D., Giuntini, R.: Paraconsistent ideas in quantum logic. Synth. 125(1-2), 55–68 (2000), https:
//doi.org/10.1023/A:1005296018904

[5] da Costa, N.C.A., Krause, D., Bueno, O.: Paraconsistent logics and paraconsistency. In: Jacquette, D. (ed.)
Handbook of the Philosophy of Science (Philosophy of Logic). pp. 791–911. Elsevier (2007), https://
doi.org/10.1016/B978-044451541-4/50023-3

[6] da Costa, N.C.A., Krause, D.: Physics, inconsistency, and quasi-truth. Synth. 191(13), 3041–3055 (2014),
https://doi.org/10.1007/s11229-014-0472-8

[7] Cruz, A., Madeira, A., Barbosa, L.S.: A logic for paraconsistent transition systems. In: Indrzejczak, A.,
Zawidzki, M. (eds.) Proceedings of the 10th International Conference on Non-Classical Logics. Theory and
Applications, NCL 2022, Łódź, Poland, 14-18 March 2022. EPTCS, vol. 358, pp. 270–284 (2022), https:
//doi.org/10.4204/EPTCS.358.20

[8] Cruz, A.L.R.: Exploring paraconsistent logics for quantum programs. MSc Thesis in Engineering Physics,
DI, Universidade do Minho (2021)

[9] Jaśkowski, S.: Propositional calculus for contradictory deductive systems. Studia Logica 24(1), 143–157
(1969), https://doi.org/10.1007/BF02134311

[10] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information (10th Anniversary Edition).
Cambridge University Press (2010), https://doi.org/10.1017/CBO9780511976667

[11] Preskill, J.: Quantum computing in the nisq era and beyond. Quantum 2(79), 87–95 (2018), https://doi.
org/10.22331/q-2018-08-06-79

[12] Stirling, C.: Modal and Temporal Properties of Processes. Texts in Computer Science, Springer (2001),
https://doi.org/10.1007/978-1-4757-3550-5

[13] Winskel, G., Nielsen, M.: Models for concurrency. In: Abramsky, S., Gabbay, D.M., Maibaum, T.S.E.
(eds.) Handbook of Logic in Computer Science (vol. 4): Semantic Modelling, pp. 1–148. Oxford Science
Publications (1995)

[14] Zhang, Y., Deng, H., Li, Q., Song, H., Nie, L.: Optimizing quantum programs against decoherence: Delaying
qubits into quantum superposition. In: 2019 Int. Symp. Theoretical Aspects of Software Engineering (TASE).
IEEE (Jul 2019), https://doi.org/10.48550/arXiv.1904.09041

https://doi.org/10.48550/arXiv.0802.0150
https://doi.org/10.1007/978-3-319-40418-9
https://doi.org/10.1017/CBO9781139195003
https://doi.org/10.1017/CBO9781139195003
https://doi.org/10.1023/A:1005296018904
https://doi.org/10.1023/A:1005296018904
https://doi.org/10.1016/B978-044451541-4/50023-3
https://doi.org/10.1016/B978-044451541-4/50023-3
https://doi.org/10.1007/s11229-014-0472-8
https://doi.org/10.4204/EPTCS.358.20
https://doi.org/10.4204/EPTCS.358.20
https://doi.org/10.1007/BF02134311
https://doi.org/10.1017/CBO9780511976667
https://doi.org/10.22331/q-2018-08-06-79
https://doi.org/10.22331/q-2018-08-06-79
https://doi.org/10.1007/978-1-4757-3550-5
https://doi.org/10.48550/arXiv.1904.09041

	1 Introduction
	2 Paraconsistent labelled transition systems
	3 Simulation and Bisimulation for PLTS
	4 New PLTS from old
	5 An application to quantum circuit optimization
	6 Conclusions and future work

