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Energyware Analysis
RUI PEREIRA, MARCO COUTO, FRANCISCO RIBEIRO, RUI RUA and JOÃO SARAIVA,
HASLab/INESC TEC & University of Minho

This documents introduces “Energyware” as a software engineering discipline aiming at defining, analyzing and optimizing the

energy consumption by software systems. In this paper we present energyware analysis in the context of programming languages,
software data structures and program’s source code.

For each of these areas we describe the research work done in the context of the Green Software Laboratory at Minho

University: we describe energyaware techniques, tools, libraries, and repositories.

1. INTRODUCTION

While in the previous century, language designer’s and software engineer’s main goals were to develop
fast software systems, the current widespread use of non-wired computing devices is making energy
consumption a key aspect not only for hardware manufacturers, but also for software developers. Soft-
ware languages and their compilers provide programmers with powerful mechanisms to increase their
productivity: for example, by providing advanced static type systems that reduce runtime software
errors while increasing software reuse, and by offering tools that help programmers find errors (de-
buggers), bad smells (refactoring tools), detecting memory leaks and runtime issues (profilers), etc.

All these mechanisms and tools were developed with the goal of making programming “faster” and
programs run “faster”. In this document we discuss energyware as an engineering discipline to rea-
son about energy consumption in software systems. We discuss techniques and tools developed in our
Green Software Laboratory, namely, techniques to analyze the energy efficiency of 27 programming
languages, to detect inefficient energy use of data structures, and to analyze software’s source code
and locate abnormal energy consumption.

An interesting question that frequently arises in the software energy efficiency area is whether a
faster program is also an energy efficient program, or not. If the answer is yes, then optimizing a pro-
gram for speed also means optimizing it for energy, and this is exactly what the compiler construction
community has been hardly doing since the very beginning of software languages. However, energy
consumption does not depends only on execution time, as shown in the equation Energy = Time×Power.

A program provides a possible implementation for a given computer problem. Such a program is
written in a specific programming language, it possibly uses languages data structures available in the
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language libraries, and its source code implements a particular algorithm. Because there are many dif-
ferent ways of expressing the same algorithm within a programming language, the source code reflects
the programmer’s personal coding practices (for example, by preferring loops instead of recursion, for
loops instead of while loops, etc). When developing an energy efficient software system, a programmer
needs to be energy-aware, where by choosing a particular programming language, data structure and
algorithm the resulting program may have very different energy consumptions.

In this document we present the results obtained in defining a green ranking for programming lan-
guages 2, by analyzing the energy consumption of the Java Collection Framework (JCF) library and
defining an energy-aware refactoring for Java 3, and, finally, by adapting a software’s fault localiza-
tion algorithm to locate abnormal energy consumption (“energyware faults”) in the source code of a
program 4.

2. ENERGYWARE ANALYSIS IN PROGRAMMING LANGUAGES

The massive use of mobile devices made energy consumption a key bottleneck not only for hardware
manufacturers, but also for software developers. When writing efficient software, programmers often
ask this question: is a faster program also an energy efficient program?.

A similar question arises when comparing software languages: is a faster language, a greener one?
Comparing software languages, however, is an extremely complex task, since the performance of a
language is influenced by the quality of its compiler, virtual machine, garbage collector, available li-
braries, etc. Indeed, a software program may become faster by improving its source code, but also by
“just” optimizing its libraries and/or its compiler.

In the Green Software Language Laboratory we studied the energy efficiency of the most widely
used software languages [Couto et al. 2017; Pereira et al. 2017]. We considered an open source repos-
itory where the same computer problem is expressed in each of the languages: the Computer Lan-
guage Benchmark GameW (CLBG)1. CLBG includes a repository of programs written in twenty seven
languages which implement solutions to a set of ten predefined computing problems. This language
benchmark project was developed to provide a runtime ranking of programming languages.

We reused the CLBG infrastructure to define an energy-aware ranking of programming languages:
We consider ten different programming problems that are expressed in each of the languages, follow-
ing the exact same algorithm, as specified by CLBG. We compile/execute such programs using the
state-of-the-art compilers, virtual machines, interpreters, and libraries for each of the 27 languages.
We developed a framework using an energy measurement tool provided by Intel (RAPL)2, in order
to measure the energy consumption when executing such programs. We used this monitoring frame-
work to measure the energy of all executable programs included in CLBG. Afterwards, we analyze
the performance of the different implementation considering three variables: execution time, memory
consumption and energy consumption.

Table I contains the normalized results for energy, time and memory obtained by benchmarking the
ten CLBG problems. The first column states the name of the programming languages, preceded by
either a (c), (i), or (v) classifying them as either a compiled, interpreted, or virtual-machine language,
respectively.

By looking at the overall results, shown in Table I, we can see that the top 5 most energy efficient lan-
guages keep their rank when they are sorted by execution time and with very small differences in both
energy and time values. This does not come as a surprise, since those languages are known to be heav-
ily optimized and efficient for execution performance, as our data also shows. Thus, as time influences

1http://benchmarksgame.alioth.debian.org/
2https://software.intel.com/en-us/articles/intel-power-governor



Energyware Analysis • 1:3

Table I. : Normalized global results for Energy, Time, and Memory
Total

Energy Time Mb
(c) C 1.00 (c) C 1.00 (c) Pascal 1.00
(c) Rust 1.03 (c) Rust 1.04 (c) Go 1.05
(c) C++ 1.34 (c) C++ 1.56 (c) C 1.17
(c) Ada 1.70 (c) Ada 1.85 (c) Fortran 1.24
(v) Java 1.98 (v) Java 1.89 (c) C++ 1.34
(c) Pascal 2.14 (c) Chapel 2.14 (c) Ada 1.47
(c) Chapel 2.18 (c) Go 2.83 (c) Rust 1.54
(v) Lisp 2.27 (c) Pascal 3.02 (v) Lisp 1.92
(c) Ocaml 2.40 (c) Ocaml 3.09 (c) Haskell 2.45
(c) Fortran 2.52 (v) C# 3.14 (i) PHP 2.57
(c) Swift 2.79 (v) Lisp 3.40 (c) Swift 2.71
(c) Haskell 3.10 (c) Haskell 3.55 (i) Python 2.80
(v) C# 3.14 (c) Swift 4.20 (c) Ocaml 2.82
(c) Go 3.23 (c) Fortran 4.20 (v) C# 2.85
(i) Dart 3.83 (v) F# 6.30 (i) Hack 3.34
(v) F# 4.13 (i) JavaScript 6.52 (v) Racket 3.52
(i) JavaScript 4.45 (i) Dart 6.67 (i) Ruby 3.97
(v) Racket 7.91 (v) Racket 11.27 (c) Chapel 4.00
(i) TypeScript 21.50 (i) Hack 26.99 (v) F# 4.25
(i) Hack 24.02 (i) PHP 27.64 (i) JavaScript 4.59
(i) PHP 29.30 (v) Erlang 36.71 (i) TypeScript 4.69
(v) Erlang 42.23 (i) Jruby 43.44 (v) Java 6.01
(i) Lua 45.98 (i) TypeScript 46.20 (i) Perl 6.62
(i) Jruby 46.54 (i) Ruby 59.34 (i) Lua 6.72
(i) Ruby 69.91 (i) Perl 65.79 (v) Erlang 7.20
(i) Python 75.88 (i) Python 71.90 (i) Dart 8.64
(i) Perl 79.58 (i) Lua 82.91 (i) Jruby 19.84

energy, we had hypothesized that these languages would also produce efficient energy consumptions
as they have a large advantage in one of the variables influencing energy, even if they consumed more
power on average. If we look at the remaining languages in Table I, we can see that only 4 languages
maintain the same energy and time rank (OCaml, Haskel, Racket, and Python), while the remain-
der are completely shuffled. Additionally, looking at individual benchmarks we see many cases where
there is a different order for energy and time.

Additionally, the individual benchmarks included in [Pereira et al. 2017] show that, although the
most energy efficient language in each benchmark is almost always the fastest one, the fact is that
there is no language which is consistently better than the others: there many cases where there is a
different order for energy and time. This allows us to conclude that the situation on which a language
is going to be used is a core aspect to determine if that language is the most energy efficient option.

There are many situations where a programmer has to choose a particular programming language to
implement his algorithm according to functional or non functional requirements. For instance, if one is
developing software for wearables, it is important to choose a language and apply energy-aware tech-
niques to help save battery. Another example is the implementation of tasks that run in background.
In this case, execution time may not be a main concern, and they may take longer than the ones related
to the user interaction. To this end, we present in Table II a comparison of three language characteris-
tics: energy consumption, execution time, and peak memory usage. In order to compare the languages
using more than one characteristic at a time we use a multi-objective optimization algorithm to sort
these languages, known as Pareto optimization.

For each ranking, each line represents a Pareto optimal set, that is, a set containing the languages
that are equivalent to each other for the underlying objectives. In other words, each line is a single rank
or position. The most common performance characteristics of software languages used to evaluate and
choose them are execution time and memory usage. If we consider these two characteristics in our
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Table II. : Pareto optimal sets for different combination of objectives.
Time & Memory Energy & Time Energy & Memory Energy & Time & Memory

C Pascal Go C C Pascal C Pascal Go
Rust C++ Fortran Rust Rust C++ Fortran Go Rust C++ Fortran

Ada C++ Ada Ada
Java Chapel Lisp Ocaml Ada Java Chapel Lisp Java Chapel Lisp Ocaml

Haskell C# Java OCaml Swift Haskell Swift Haskell C#
Swift PHP Pascal Chapel C# PHP Dart F# Racket Hack PHP

F# Racket Hack Python Lisp Ocaml Go Dart F# Racket Hack Python JavaScript Ruby Python
JavaScript Ruby Fortran Haskell C# JavaScript Ruby TypeScript Erlang

Dart TypeScript Erlang Swift TypeScript Lua JRuby Perl
JRuby Perl Dart F# Erlang Lua Perl

Lua JavaScript JRuby
Racket

TypeScript Hack
PHP

Erlang
Lua JRuby

Ruby

evaluation, C, Pascal, and Go are equivalent. However, if we consider energy and time, C is the best
solution since it is dominant in both single objectives. If we prefer energy and memory, C and Pascal

constitute the Pareto optimal set. Finally, analyzing all three characteristics, this scenario is very
similar as for time and memory. It is interesting to see that, when considering energy and time, the
sets are usually reduced to one element. This means, that it is possible to actually decide which is the
best language.

More recently we extended the study of energyware programming languages to consider a different
program repository: Rosetta Code3. While CLBG was developed with the single goal of comparing
language execution time, Rosetta Code was developed with more program comprehension purposes.
Our new results show interesting findings, such as [Pereira et al. 2018].

3. ENERGYWARE DATA STRUCTURES

One obvious way to make a programming language more energy, memory and runtime efficient is by
defining powerful compiler optimizations. Language libraries, however, also play an important role
on the performance of the executable programs: modern programming languages offer a large set of
libraries, which are themselves part of language, and are the building blocks when writing their pro-
grams. An important set of libraries, offered by most languages and widely reused by their programs,
provides advanced mechanisms to manipulate data structures.

In the Green Software laboratory we conducted a detailed study in terms of energy consumption
of the widely used Java Collections Framework (JCF) library 4. We considered three different groups
of data structures, namely Sets, Lists, and Maps, and for each of these groups, we studied the energy
consumption of each of its different implementations and methods. We exercised and monitored the
energy consumed by each of the API methods when handling low (25000 objects), medium (250000
objects) and big (1 million objects) data sets [Pereira et al. 2016].

A first result of our study is a quantification of the energy spent by each method of each implemen-
tation, for each of the data structures we consider. Figure 1 presents the List results for population
of 25k. Each row in the tables represents the measured methods, and for each analyzed implemen-
tation, we have two columns representing the consumption in Joules(J) and execution time in mil-
liseconds(ms). Each row has a color highlight (under the J columns) varying between a Red to Yellow

3http://www.rosetta.org
4docs.oracle.com/javase/7/docs/technotes/guides/collection\s/index.html
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to Green. The most energetically inefficient implementation for that row’s method (the one with the
highest consumed Joules) is highlighted Red. The implementation with the lowest consumed Joules
(most energetically efficient) is highlighted Green.

Fig. 1: List results for population of 25k

Both RoleUnresolvedList and AttributeList contain the most efficient methods. Interesting to point
out that both of these extend ArrayList, which contains less efficient methods, and very different con-
sumption values in comparison with these two. We can also clearly see that LinkedList is by far the
most inefficient List implementation. We can also see examples where a faster collection is less en-
ergy efficient. For example, looking at the AttributeList, the addAll method takes 88 milliseconds and
consumes 1.0492 joules, while the set method is faster, taking 70 milliseconds, yet it consumes more
energy, 1.5943 joules.

This JCF energy-awareness can not only be used to steer software developers in writing greener Java
software, but also in optimizing legacy Java code. We have developed a Java data structure refactoring
tool, named jStanley, which refactors Java source code when a greener collection is available [Pereira
et al. 2018]. jStanley is a static analysis tool which suggests a more energy efficient (and/or perfor-
mance efficient) Java collection, by statically detecting collections used in a Java project, and which
methods are used for each collection. Using this information, it not only suggests a better alternative,
but can automatically refactor the code with the new collections if the programmer chooses so. To see
the full data on the remainder Java collections, please see [Pereira et al. 2016].

We have also executed an initial evaluation with 7 publicly available Java projects used in other
research works. Figure III contains the information on the projects analyzed, including the number
of tests cases and their coverage. The Analysis column displays the time spent by jStanley to detect
and change the energy inefficient collections, and how many were changed. Finally, the Improvement
column shows the percentage of improvement on the project’s energy consumption (total and CPU
energy) and performance. By using jStanley, we were able to improve the energy consumption between
2% and 17%. The execution time has also decreased between 2% and 13%

4. ENERGYWARE SOURCE CODE ANALYSIS

While programming language Integrated Development Environments (IDE) have traditionally incor-
porated powerful advanced type and modular systems; refactoring, testing and debugging frameworks;
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Table III. : Evaluation data for the projects
Test Suite Analysis Improvement

Project #Tests %Coverage Analysis (ms) #Changes %PKG (J) %CPU (J) %ms
Barbecue 152 62 2735 14 5.10 5.81 1.70
Battlecry 1* 69.4 514 4 16.79 11.49 12.76
Jodatime 4221 88.5 10490 5 7.21 7.29 7.75
Lagoon 18 4 1513 7 4.25 4.38 3.18
Templateit 3 14 1019 14 1.55 1.77 2.05
Twfbplayer 57 91 3437 51 6.07 6.05 3.14
Xisemele 167 20 588 1 6.04 6.30 4.36

* Instead of unit tests, this project has a simulated execution example

and other tools to improve software developers productivity and effectiveness, there is no concrete ev-
idence that this trend has included techniques to optimize or even analyze source code energy con-
sumption.

In GSL we developed a methodology to statically detect abnormal energy consumption in the source
code of a software system [Pereira et al. 2017; Pereira 2017; 2018; Pereira et al. 2018]. We defined
SPELL - SPectrum-based Energy Leak Localization to determine red (energy inefficient) areas in soft-
ware. We consider an energy leak synonymous to an energy inefficiency. In this context, a parallel is
made between the detection of anomalies in the energy consumption of software during program exe-
cution, and the detection of faults in the execution of a program. Having this parallelism established,
we adapted established fault localization techniques, often used to detect software bugs in program
executions, to locate energetic faults in programs.

Fig. 2: Global percentage of gains for all projects

The software system to be analyzed is executed with a set of test cases, and components of such
system (for example, packages, functions, loops, etc.) are instrumented to estimate/measure the energy
consumption at runtime. Inefficient energy consumption, the so-called energy leaks, are interpreted
in SPELL as program faults, and we adapt Spectrum-based Fault Localization (SFL) techniques to
relate energy consumption to the systems source code. Our analysis associates different percentage of
responsibility for the energy consumed to the different components of the underlying system. Thus,
the result of our analysis is a ranking of components sorted by their likelihood of being responsible for
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energy leaks, essentially pinpointing and prioritizing the developers attention on the most critical red
spots in the analyzed system. Thus, giving more useful information to have better support in making
decisions of what parts of the system need to be optimized, ultimately helping place a new stepping
stone for energy-aware programming.

Our SPELL methodology is language independent. However, to validate it with real software sys-
tems, we built a specific front-end for the Java language. Supported by this tool, our technique was
able to identify potential energy leaks in the source code of concrete Java projects. Based on this iden-
tification, a set of expert Java programmers were then asked to improve the (energy) efficiency of those
projects. Figure 2 shows the results of our study. For each project, we had one programmer use SPELL,
one use a profiler, and one use nothing as to have a control group. The blue bars represent the energy
gains percentage, while the orange bars represent the performance gains percentage. Both compared
to the original, unmodified, project.

In all 6 projects, programmers using SPELL were able to better optimize the energy consumption of
the analyzed Java projects, even when compared to those using profilers. The analysis of their success
in doing so provided statistical evidence that the programs they ended up altering indeed consume less
energy that the ones they were originally given, with an improvement, for different projects, between
15% and 74%.

5. CONCLUSIONS

This document reported the work researched and performed at the Green Software Laboratory. Our
studies show that applying energyware practices when choosing a programming language, data struc-
tures, and the applied code practices of implementing one’s software do play a key role in the energy
efficiency of the resulting software system. As our results show, energy optimization cannot always be
solved by run-time optimization practices. The presented techniques, tools, and motivation of our GSL
project is to steer programmers into developing more energy sustainable software. Thus, energyware
analysis plays an important part in achieving these goals.

A more detailed look on each section’s content, tools, repositories, and other related research work
can be found in the Green Software Lab’s Website 5.
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