MT4A: A No-Programming Test Automation Framework for
Android Applications

Tiago Coelho
Faculty of Engineering,
University of Porto
Rua Dr. Roberto Frias, s/n
4200-465 Porto, Portugal

tiago.coelho@fe.up.pt

ABSTRACT

The growing dependency of our society on increasingly com-
plex software systems, combining mobile and cloud-based
applications and services, makes the test activities even more
important and challenging. However, sometimes software
tests are not properly performed due to tight deadlines, due
to the time and skills required to develop and execute the
tests or because the developers are too optimistic about pos-
sible faults in their own code. Although there are several
frameworks for mobile test automation, they usually require
programming skills or complex configuration steps. Hence,
in this paper, we propose a framework that allows creating
and executing tests for Android applications without requir-
ing programming skills. It is possible to create automated
tests based on a set of pre-defined actions and it is also pos-
sible to inject data into device sensors. An experiment with
programmers and non-programmers showed that both can
develop and execute tests with a similar time. A real world
example using a fall detection application is presented to
illustrate the approach.

CCS Concepts

eSoftware and its engineering — Application specific
development environments; Software testing and debug-

ging;

Keywords

Software testing, Mobile applications, Testing framework,
Test automation, Android

1. INTRODUCTION

Nowadays, mobile applications are getting more and more
complex and, besides the development challenges, testing
them to ensure their stability and robustness is one of the
biggest challenges [17]. Many mobile applications have been

Bruno Lima
INESC TEC and Faculty of
Engineering, University of

Porto

Rua Dr. Roberto Frias, s/n
4200-465 Porto, Portugal

bruno.lima@fe.up.pt

Jodo Pascoal Faria
INESC TEC and Faculty of
Engineering, University of

Porto
Rua Dr. Roberto Frias, s/n
4200-465 Porto, Portugal

jpf@fe.up.pt

developed in critical areas such as transportation, healthcare
and banking. Hence, testing is a fundamental life-cycle ac-
tivity, with a huge economical and societal impact if not
performed adequately [23]. Nevertheless, there are some
companies and/or developers that do not develop adequate
tests for their applications because of reduced deadlines and
because, sometimes, developers are very confident regarding
possible faults in their own code. Although there are several
frameworks for mobile test automation, they usually require
programming skills or complex configuration steps.

Hence, to facilitate the creation of automated tests by
non-developers, we present a framework to build black-box
tests [18] for Android applications, without programming,
in a quick way. Through a desktop application, anyone,
even without any knowledge about programming, can de-
velop black-box tests with just a few clicks, run the tests in
the emulator or on a real device and check the test results in
the desktop application. With this high-level of abstraction,
we intend to boost the development of tests for Android
applications and allow any person to develop those tests.

The rest of the paper is organized as follows: section 2
describes the state of the art. In section 3 is described the
proposed approach. A real world example is presented in
section 4 to demonstrate the framework. Validation results
are presented in section 5. Finally, section 6 concludes the
paper and presents the future work.

2. STATE OF THE ART

As mobile applications become more complex, the soft-
ware engineering tools, frameworks and processes are essen-
tial to ensure the development of high-quality software in a
timely and cost-effective way [2]. According to Wasserman
[26], there are important areas for research in software en-
gineering related to mobile devices. The research on new
methods and techniques to test applications for mobile de-
vices, such as Android devices, is an important area of re-
search [2] because of several factors, such as device frag-
mentation and the number of different versions of operating
systems available in the market.

This section provides an overview of existing test automa-
tion frameworks for mobile applications, as well as accep-
tance and regression test automation frameworks accessible
for non-programmers.

2.1 Test Automation Frameworks for Mobile
Applications

Test automation is fundamental in iterative and evolu-
tionary development, to allow repeating test execution with
little cost. Besides that, all statistic methods to assess soft-
ware reliability are based on fully automatic testing methods
for performing sufficient test cases [3].

Thus, some frameworks have been developed to help users
in software testing. The next subsections present some test
automation frameworks existing in the market for Android
applications.

2.1.1 Appium

Appium [14] is a framework to develop tests for mobile
applications for i0OS and Android. It supports Android tak-
ing advantage of UI Automator [11] and Selendroid [5], iOS
through UI Automation and web with the Selenium driver
for Android and iOS. Internally, it uses the JSONWrite pro-
tocol to interact with Android and iOS. One of the advan-
tages is that it is possible to develop test scripts in almost
every programming language but it is necessary to code to
develop tests — something that our framework wants to re-
move.

2.1.2 Calabash

Calabash [27] is a framework for native or hybrid applica-
tions, Android and iOS. Calabash tests are described in Cu-
cumber [15] and then converted to Robotium [19] or Frank
[25] in real time (if the application is for Android or iOS,
respectively). It supports about 80 controllers and new con-
trollers can be implemented in Java or Ruby. Its simple
syntax allows people without much technical knowledge to
run tests on both platforms but it is necessary to use the
terminal and have some scripting skills.

2.1.3 Robotium

Robotium [19] was one of the most used frameworks in
the early days of the appearance of Android. This frame-
work was created to make it easier to test user interfaces for
Android applications. It is open-source and extends JUnit,
but, as with Appium [14], it is necessary to code to develop
those tests.

2.1.4 Selendroid

Selendroid [5] is a framework to automate tests for native
or hybrid mobile applications. It is possible to write tests
using the Application Programming Interface (API) of Se-
lenium 2 because Selendroid reuses the same infrastructure
of Selenium for the web. It can be used in emulators or real
devices, being mostly used for testing the user interface.

2.1.5 Espresso

The Espresso framework [12] provides a set of APIs to
build user interface tests for Android applications. With
the provided APIs it is possible to write automatic tests that
are concise and that run reliably. Espresso is more suited
to write tests using the white-box technique, where the test
code uses implementation details from the application to be
tested.

2.1.6 Ul Automator

UI Automator [11] provides a set of APIs to build tests
that interact with the user or system. With these APIs it is

possible to perform operations such as open a Settings menu
or launch an application in a test device. This framework
is suited to write tests using the black-box technique, where
the test code does not depend on details of the internal im-
plementation of the application being tested.

2.1.7 Ranorex

Ranorex [9] is a Graphical User Interface test automation
framework for testing mobile, desktop and web applications.
It is provided by Ranorex GmbH and it uses standard pro-
gramming languages such as VB.NET and C#, working on
top of the Windows operating system. It has an editor,
Ranorex Studio, where developers can perform coding, de-
bugging and project management activities.

2.1.8 Research Frameworks

Kim et al. [13] proposed a method of developing perfor-
mance tests. For that is used a database established through
the performance tests conducted on the Android emulator
to the level of unit test. It also provides a tool that supports
the proposed method for performance testing.

Amalfitano et al. [2] proposed a framework that uses
an algorithm that tracks an application and automatically
builds an application UI template and get test cases that
can be automatically executed. This framework is devel-
oped in conjunction with the Robotium [19] to analyze the
components of an Android application running. Using this
information, it generates events that may be triggered for
various trace components and detect faults.

Delamaro et al. [4] proposed a framework to perform
tests using the technique of white-box mobile applications.
This technique is supported by a testing environment that
provides generation facilities, execution and data collection,
comparing the static analysis results with results obtained
during execution.

2.1.9 Summary

Currently, there are already plenty of frameworks to de-
velop tests for Android applications. However, almost all, in
addition to the prerequisites, require a set of configuration
and coding activities to develop tests. Even when it is not
necessary to code, it is necessary to know how to manipu-
late the command line to run tests or to see the results of
those tests. On the other hand, nowadays, the sensors are
widely used and their testing is very important and these
frameworks do not support tests for all sensors available in
the device.

In Table 1 it is presented the framework’s summary in or-
der to compare them: if they support tests based on some
high-level tests specification (for instance a XML or JSON
file as input of tests defined with Cucumber), if they allow
to test all types of sensors as GPS, accelerometer, among
others, and if it is necessary to program in order to de-
velop tests. Most frameworks do not allow testing all types
of sensors. Although Calabash is close to fulfill all the re-
quirements of Table 1, our framework differs from Calabash
because it allows testing all types of sensors and it is not
necessary to know how to manipulate the command line: it
is all done in an appealing interface.

Specification based | Sensors Test | Code Abstraction
Appium No Partially No
Calabash Yes Partially Yes
Robotium No Partially Yes, with Recorder
Selendroid No No No
Espresso No Partially No
UI Automator No Partially No
Ranorex No Partially Yes, with Recorder

Table 1: Comparative analysis of test automation frameworks for mobile applications

2.2 Acceptance and Regression Resting Frame-

works

This section provides a short overview of some acceptance
and regression test automation frameworks existing in the
market, accessible to some extent for non programmers.

2.2.1 FitNesse

FitNesse [6] is an open-source framework where customers,
testers and programmers can test and collaborate to learn
what their software should do and can compare its required
features with what it actually does. It is based on the Frame-
work for Integrated Tests (FIT) and tests can be written
in many languages such as Java or Python. Although this
framework provides a high-level of abstraction from code to
define tests in a tabular way, it is necessary to write some
fixture code to link the defined tests to the implementation
under test.

2.2.2 Robot Framework

Robot Framework [7] is an open-source test automation
framework for acceptance testing. Test cases are defined in
a simple scripting notation, utilizing a keyword-driven test-
ing approach. New keywords can be created by composing
existing ones (using the same syntax that is used to create
test cases) or by extending keyword libraries implemented
in Python or Java. This framework provides a lot of ab-
straction from code but it is often necessary to implement
application specific keywords in Java or Python.

2.2.3 Robotium Recorder

Robotium Recorder [24] is an extension of Robotium, with
an annual cost, which is used to develop regression tests for
Android applications using the record-playback technique.
Interactions of the user with the device or emulator can be
recorded into a test script, which can be replayed later au-
tomatically. It has the limitation of just generating tests for
user interactions with the device’s Ul and being applicable
only for regression testing (and not for initial testing).

2.2.4 Ranorex Recorder

Ranorex Recorder [9] is a part of Ranorex with the func-

tionality of capture-replay, which provides maintainable record-

ings via user actions in the application under test (AUT),
transforms those actions into code and generates report files
for error detection. It has limitations similar to Robotium
Recorder.

2.2.5 Summary

Both the FitNesse and Robot frameworks allow defining
tests without coding, even if later it is necessary to write

some code to automate the tests defined. Although they at-
tempt to abstract the person who develops the test from the
code, Robotium Recorder and Ranorex Recorder are suit-
able for regression tests and mainly focused on user inter-
actions. The approach followed in our framework aims at
further simplifying test definition (by just selecting actions
and writing values to insert / find in the application) and
eliminating any need to write fixture code.

3. THE MT4A FRAMEWORK

3.1 Architecture and Functioning

Figure 1 depicts the architecture of Mobile Testing For
All (MT4A) for developing and executing tests for Android
applications without programming. The architecture is di-
vided in three components: Server, Desktop and Device/em-
ulator.

Server
MT4A Backend M
Test Test
specifications results
Q Desktop
R I %:] ¢ Test
. A results
MT4A Client Application
(MT4A-CA)
User Test
specifications
Device/Emulator
N 2] 2|
Test MT4A Test Application Under
Specifications| Runner (MT4A-TR) Test (AUT)

Figure 1: Framework architecture (annotated UML
deployment diagram).

The life-cycle of a test, represented graphically in Figure
2, starts at the Desktop node.

The users start by logging into the MT4A Client Appli-
cation (MT4A-CA). The login system was designed to allow
users to develop their own test suites for one or more pack-
ages.

At the desktop application the user can then see which
devices or emulators are connected to the desktop computer
through Android Debug Bridge (adb) [10] and then, choos-
ing one of these devices, can see all the packages installed in
that device (it is also possible to see the application name
and icon if that application is at Google Play Store). The
user has to select the target application in the desktop appli-
cation (Client App.), identifying it by its name or package.

Then the user develops the tests just using clicks and en-
tering some values that identify the elements to interact with
or to be inserted in the application.

A JSON file containing the specifications that the user
is defining in the desktop application is created in parallel
while the user develops a test and is stored in the server.

Receive step result —

Specifications

Server
Start
Database

Store|specifications
Pl

—
Step|result

Desktop

Save and run

Show logs to user

Start test runner Step
result
Test development ‘ ;iis;hhea:

Specifications

NO

NO Notify Server
Collect error info @

YES

Device/Emulator

Run tests step by step
from specifications

Figure 2: Test flow.

Later, when the user activates the option to run a test, the
corresponding file is sent to the device or emulator using the
adb and the Test Runner, which is responsible for reading
the test specification file and run the tests, is also triggered
via adb.

Then, the Test Runner in the device/emulator layer runs
the tests step by step and notifies the server about the suc-
cess or failure status of a particular step via web-sockets.
This means that the Internet is a requirement but if at one
step of the test, the device/emulator does not have access
to the Internet, the status of each step will be saved to be
sent later when the Internet is on or the test ends.

In the server layer, when the server is notified with the
status of a step by the device, it notifies the Client App.
with the same status, and the result is displayed to the user.

3.2 Technologies Used

To develop this framework we used several technologies.
In the desktop layer, it is used Electron, allowing us to

“Build cross platform desktop apps with JavaScript, HTML,
and CSS” [8] for OS X, Windows and Linux. Inside Electron
we used javascript (AngularJS and NodeJS) to build all the
User Interface (UI) and all the controllers that build the
tests.

In the device layer, we used Java and the Android SDK
and the Ul Automator framework as a base for our own
framework.

In the server layer, we used NodeJS to build the logic
and MongoDB for our database where we stored the tests
developed by the users.

To inject sensor data from the APK to the emulator, it is
used a telnet client that communicates with the emulator.

The communication between the desktop computer and
the device is made via adb and the device-server and server-
desktop communications are implemented with sockets.

3.3 Test Actions

To build the tests we support a set of actions listed below
together with an illustrative example:

e Press — can be used to tap or press on a button or
other user interface element;

e Insert — can be used to insert a value in an input box;

e Check — can be used to check if internet connection
or device location is on/off;

e Wait — can be used to wait for some element to appear
on the screen;

e Set — can be used to turn on and off internet connec-
tion or device location;

e Verify — can be used to verify an incoming or outgoing
sms, mms or call;

e Inject — can be used to inject values into sensors, for
instance accelerometer or GPS.

The user can choose one of these actions to make a step
for a particular test and the next things to provide for the
chosen action depends of which action he chooses for that
step.

4. EXAMPLE: FALL DETECTION APP

For demonstration and validation purposes, we used an
example from the AAL4ALL project [1], related with a fall
detection Android application.

In this application, when a person falls, the application
detects the fall using the smartphone’s accelerometer and
provides the user a message which indicates that it has de-
tected a drop giving the possibility for the user to confirm
whether he/she needs help. If the user responds that he/she
does not need help (the fall was slight, or it was just the
smartphone that fell to the ground), the application does
not perform any action; however, if the user confirms that
needs help, the application raises two actions in parallel. On
the one hand, it makes a call to a previously clearcut number
to contact a health care provider (in this case can be a formal
or informal caregiver); on the other hand, it sends the fall
occurrence for a Personal Assistance Record database and
sends a message to a portal that is used by a caregiver (e.g.
a doctor or nurse) that is responsible for monitoring this

care receiver. The last two actions are performed through a
central component of the ecosystem called AALMQ (AAL
Message Queue), which allows incoming messages to be for-
warded to multiple subscribers. Before the application starts
monitoring falls, it is necessary to configure login credentials
and a number to contact in case of fall.

4.1 A Simple Test

Suppose that a user needs to create a test to check the
login process in the fall detection app. With our framework,
after installing the desktop application, the user is already
prepared to create this test. After login (or register if the
user doesn’t have an account) the user can select the device
(and install the Test Runner if he/she is using the framework
for the first time) and then the AUT. At the Client App.,
the devices and applications lists appear as shown in Figure
3.

Devices

Devices Packages

Name: Android SDK built for x86
ID: emulator-5554
Manufacturer: unknown
Version: 5.1.1| SDK: 22

Name: AO00L B

ID: 1476c592

@ WhatsApp Messenger | com.whatsapp

Uber | com.ubercab

Manufacturer: OnePlus

Version: 6.0.1 | SDK: 23 u Twitter | com.twitter.android

Twitch | tv.twitch.android.app

Figure 3: Devices and packages listed at the Client
App

The next step is to construct the test. In our framework
the test is constructed step by step where each step is one
action that Test Runner will run in the AUT. In this partic-
ular case, to test the login process, the user needs to perform
two steps:

1. insert his ID Card number
2. press a button

To build a test with these steps, the user needs to create
a new test step, select an ”insert” action, choose the text
to insert and choose the element to insert the text (identi-
fied by its placeholder). Then, create a new step, choose a
"press” action and select the element to press (in this case,
the button, using his text). In Figure 4, on the left side, it
is represented the AUT for this test case and, on the right
side, the test created with MT4A to test the login process.

Now that the user has finished the test, he can run it and
see the results in the Client App. The result of each step is
presented to the user as shown in Figure 5. If one step fails,
a red cross appears instead of the green check mark and a
message shows the reason of failure.

4.2 A Complex Test

Let’s suppose another scenario. The user needs to create
a test to check if a fall occurs when the device is faced with
some values at the accelerometer and needs to check if a call
is made after the fall. To test this, the steps are:

Devices / Packages / Tests

Name* Y 5
Successfull login with valid ID Card

Descrip... R s
Login with rigth ID Card should pass

Steps

1. Insert"019201512" where Text Equals to " Insert

your ID Card Number" n ﬂ

Action
Press~
Text m

 Insert your ID Card Number

where

Start

Figure 4: AUT at left and test creation with our
framework at right

Devices / Packages / Tests

Run "Successfull login with valid ID Card" at emulator-5554

1 Insert "0192011512" where Text Equals to "Insert your ID Card Number"

2. Click where Text Equals "Start"

Figure 5: Test result at our framework

1. inject values into the accelerometer
2. wait for an alert asking the user if he/she actually fall
3. press the ”Yes” button

4. check if a call is made by the application to a pre-
defined number

The user can make this test through our framework with
a few clicks and providing one TXT file with "X Y Z” ac-
celerometer values to inject. Unfortunately, the accelerome-
ter only can be tested in the Android emulator because it is
not possible to inject real data into real devices’ accelerom-
eters.

Listing 1 shows an example of the JSON file generated
by the MT4A-CA for the complex test. This file is sent via
adb to the device or emulator for being parsed by the Test
Runner and injected into the AUT.

Listing 1: JSON file generated to be used to test the

AUT
L { "type": "details",
"name": "Test a fall with a call
after",
"package_id": "pt.sapo.aal4all",
"test_id": "d6dc0d12-7280-46fc-
9605-5363ed"},
{ "step": 1,
"type": "inject",
"sensor": "accelerometer",
"file" "accelerometer_values.txt
"}’
{ "step": 2,
lltype": l|wait|l ,
"ui_object": {
"find_text": {
"starts_with": "Did you
fall"
1},
"timeout" "15000" },
{ "step": 3,
lltype": l|pressll s
"ui_object": {
"find_text": {
"equals": "Yes"
33},
{ "step" : 4,
"type" "wait",
"call" : {
"status" "outgoing",
"number" "123456789"
},
"timeout" "3000"}]

S. VALIDATION

In order to validate the proposed framework, we con-
ducted an experiment with 22 volunteers (IT professionals),
half with programming skills and half without programming
skills. The participants were asked to create and execute two
tests cases for the SensorFall AAL app [16] using the MT4A
framework - a simple test case and a complex test case (the
same test cases described in section 4), within a defined time
limit for each test case. We collected the time spent by each
participant for each test case. Tables 2 and 3 shows the cor-
responding statistics for the simple and complex test case,
respectively, considering only the volunteers that succeeded
in creating and executing the test cases.

Programmers | Non-programmers
Mean (seconds) X, = 107.89 X, = 118.5
Standard deviation | Sx, = 12.14 Sx, =11.22
Participants ng =9 ng = 10

Table 2: Results for the simple test

The results show that, on average, the time spent by pro-
grammers and non-programmers are very close. Using the
Shapiro-Wilk Normality Test [20], we verified that our data
came from a normally distributed population. After that, to

Programmers | Non-programmers
Mean (seconds) X, = 425.3 X 474.55
Standard deviation | Sx, = 64.46 Sx, = 59.44
Participants n1 = 10 ng = 11

Table 3: Results for the complex test

verify if the difference of means are statistically significant,
we performed a Student’s t-test, which is a test to analyze
the means of two populations through the use of statistical
analysis [21].

The two-sample t-test for unpaired data is defined as:

Ho @ py = po

Ha @y # p2

where p1 and p2 represent the average times for the popu-
lations of programmers and non-programmers, respectively.

The first step to verify if the means are not statistically
significant is to calculate the t value and the freedom’s de-
grees. To find these values will be used the Equations 1,
2 and 3, corresponding to the t statistic, grand standard
deviation and degrees of freedom, respectively.

po . X Xe (1)
SX1X2’ L4 1

ni n2

—1)S8% + (n2 —1)5%
—_ \/ (m =S}, + (-1,

ni+mng —2

do.f=n1+n2—2 (3)

For the simple test case, we get ¢ = -1.9806, Sx,x, =
11.66 and d.o.f = 17. From the table of critical values for
two tailed test with unpaired values [22], we get the critical
value 2.11 for d.o.f = 17 and a significance level of 5%. Since
[t|<2.11, we conclude that the difference of averages of the
two groups is not statistically significant, for a significance
level of 5%.

For the complex test, we get ¢t = - 1.8588, Sx, x, = 61.86
and d.o.f = 19. From the table of critical values for two tailed
test with unpaired values [22], we get the critical value 2.093
for d.o.f = 19 and a significance level of 5%. Since |t|<2.093,
we conclude that, in the complex test case, the difference of
averages of the two groups is also not statistically significant,
for a significance level of 5%.

These results show that, with our framework, people with-
out programming skills can not only create automated tests
for mobile applications but also that the time spent in cre-
ating and executing such tests is similar to the time spent
by people with programming skills.

6. CONCLUSIONS AND FUTURE WORK

In this paper it was presented a framework to develop
tests for Android applications without programming that
supports testing all types of sensors. All the tests can be
made with an appealing user interface via a desktop app.

With this framework, we expect to motivate more peo-
ple to develop tests for Android applications. Experimental

results show that, with our framework, people without pro-
gramming skills can develop and execute tests with a similar
time compared with people with programming skills.

As future work, we intend to: implement an option to run
the same test in multiple devices at the same time; develop
a new module to allow this framework to be included in con-
tinuous integration systems; implement an option to create
and edit tests collaboratively; extend the framework to iOS
and Windows Phone.

7. ACKNOWLEDGMENTS

This research work was performed in scope of the project
NanoSTIMA. Project “NanoSTIMA: Macro-to-Nano Human
Sensing: Towards Integrated Multimodal Health Monitor-
ing and Analytics/NORTE-01-0145-FEDER-000016” is fi-
nanced by the North Portugal Regional Operational Pro-
gramme (NORTE 2020), under the PORTUGAL 2020 Part-
nership Agreement, and through the European Regional De-
velopment Fund (ERDF).

8. REFERENCES

[1] AAL4ALL. Ambient assisted living for all.
http://www.aaldall.org.

[2] D. Amalfitano, A. Fasolino, and P. Tramontana. A gui
crawling-based technique for android mobile
application testing. In Software Testing, Verification
and Validation Workshops (ICSTW), 2011 IEEE
Fourth International Conference on, pages 252261,
March 2011.

[3] B. Beizer. Black-box Testing: Techniques for
Functional Testing of Software and Systems. John
Wiley & Sons, Inc., New York, NY, USA, 1995.

[4] M. E. Delamaro, A. M. R. Vincenzi, and J. C.
Maldonado. A strategy to perform coverage testing of
mobile applications. In Proceedings of the 2006
International Workshop on Automation of Software
Test, AST ’06, pages 118-124, New York, NY, USA,
2006. ACM.

[5] Ebay. Selendroid : Selenium for android.
http://selendroid.io/.

[6] FitNesse. Frontpage. http://www.fitnesse.org/.

[7] R. Framework. Robot framework.
http://robotframework.org/.

[8] GitHub. Electron. http://electron.atom.io/.

[9] R. GmbH. Test automation for gui test | ranorex.
http://www.ranorex.com/.

[10] Google. Android debug bridge | android studio.
https://developer.android.com/studio/command-line/
adb.html.

[11] Google. Testing support library - android developers.

https://developer.android.com/tools/
testing-support-library /index.html\#UIAutomator.

[12] Google. Testing support library - android developers.
https://developer.android.com/tools/
testing-support-library /index.html\ #Espresso.

[13] H. Kim, B. Choi, and W. Wong. Performance testing
of mobile applications at the unit test level. In Secure
Software Integration and Reliability Improvement,
2009. SSIRI 2009. Third IEEE International
Conference on, pages 171-180, July 2009.

[14] S. Labs. Appium: Mobile app automation made
awesome. http://appium.io/.

[15] C. Limited. Cucumber. https://cucumber.io/.

[16] I. C. Lopes, B. Vaidya, and J. Rodrigues. Sensorfall an
accelerometer based mobile application. In Proceedings
of the 2nd International Conference on Computational
Science and Its Applications, Jeju, Korea, pages
10-12, 2009.

[17] L. Nagowah and G. Sowamber. A novel approach of
automation testing on mobile devices. In Computer
Information Science (ICCIS), 2012 International
Conference on, volume 2, pages 924-930, June 2012.

[18] S. Nidhra and J. Dondeti. Black Box and White Box
Testing Techniques - A Literature Review.
International Journal of Embedded Systems and
Applications (IJESA), 2(2):29-50, June 2012.

[19] RobotiumTech. Robotiumtech/robotium: Android ui
testing. RobotiumTech/robotium: AndroidUITesting.

[20] S. S. Shapiro and M. B. Wilk. An analysis of variance
test for normality (complete samples). Biometrika,
52(3/4):591-611, 1965.

[21] G. W. Snedecor and W. G. Cochran. Statistical
Methods. 1989.

[22] J. Stock and M. Watson. Introduction to Econometrics
(3rd edition). Addison Wesley Longman, 2011.
Professor Stock receives royalties for this text.

[23] G. Tassey. The economic impacts of inadequate
infrastructure for software testing, 2002.

[24] R. Tech. Robotium tech. http://robotium.com/.

[25] ThoughtWorks. Testing with frank - painless ios and
mac testing with cucumber.
http://www.testingwithfrank.com/.

[26] A. 1. Wasserman. Software engineering issues for
mobile application development. In Proceedings of the
FSE/SDP Workshop on Future of Software
Engineering Research, FoSER, ’10, pages 397-400, New
York, NY, USA, 2010. ACM.

[27] Xamarim. Calaba.sh - automated acceptance testing

for ios and android apps. http://calaba.sh/.

