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Abstract. Strategic term rewriting and attribute grammars are two
powerful programming techniques widely used in language engineering.
The former relies on strategies (recursion schemes) to apply term rewrite
rules in defining transformations, while the latter is suitable for expressing
context-dependent language processing algorithms. Each of these tech-
niques, however, is usually implemented by its own powerful and large
processor system. As a result, it makes such systems harder to extend
and to combine.
We present the embedding of both strategic tree rewriting and attribute
grammars in a zipper-based, purely functional setting. The embedding
of the two techniques in the same setting has several advantages: First,
we easily combine/zip attribute grammars and strategies, thus providing
language engineers the best of the two worlds. Second, the combined
embedding is easier to maintain and extend since it is written in a concise
and uniform setting. We show the expressive power of our library in
optimizing Haskell let expressions, expressing several Haskell refactorings
and solving several language processing tasks for an Oberon-0 compiler.
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1 Introduction

Since Algol was designed in the 60’s, as the first high-level programming lan-
guage [38], languages have evolved dramatically. In fact, modern languages offer
powerful syntactic and semantic mechanisms that improve programmers pro-
ductivity. In response to such developments, the software language engineering
community also developed advanced techniques to specify such new mechanisms.

Strategic term rewriting [19] and Attribute Grammars (AG) [14] have a long
history in supporting the development of modern software language analysis,
transformations and optimizations. The former relies on strategies (recursion
schemes) to traverse a tree while applying a set of rewrite rules, while the latter
is suitable to express context-dependent language processing algorithms. Many
language engineering systems have been developed supporting both AGs [11, 26,
16, 23, 9, 8, 36] and rewriting strategies [5, 4, 17, 6, 30, 37]. These powerful systems,
however, are large systems supporting their own AG or strategic specification
language, thus requiring a considerable development effort to extend and combine.
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A more flexible approach is obtained when we consider the embedding of
such techniques in a general purpose language. Language embeddings, however,
usually rely on advanced mechanisms of the host language, which makes them
difficult to combine. For example, Strafunski [17] offers a powerful embedding of
strategic term rewriting in Haskell, but it can not be easily combined with the
Haskell embedding of AGs as provided in [25, 21]. The former works directly on
the underlying tree, while the latter on a zipper representation of the tree.

In this paper, we present the embedding of both strategic tree rewriting
and attribute grammars in a zipper-based, purely functional setting. Generic
zippers [12] is a simple generic tree-walk mechanism to navigate on both homo-
geneous and heterogeneous data structures. Traversals on heterogeneous data
structures (i.e. data structures composed of different data structures) is the main
ingredient of both strategies and AGs. Thus, zippers provide the building block
mechanism we will reuse for expressing the purely-functional embedding of both
techniques. The embedding of the two techniques in the same setting has several
advantages: First, we easily combine/zip attribute grammars and strategies, thus
providing language engineers the best of the two worlds. Second, the combined
embedding is easier to maintain and extend since it is written in a concise and
uniform setting. This results in a very small library (200 lines of Haskell code)
which is able to express advanced (static) analyses and transformation tasks. The
purpose of this paper is three-fold:

– Firstly, we present a simple, yet powerful embedding of strategic term rewrit-
ing using generic zippers. This results in a concise library, named Ztrategic,
that is easy to maintain and update. Moreover, our embedding has the
expressiveness of the Strafunski library [17], as we showcase in section 4.

– Secondly, this new strategic term rewriting embedding can easily be combined
with an existing zipper-based embedding of attribute grammars [22, 10]. By
relying on the same generic tree-traversal mechanism, the zipper, (zipper-
based) strategies can access (zipper-based) AG functional definitions, and
vice versa. Such a joint embedding results in a multi-paradigm embedding
of the two language engineering techniques. We show two examples of the
expressive power of such embedding: First, we access attribute values in
strategies to express non-trivial context-dependent tree rewriting. Second,
strategies are used to define attribute propagation patterns [11, 8], which are
widely used to eliminate (polluting) copy rules from AGs.

– Thirdly, we apply Ztrategic in real language engineering problems, namely,
in optimizing Haskell let expressions, expressing a set of refactorings that
eliminate several Haskell smells, and solving the LDTA Tool Challenge [35]
tasks for name binding, type checking and desugaring of Oberon-0 programs.

This paper is organized as follows: Section 2 presents generic zippers and
describes Ztrategic, our zipper-based embedding of strategic term rewriting. In
Section 3, we describe zipper-based embedding of attribute grammars and we
show how the two techniques/embeddings can be easily combined. In Section 4
we use the library to define several usage examples, such as refactorings of
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Haskell source code and name binding, type checking and desugaring Oberon-0
source code. Section 5 discusses related work, and in Section 6 we present our
conclusions.

2 Ztrategic: Zipper-Based Strategic Programming

Before we present our embedding in detail later in the section, let us consider a
motivating example we will use throughout the paper. Consider the (sub)language
of Let expressions as incorporated into most functional languages, including
Haskell. Next, we show an example of a valid Haskell let expression and we define
the heterogeneous data type Let , taken from [22], that models such expressions
in Haskell itself.

p = let a = b + 0
c = 2
b = let c = 3 in c + c

in a + 7− c

data Let = Let List Exp
data List = NestedLet String Let List

| Assign String Exp List
| EmptyList

data Exp = Add Exp Exp | Sub Exp Exp
| Neg Exp | Const Int | Var String

We can write p as a Haskell value with type Let :

p = Let (Assign "a" (Add (Var "b") (Const 0))
(Assign "c" (Const 2)
(NestedLet "b" (Let (Assign "c" (Const 3) EmptyList)

(Add (Var "c") (Var "c")))
EmptyList)))
(Sub (Add (Var "a") (Const 7)) (Var "c"))

Consider now that we wish to implement a simple arithmetic optimizer
for our language. Let us start with a trivial optimization: the elimination of
additions with 0. In this context, strategic term rewriting is an extremely suitable
formalism, since it provides a solution that just defines the work to be done in
the constructors (tree nodes) of interest, and “ignores” all the others. In our
example, the optimization is defined in Add nodes, and thus we express the
worker function as follows:

expr :: Exp → Maybe Exp
expr (Add e (Const 0)) = Just e
expr (Add (Const 0) e) = Just e
expr = Nothing

The first two alternatives define the optimization: when either of the sub-
expressions of an Add expression is the constant 0, then it returns the other
sub-expression. A type-specific transformation function returns a Maybe result,
transformations that fail or do not change the input return Nothing . This is the
case of the last alternative of expr , that defines the default behaviour.

This function applies to Exp nodes only. To express our Let optimization,
however, we need a generic mechanism that traverses Let trees, applying this
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function when visiting Add expressions. This is where strategic term rewriting
comes to the rescue: It provides recursion patterns (i.e., strategies) to traverse
the (generic) tree, like, for example, top-down or bottom-up traversals. It also
includes functions to apply a node specific rewriting function (like expr) according
to a given strategy. Next, we show the strategic solution of our optimization
where expr is applied to the input tree in a full top-down strategy. This is a Type
Preserving (TP) transformation since the input and result trees have the same
type:

opt :: Zipper Let → Maybe (Zipper Let)
opt t = applyTP (full tdTP step) t

where step = idTP ‘adhocTP ‘ expr

We have just presented our first zipper-based strategic function. Here, step
is a transformation to be applied by function applyTP to all nodes of the input
tree t (of type Zipper Let) using a full top-down traversal scheme (function
full tdTP). The rewrite step behaves like the identity function (idTP) by default
with our expr function to perform the type-specific transformation, and the
adhocTP combinator joins them into a single function.

This strategic solution relies on our Ztrategic [20] library: a purely functional
embedding of strategic term rewriting in Haskell. In this solution we clearly
see that the traversal function full tdTP needs to navigate heterogeneous trees,
as it is the case of the Let expression p. In a functional programming setting,
zippers [12] provide a simple, but generic tree-walk mechanism that we will use
to embed strategic programming in Haskell. In fact, our strategic combinators
work with zippers as in the definition of opt . In the remaining of this section, we
start by briefly describing zippers, and, next, we present in detail the embedding
of strategies using this powerful mechanism.

2.1 The Zipper Data Structure

Zippers were introduced by Huet [12] to represent a tree together with a subtree
that is the focus of attention. During a computation the focus may move left,
up, down or right within the tree. Generic manipulation of a zipper is provided
through a set of predefined functions that allow access to all of the nodes of a
tree for inspection or modification.

A generic implementation of this concept is available as the generic zipper
Haskell library [1], which works for both homogeneous and heterogeneous data
types. In order to illustrate the use of zippers, let us consider again the tree
used as an example for our Let program. We build a zipper t1 from the previous
Let expression p through the use of the toZipper :: Data a ⇒ a → Zipper a
function. This function produces a zipper out of any data type, requiring only
that the data types have an instance of the Data and Typeable type classes3.

t1 = toZipper p

3 These can be easily obtained via the Haskell data type deriving mechanism.
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We can navigate t1 using pre-defined functions from the zipper library. The
function down’ moves the focus down to the leftmost child of a node, while
down moves the focus to the rightmost child instead. Similarly, functions right,
left and up, move towards the corresponding directions. They all have type
Zipper a → Maybe (Zipper a), meaning that such functions take a zipper and
return a new zipper in case the navigation does not fail.

Finally, the zipper function getHole :: Typeable b ⇒ Zipper a → Maybe b
extracts the actual node the zipper is focusing on. Notice that the type of the
hole (b) can be different than the type of the root of the Zipper (a), since the
tree can be heterogeneous. Using these functions, we can freely navigate through
this newly created zipper. Consider our expression p, we can unsafely4 move
the focus of the zipper towards the b + 0 subexpression and obtain its value as
follows:

sumBZero ::Maybe Exp
sumBZero = (getHole . fromJust . right . fromJust . down’ . fromJust . down’) t1

The zipper library also contains functions for the transformation of the
data structure being traversed. The function trans ::GenericT → Zipper a →
Zipper a applies a generic transformation to the node the zipper is currently
pointing to; while transM ::GenericM m → Zipper a → m (Zipper a) applies
a generic monadic transformation.

2.2 Strategic Programming

In this section we introduce Ztrategic, our embedding of strategic programming
using generic zippers. The embedding directly follows the work of Laemmel and
Visser [17] on the Strafunski library [18].

We start by defining a function that elevates a transformation to the zipper
level. In other words, we define how a function that is supposed to operate directly
on one data type is converted into a zipper transformation.

zTryApplyM :: (Typeable a,Typeable b) ⇒ (a → Maybe b) → TP c

The definition of zTryApplyM , which we omit for brevity, relies on transfor-
mations on zippers, thus reusing the generic zipper library transM function.

zTryApplyM returns a TP c, in which TP is a type for specifying Type-
Preserving transformations on zippers, and c is the type of the zipper. For
example, if we are applying transformations on a zipper built upon the Let data
type, then those transformations are of type TP Let .

type TP a = Zipper a → Maybe (Zipper a)

Very much like Strafunski, we introduce the type TU m d for Type-Unifying
operations, which aim to gather data of type d into the data structure m.

type TU m d = (forall a . Zipper a → m d)

4 By using the function fromJust ::Maybe a → a we assume a Just value is returned.
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For example, to collect in a list all the defined names in a Let expression, the
corresponding type-unifying strategy would be of type TU [ ] String . We will
present such a transformation and implement it later in this section.

Next, we define a combinator to compose two transformations, building
a more complex zipper transformation that tries to apply each of the initial
transformations in sequence, skipping transformations that fail.

adhocTP :: Typeable a ⇒ TP e → (a → Maybe a) → TP e
adhocTP f g z = maybeKeep f (zTryApplyM g) z

The adhocTP function receives transformations f and g as parameters, as
well as zipper z . It converts g , which is a simple (i.e. non-zipper) Haskell function,
into a zipper. Then, the zipper transformations f and g are passed as arguments
to maybeKeep, which is an auxiliary function that applies the transformations in
sequence, discarding either failing transformation (i.e. that produces Nothing).
We omit the definition of maybeKeep for brevity.

Next, we use adhocTP , written as an infix operator, which combines the
zipper function failTP with our basic transformation expr function:

step = failTP ‘adhocTP ‘ expr

Thus, we do not need to express type-specific transformations as functions
that work on zippers. It is the use of zTryApplyM in adhocTP that transforms a
Haskell function (expr in this case) to a zipper one, hidden from these definitions.

The transformation failTP is a pre-defined transformation that always fails
(returning Nothing) and idTP is the identity transformation that always suc-
ceeds (returning the input unchanged). They provide the basis for construction
of complex transformations through composition. We omit here their simple
definitions.

The functions we have presented already allow the definition of arbitrarily
complex transformations for zippers. Such transformations, however, are always
applied on the node the zipper is focusing on. Let us consider a combinator that
navigates in the zipper.

allTPright :: TP a → TP a
allTPright f z = case right z of

Nothing → return z
Just r → fmap (fromJust . left) (f r)

This function is a combinator that, given a type-preserving transformation
f for zipper z , will attempt to apply f to the node that is located to the right
of the node the zipper is pointing to. To do this, the zipper function right is
used to try to navigate to the right; if it fails, we return the original zipper. If it
succeeds, we apply transformation f and then we navigate left again. There is a
similar combinator allTPdown that navigates downwards and then upwards.

With all these tools at our disposal, we can define generic traversal schemes
by combining them. Next, we define the traversal scheme used in the function opt
we defined at the start of the section. This traversal scheme navigates through
the whole data structure, in a top-down approach.
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full tdTP :: TP a → TP a
full tdTP f = allTPdown (full tdTP f ) ‘seqTP ‘ allTPright (full tdTP f ) ‘seqTP ‘ f

We skip the explanation of the seqTP operator as it is relatively similar to
the adhocTP operator we described before, albeit simpler; we interpret this as a
sequence operator. This function receives as input a type-preserving transforma-
tion f , and (reading the code from right to left) it applies it to the focused node
itself, then to the nodes below the currently focused node, then to the nodes to
the right of the focused node. To apply this transformation to the nodes below
the current node, for example, we use the allTPdown combinator we mentioned
above, and we recursively apply full tdTP f to the node below. The same logic
applies in regards to navigating to the right.

We can define several traversal schemes similar to this one by changing the
combinators used, or their sequence. For example, by inverting the order in
which the combinators are sequenced, we define a bottom-up traversal. By using
different combinators, we can define choice, allowing for partial traversals in the
data structure. We previously defined a rewrite strategy where we use full tdTP
to define a full, top-down traversal, which is not ideal. Because we intend to
optimize Exp nodes, changing one node might make it possible to optimize the
node above, which would have already been processed in a top-down traversal.
Instead, we define a different traversal scheme, for repeated application of a
transformation until a fixed point is reached:

innermost :: TP a → TP a
innermost s = repeatTP (once buTP s)

We omit the definitions of once buTP and repeatTP as they are similar to the
presented definitions. The combinator repeatTP applies a given transformation
repeatedly until a fixed point is reached, that is, until the data structure stops
being changed by the transformation. The transformation being applied repeatedly
is defined with the once buTP combinator, which applies s once, anywhere on
the data structure. When the application once buTP fails, repeatTP understands
a fixed point is reached. Because the once buTP bottom-up combinator is used,
the traversal scheme is innermost , since it prioritizes the innermost nodes. The
pre-defined outermost strategy uses the once tdTP combinator instead.

Let us return to our Let running example. Obviously there are more arithmetic
rules that we may use to optimize let expressions. In Fig. 1 we present the rules
given in [15].

In our definition of the function expr , we already defined rewriting rules for
optimizations 1 and 2. Rules 3 through 6 can also be trivially defined in Haskell:

expr :: Exp → Maybe Exp
expr (Add e (Const 0)) = Just e
expr (Add (Const 0) t) = Just t
expr (Add (Const a) (Const b)) = Just (Const (a + b))
expr (Sub a b) = Just (Add a (Neg b))
expr (Neg (Neg f )) = Just f
expr (Neg (Const n)) = Just (Const (−n))
expr = Nothing
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add(e, const(0)) → e (1)

add(const(0), e) → e (2)

add(const(a), const(b)) → const(a+ b) (3)

sub(e1, e2) → add(e1, neg(e2)) (4)

neg(neg(e)) → e (5)

neg(const(a)) → const(−a) (6)

var(id) | (id, just(e)) ∈ env → e (7)

Fig. 1: Optimization Rules

Rule 7, however, is context dependent and it is not easily expressed within
strategic term rewriting. In fact, this rule requires to first compute the environment
where a name is used (according to the scope rules of the Let language). We will
return to this rule in Section 3.

Having expressed all rewriting rules from 1 to 6 in function expr , now we
need to use our strategic combinators that navigate in the tree while applying
the rules. To guarantee that all the possible optimizations are applied we use an
innermost traversal scheme. Thus, our optimization is expressed as:

opt ′ :: Zipper Let → Maybe (Zipper Let)
opt ′ t = applyTP (innermost step) t

where step = failTP ‘adhocTP ‘ expr

Function opt ′ combines all the steps we have built until now. We define an
auxiliary function step, which is the composition of the failTP default failing
strategy with expr , the optimization function; we compose them with adhocTP .
Our resulting Type-Preserving strategy will be innermost step, which applies
step to the zipper repeatedly until a fixed-point is reached. The use of failTP
as the default strategy is required, as innermost reaches the fixed-point when
step fails. If we use idTP instead, step always succeeds, resulting in an infinite
loop. We apply this strategy using the function applyTP :: TP c → Zipper c →
Maybe (Zipper c), which effectively applies a strategy to a zipper. This function
is defined in our library, but we omit the code as it is trivial.

Next, we show an example using a Type-Unifying strategy. We define a
function names that collects all defined names in a Let expression. First, we
define a function select that focuses on the Let tree nodes where names are
defined, namely, Assign and NestedLet . This function returns a singleton list
(with the defined name) when applied to these nodes, and an empty list in the
other cases.

select :: List → [String ]
select (Assign s ) = [s ]
select (NestedLet s ) = [s ]
select = [ ]
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Now, names is a Type-Unifying function that traverses a given Let tree (inside
a zipper, in our case), and produces a list with the declared names.

names :: Zipper Let → [String ]
names r = applyTU (full tdTU step) r

where step = failTU ‘adhocTU ‘ select

The traversal strategy influences the order of the names in the resulting
list. We use a top-down traversal so that the list result follows the order of the
input. This is to say that names t1 ≡ ["a", "c", "b", "c" ] (a bottom-up strategy
produces the reverse of this list).

As we have shown, our strategic term rewriting functions rely on zippers built
upon the data (trees) to be traversed. This results in strategic functions that can
easily be combined with a zipper-based embedding of attribute grammars [22, 10],
since both functions/embedding work on zippers. In the next section we present
in detail the zipping of strategies and AGs.

3 Strategic Attribute Grammars

Zipper-based strategic term rewriting provides a powerful mechanism to express
tree transformations. There are, however, transformations that rely on contextual
information that needs to be collected so the transformation can be applied. Our
optimization rule 7 of Fig. 1 is such an example. In this section we will briefly
explain the Zipper-based embedding of attribute grammars, through the Let
example. Then, we are going to explain how to combine strategies and AGs,
ending with an implementation of rule 7.

3.1 Zipper-based Attribute Grammars

The attribute grammar formalism is particularly suitable for specifying language-
based algorithms, where contextual information needs to be collected before
it can be used. Language-based algorithms such as name analysis [22], pretty
printing [34], type inference [24], etc. are elegantly specified using AGs.

Our running example is no exception and the name analysis task of Let is a
non-trivial one. Despite being a concise example, it has central characteristics of
software languages, such as (nested) block-based structures and mandatory but
unique declarations of names. In addition, the semantics of this implementation
of Let does not force a declare-before-use discipline, meaning that a variable can
be declared after its first use. Consequently, a conventional implementation of
name analysis naturally leads to a processor that traverses each block twice: once
for processing the declarations of names and constructing an environment and a
second time to process the uses of names (using the computed environment) in
order to check for the use of non-declared identifiers. The uniqueness of identifiers
is efficiently checked in the first traversal: for each newly encountered name it
is checked whether that it has already been declared at the same lexical level
(block). As a consequence, semantic errors resulting from duplicate definitions are
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computed during the first traversal, and errors resulting from missing declarations
in the second one. In fact, expressing this straightforward algorithm is a complex
task in most programming paradigms, since it requires a complex scheduling of
tree traversals5, and intrusive code may be needed to pass information computed
in one traversal to a specific node and used in a subsequent one6.

In the attribute grammar paradigm, the programmer does not need to be
concerned with scheduling of traversals, nor the use of intrusive code to glue
traversals together. As a consequence, they do not need to adapt algorithms
in order to avoid those issues. AGs associate attributes to grammar symbols
(types in a functional setting), which are called synthesized attributes if they are
computed bottom-up or inherited attributes if they are computed top-down.

Very much like strategic term rewriting, AGs also rely on a generic tree walk
mechanism, usually called tree-walk evaluators [2], to walk up and down the tree
to evaluate attributes. In fact, generic zippers also offer the necessary abstractions
to express the embedding of AGs in a functional programming setting [22, 10].
Next, we briefly describe this embedding, and after that we present the embedded
AG that express the scope rules of Let . It also computes (attribute) env, that is
needed by the optimization rule 7.

To allow programmers to write zipper-based functions as AG writers do, the
generic zippers library [1] is extended with some combinators:

– The combinator “child”, written as the infix function .$ to access the child
of a tree node given its index (starting from 1).

(.$) :: Zipper a → Int → Zipper a

– The combinator parent to move the focus to the parent of a tree node.

parent :: Zipper a → Zipper a

Having presented these zipper-based AG combinators, we now show in Fig. 3
the scope rules specified in the Let AG directly as a Haskell-based AG. We also
show a visual representation of the AG in Fig. 2. Productions are shown with the
parent node above and children nodes below, inherited attributes are on their
left and synthesized attributes on their right, and arrows show how information
flows between productions and their children to compute attributes.

In this AG the inherited attribute dcli is used as an accumulator to collect all
Names defined in a Let : it starts as an empty list in the Root production, and
when a new Name is defined (productions Assign and NestedLet) it is added to
the accumulator. The total list of defined Name is synthesized in attribute dclo,
which at the Root node is passed down as the environment (inherited attribute
env). The type of the three attributes is a list of triples, associating the Name to
the level it is defined (used to distingish declarations with the same name) and
its Let expression definition7. Thus, we define a type synonym

5 Note that only after building the environment of an outer block can nested ones be
traversed: they inherited that environment. Thus, traversals are intermingled.

6 This is the case when we wish to produce a list of errors that follows the sequential
structure of the input program [27].

7 We will use this definition to expand the Name as required by optimization rule 7.
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Fig. 2: Attribute Grammar Specifying the Scope Rules of Let

dclo :: Zipper Root → Env
dclo t = case (constructor t) of

LetLet → dclo (t .$1)
NestedLetList → dclo (t .$3)
AssignList → dclo (t .$3)
EmptyListList → dcli t

lev :: Zipper Root → Int
lev t = case (constructor t) of

LetLet → case (constructor (parent t)) of
NestedLetList → (lev (parent t)) + 1
RootRoot → 0

→ lev (parent t)

dcli :: Zipper Root → Env
dcli t = case (constructor t) of

LetLet → case (constructor (parent t)) of
RootRoot → [ ]
NestedLetList → env (parent t)

→ case (constructor (parent t)) of
LetLet → dcli (parent t)
NestedLetList → (lexemeName (parent t), lev (parent t),Nothing) : (dcli (parent t))
AssignList → (lexemeName (parent t), lev (parent t), lexemeExp (parent t))

: (dcli (parent t))

env :: Zipper Root → Env
env t = case (constructor t) of

LetLet → dclo t
→ env (parent t)

Fig. 3: Definitions of dclo, lev, dcli and env Attributes

type Env = [(Name, Int ,Maybe Exp)]

We start by defining the equations of the synthesized attribute dclo. For each
definition of an occurrence of dclo we define an equation in our zipper-based
function. For example, in the diagrams of the NestedLet and Assign productions
in Fig. 2 we see that dclo is defined as the dclo of the third child. Moreover, in
production EmptyList attribute dclo is a copy of dcli. Let us consider the case of
defining the inherited attribute env. In most diagrams an occurrence of attribute
env is defined as a copy of the parent. There are two exceptions: in productions
Root and NestedLet where Let subtrees occur. In both cases, env gets its value
from the synthesized attribute dclo of the same non-terminal/type. We use the
default rule of the case statement to express similar AG copy equations.

The inherited attribute lev is used to distinguish declarations with the same
name in different scopes. We omitted this attribute in the visual AG of Fig. 2
since its equations are simple. This attribute is passed downwards as a copy of
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the parent node/symbol, with two exceptions: when visiting a Let subtree whose
parent is a Root, and when visiting a NestedLet . In the former the (initial) level
is 0, while in the latter since we are descending to a nested block, we increment
the level of the outer one.

Finally, let us define now the accumulator attribute dcli. The zipper function,
when visiting nodes of type Let (which have dcli attributes) has to consider two
alternatives: the parent node can be a Root or a NestedLet (the two occurrences
of Let as a child in the diagrams of Fig. 2). This happens because the rules to
define its value differ: in the Root node it corresponds to an empty list (our
outermost Let is context-free), while in a nested block, the accumulator dcli
starts as the env of the outer block. When visiting all other subtrees (expressed
by the default rule), we need to define the inherited attribute dcli of List subtrees.
There are three different cases: when the parent is a Let node, dcli is a copy of the
parent. When the parent is an Assign then the Name, level and the associated
Exp are accumulated in the dcli of the parent. Finally, in the case of NestedLet
the Name, level and a Nothing expression is accumulated in dcli8.

In order to specify the complete name analysis task of Let expression we need
to report which names violate the scope rules of the language. We can modular
and incrementally extend our AG [28], and define a new attribute errors to report
such violations. In the next section errors is expressed as a strategic function.

3.2 Strategic Attribute Grammars

By having embedding both strategic term rewriting and attribute grammars
in the same zipper-based setting, and given that both are embedded as first-
class citizens, we can easily combine these two powerful language engineering
techniques. As a result, attribute computations that do useful work on few
productions/nodes can be efficiently expressed via our Ztrategic library, while
rewriting rules that rely on context information can access attribute values.

Accessing Attribute Values from Strategies: As we mentioned in Section 3, rule
7 of Fig. 1 cannot be implemented using a trivial strategy, since it depends on
the context. The rule states that a variable occurrence can be changed by its
definition. Thus, we need to compute an environment of definitions, which is
what we have done with the attribute env, previously. If we had access to such
attribute in the definition of a strategy, we would be able to implement this rule.

Given that both attribute grammars and strategies use the zipper to walk
through the tree, such combinations can be easily performed if the strategy
exposes the zipper, so it can be used to apply the given attribute. This is done
in our library by the adhocTPZ combinator:

adhocTPZ :: Typeable a ⇒ TP e → (a → Zipper e → Maybe a) → TP e

8 In this AG function we use boilerplate code lexemeName and lexemeExp , which imple-
ment the so-called syntactic references in attribute equations [26]. They return the
Name and Exp arguments of constructor Assign, respectively.
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Notice that instead of taking a function of type (a → Maybe a), as does the
combinator adhocTP introduced in Section 2, it receives a function of type
(a → Zipper e → Maybe a), with the zipper as a parameter. Then, we can
define a worker function with this type, that implements rule 7:

expC :: Exp → Zipper Root → Maybe Exp
expC (Var x ) z = expand (i , lev z ) (env z )
expC = Nothing

where expand is a simple lookup function that replaces a name x for its definition
in the environment (given by attribute env). This strategic function also uses
attribute lev to look for the current or closest scope where name x is defined. As
a final step, we combine this rule with the previously defined expr (rules 1 to 6)
and apply them to all nodes.

opt ′′ :: Zipper Root → Maybe (Zipper Root)
opt ′′ r = applyTP (innermost (failTP ‘adhocTPZ ‘ expC ‘adhocTP ‘ expr)) r

Synthesizing Attributes via Strategies: We showed how attributes and strategies
are combined by using the former while defining the latter. Now we show how
to combine them the other way around; i.e. to express attribute computations
as strategies. As an example, let us define the errors attribute, that returns the
list of names that violate the scope rules. Note that duplicated definitions are
efficiently detected when a new Name (defined in nodes Assign and NestedLet)
is accumulated in dcli. The newly defined Name must not be in the environment
dcli accumulated prior to that definition. Invalid uses are detected when a Name
is used in an arithmetic expression (Exp). In this case, the Name must be in9

the accumulated environment env. This is expressed by the following zipper
functions:

decls :: List → Zipper Root → [Name]
decls (Assign ) z = mNBIn (lexemeName z , lev z ) (dcli z )
decls (NestedLet ) z = mNBIn (lexemeName z , lev z ) (dcli z )
decls = [ ]

uses :: Exp → Zipper Root → [Name]
uses (Var ) z = mBIn (lexemeName z ) (env z )
uses z = [ ]

Now, we define a type-unifying strategy that produces the list of errors.

errors :: Zipper Root → [Name ]
errors t = applyTU (full tdTU (failTU ‘adhocTUZ ‘ uses ‘adhocTUZ ‘ decls)) t

Although the applied function combines decls and uses in this order, the
resulting list does not report duplicates first, and invalid uses after. The strategic
function adhocTUZ combines the two functions and the default failing function
into one, which is applied while traversing the tree in a top-down traversal,
producing the errors in the order they occur. If we define errors as an attribute,

9 Functions mNBIn and mBIn are trivial lookup functions. They are presented in [20].
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most of the attribute equations are just propagating attribute values upwards
without doing useful work! This is particularly relevant when we consider the
Let sub-language as part of a real programming language (such as Haskell with
its 116 constructors across 30 data types). Thus, combining attribute grammars
with strategic term rewriting allows the leverage of the best of both worlds.

4 Expressiveness and Performance

In order to evaluate our combined zipper-based embedding of attribute grammars
and strategic term-rewriting we consider three language engineering problems:
First, we define a refactoring that eliminates the monadic do-notation from Haskell
programs. Second, we evaluate the performance of our library by comparing the
runtimes of an implementation in Ztrategic of a Haskell smell eliminator with its
Strafunski counterpart when processing a large set of smelly Haskell programs.
Third, we express in Ztrategic the largest language specification developed in this
setting: the Oberon-0 language. The construction of a processor for Oberon-0 was
proposed in the LDTA Tool Challenge [35], and it was concisely and efficiently
specified using AGs and strategies in Kiama [31].

Do-notation elimination: We start by defining a refactoring that eliminates the
syntactic sugar introduced by the monadic do-notation. In order to automate
this refactoring, a type-preserving strategy is used to perform a full traversal in
the Haskell tree, since such expressions can be arbitrarily nested. The rewrite
step behaves like the identity function by default with a type-specific case for
pattern matching the do-notation in the Haskell tree (constructor HsDo).

The following type-specific transformation function doElim just matches
HsDo nodes and returns the correct desugared node, expressed at abstract syntax
tree level. We omit the details of its representation as Haskell data types.

refactor :: Zipper HsModule → Maybe (Zipper HsModule)
refactor h = applyTP (innermost step) h where step = failTP ‘adhocTP ‘ doElim

doElim ::HsExp → Maybe HsExp
doElim (HsDo [HsQualifier e ]) = Just e
doElim (HsDo (HsQualifier e : stmts))

= Just ((HsInfixApp e (HsQVarOp (hsSymbol ">>")) (HsDo stmts)))
doElim (HsDo (HsGenerator p e : stmts)) = Just (letPattern p e stmts))
doElim (HsDo (HsLetStmt decls : stmts)) = Just (HsLet decls (HsDo stmts))
doElim = Nothing

We conclude that our library allows for the definition of powerful source
code transformations in a concise manner. We also include a list desugaring
implementation in our work’s repository.

Smells Elimination: Source code smells make code harder to comprehend. A
smell is not an error, but it indicates a bad programming practice. For example,
inexperienced Haskell programmers often write l ≡ [ ] to check whether a list is
empty, instead of using the predefined null function. Next, we present a strategic
function that eliminates several Haskell smells as reported in [7].
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smellElim h = applyTP (innermost step) h
where step = failTP ‘adhocTP ‘ joinList ‘adhocTP ‘ nullList

‘adhocTP ‘ redundantBoolean ‘adhocTP ‘ reduntantIf

where joinList detects patterns where list concatenations are inefficiently defined,
nullList detects patterns where a list is checked for emptiness, redundantBoolean
detects redundant boolean checks, and reduntantIf detects redundant if clauses.

In order to assess the runtime performance of our zipper-based strategic term
rewriting implementation, we compare it with the state-of-the-art, fully optimized
Strafunski system. A detailed analysis of runtime performance of the zipper-
based embedding of AGs is presented in [10], in which memoized zipper-based
attribute grammars with very large inputs are benchmarked, showing that this
AG embedding is not only concise and elegant, but also efficient.

Ztrategic Strafunski
Lines of Code 22 22
Runtime 16.2s 10.2s
Average Memory 6607Kb 6580Kb

Table 1: Haskell Smell Eliminators in
Ztrategic and Strafunski.

Let us consider the Haskell smell
eliminator expressed in both Ztrate-
gic and Strafunski. To run both tools
with large smelly inputs, we consider
150 Haskell projects developed by first-
year students as presented in [3]. In
these projects there are 1139 Haskell
files totaling 82124 lines of code, of
which exactly 1000 files were syntac-
tically correct 10. Both Ztrategic and
Strafunski smell eliminators detected
and eliminated 850 code smells in those files. To compare the runtime perfor-
mance of both implementations, we computed an average of 5 runs, on a Ubuntu
16.04 machine, i5-7200U Dual Core, with 8 GB RAM. In this case, the very first
version of Ztrategic, while being more expressive, is only 60% slower than the
Strafunski library.

Task Ztrategic Kiama
Oberon-0 Tree 57 99
Name analyzer 50 222
Type analyzer 34 117
Lifter 6 23
Desugarer 76 123
Total 223 584

Table 2: Numbers of Lines of Code for
the Oberon-0 L2 tasks.

Oberon-0 in Ztrategic: The LDTA Tool
Challenge [35] was a challenge fo-
cused on the construction of a com-
piler for the Oberon-0 language, with
the goal of comparing the formalisms
and toolsets used in it. The chal-
lenge was divided into 5 tasks: pars-
ing and pretty-printing, name binding,
type checking, desugaring and C code
generation. These tasks were to be
performed on the Oberon-0 language,
which in itself was divided into 5 in-
creasingly complex levels. We consider
the level 2 (L2) of the Oberon-0 problem, and we specified the name binding,
type checking and desugaring tasks in our Ztrategic AG approach. We use at-

10 The student projects used in this benchmark are available at this work’s repository.
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tributes for contextual information when needed, for example in name analysis
to check whether a used name has been declared. This language level requires
the desugaring of For and Case statements into semantically equivalent While
and (nested) If statements. Such desugaring is implemented using Ztrategic
type-preserving strategies, and the result is a new tree in which name analysis
and type checking is performed through strategic traversals that use attributes.
Because desugaring a For statement induces a new assignment (before the new
WhileStmt statement) whose variable needs to be added to the declarations part
of the original AST, we use the attribute numForDown which is a synthesized
attribute of the original tree. Having the desugared AST and the number of
For statements refactored, then we return the final higher-order tree where the
induced variables are properly declared.

desugar m = let numberOfFors = numForsDown (toZipper m)
step = failTP ‘adhocTP ‘ desugarFor ‘adhocTPZ ‘ desugarCase
ata = fromJust (applyTP (innermost step) (toZipper m))

in injectForVars numberOfFors (fromZipper ata)

We omit here the definition of the worker function desugarFor . Its definition
is fully included in [20], and it is also similar to the Kiama definition presented
in [31]. In Table 2, we compare our approach to the results presented in [31] for
the L2 language level. Notably, we show that our approach, even in its earliest
versions, is suited for large-scale and real world usage.

5 Related Work

The work we present in this paper is inspired by the pioneering work of Sloane
who developed Kiama [30, 13]: an embedding of strategic term rewriting and
AGs in the Scala programming language. While our approach expresses both
attribute computations and strategic term rewriting as pure functions, Kiama
caches attribute values in a global cache, in order to reuse attribute values
computed in the original tree that are not affected by the rewriting. Such global
caching, however, induces an overhead in order to keep it updated, for example,
attribute values associated to subtrees discarded by the rewriting process need
to be purged from the cache [32]. In our purely functional setting, we only
compute attributes in the desired re-written tree (as is the case of the let
example shown in section 3.1). Influenced by Kiama, Kramer and Van Wyk [15]
present strategy attributes, which is an integration of strategic term rewriting
into attribute grammars. Strategic rewriting rules can use the attributes of a
tree to reference contextual information during rewriting, much like we present
in our work. They present several practical application, namely the evaluation
of λ-calculus, a regular expression matching via Brzozowski derivatives, and the
normalization of for-loops. All these examples can be directly expressed in our
setting. They also present an application to optimize translation of strategies.
Because our techniques rely on shallow embeddings, we are unable to express
strategy optimizations without relying on meta-programming techniques [29].
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Nevertheless, our embeddings result in very simple libraries that are easier to
extend and maintain, specially when compared to the complexity of extending
a full language system such as Silver [36]. JastAdd is a reference attribute
grammar based system [9]. It supports most of AG extensions, including reference
and circular AGs [33]. It also supports tree rewriting, with rewrite rules that
can reference attributes. JastAdd, however, provides no support for strategic
programming, that is to say, there is no mechanism to control how the rewrite
rules are applied. The zipper-based AG embedding we integrate in Ztrategic
supports all modern AG extensions, including reference and circular AGs [22, 10].
Because strategies and AGs are first-class citizens we can smoothly combine any
such extensions with strategic term rewriting.

In the context of strategic term rewriting, our Ztrategic library is inspired
by Strafunski [17]. In fact, Ztrategic already provides almost all Strafunski
functionality. There is, however, a key difference between these libraries: while
Strafunski accesses the data structure directly, Ztrategic operates on zippers.
As a consequence, we can easily access attributes from strategic functions and
strategic functions from attribute equations.

6 Conclusions

This paper presented a zipper-based embedding of strategic term rewriting. By
relying on zippers, we combine it with a zipper-based embedding of attribute
grammars so that (zipper-based) strategies can access (zipper-based) AG func-
tional definitions, and vice versa. We developed Ztrategic, a small but powerful
strategic programming library and we have used it to implement several language
engineering tasks.

To evaluate the expressiveness of our approach we compared our Ztrategic
solution to the largest strategic AG developed with the state-of-the-art Kiama
system. In terms of runtime performance we compared our Ztrategic library to
the well established and fully optimized Strafusnki solution. The preliminary
results show that in fact zippers provided a uniform setting in which to express
both strategic term rewriting and AGs that are on par with the state-of-the-art.
Moreover, our approach can easily be implemented in any programming language
in which a zipper abstraction can be defined. In order to improve performance,
we are considering extending Ztrategic to work with a memoized version of the
AG library.
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23. Mernik, M., Korbar, N., Žumer, V.: Lisa: A tool for automatic lan-
guage implementation. SIGPLAN Not. 30(4), 71–79 (Apr 1995),
https://doi.org/10.1145/202176.202185

24. Middelkoop, A., Dijkstra, A., Swierstra, S.D.: Iterative type inference with
attribute grammars. In: Proceedings of the Ninth International Conference
on Generative Programming and Component Engineering. p. 43–52. GPCE
’10, Association for Computing Machinery, New York, NY, USA (2010),
https://doi.org/10.1145/1868294.1868302

25. de Moor, O., Backhouse, K., Swierstra, D.: First-class attribute grammars. Infor-
matica (Slovenia) 24(3) (2000), citeseer.ist.psu.edu/demoor00firstclass.html

26. Reps, T., Teitelbaum, T.: The synthesizer generator. SIGPLAN Not. 19(5), 42–48
(Apr 1984), http://doi.acm.org/10.1145/390011.808247

27. Saraiva, J.: Purely Functional Implementation of Attribute Grammars. Ph.D. thesis,
Utrecht University, The Netherlands (December 1999)

28. Saraiva, J.: Component-based programming for higher-order attribute grammars. In:
Generative Programming and Component Engineering, ACM SIGPLAN/SIGSOFT
Conference, GPCE 2002, Pittsburgh, PA, USA, October 6-8, 2002, Proceedings.
pp. 268–282 (2002), https://doi.org/10.1007/3-540-45821-2 17

29. Sheard, T., Jones, S.P.: Template Meta-Programming for Haskell. In: Pro-
ceedings of the 2002 ACM SIGPLAN Workshop on Haskell. p. 1–16. Haskell
’02, Association for Computing Machinery, New York, NY, USA (2002),
https://doi.org/10.1145/581690.581691

30. Sloane, A.M., Kats, L.C.L., Visser, E.: A pure object-oriented embedding of attribute
grammars. Electronic Notes in Theoretical Computer Science 253(7), 205–219
(2010), http://dx.doi.org/10.1016/j.entcs.2010.08.043

31. Sloane, A.M., Roberts, M.: Oberon-0 in kiama. Science of Computer Programming
114, 20–32 (2015). https://doi.org/https://doi.org/10.1016/j.scico.2015.10.010,
lDTA (Language Descriptions, Tools, and Applications) Tool Challenge

32. Sloane, A.M., Roberts, M., Hamey, L.G.C.: Respect your parents: How attribution
and rewriting can get along. In: Combemale, B., Pearce, D.J., Barais, O., Vinju,
J.J. (eds.) Software Language Engineering. pp. 191–210. Springer International
Publishing, Cham (2014)



20 J. N. Macedo et al.
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