
Fast incremental matrix factorization for
recommendation with positive-only feedback

João Vinagre12, Aĺıpio Mário Jorge12, and João Gama13

1 LIAAD - INESC TEC, Porto, Portugal
2 Faculdade de Ciências, Universidade do Porto, Portugal

3 Faculdade de Economia, Universidade do Porto, Portugal
joao.m.silva@inescporto.pt, amjorge@fc.up.pt, jgama@fep.up.pt

Abstract. Traditional Collaborative Filtering algorithms for recommen-
dation are designed for stationary data. Likewise, conventional evaluation
methodologies are only applicable in offline experiments, where data and
models are static. However, in real world systems, user feedback is con-
tinuously being generated, at unpredictable rates. One way to deal with
this data stream is to perform online model updates as new data points
become available. This requires algorithms able to process data at least
as fast as it is generated. One other issue is how to evaluate algorithms
in such a streaming data environment. In this paper we introduce a sim-
ple but fast incremental Matrix Factorization algorithm for positive-only
feedback. We also contribute with a prequential evaluation protocol for
recommender systems, suitable for streaming data environments. Using
this evaluation methodology, we compare our algorithm with other state-
of-the-art proposals. Our experiments reveal that despite its simplicity,
our algorithm has competitive accuracy, while being significantly faster.

1 Introduction

The purpose of recommender systems is to aid users in the – usually overwhelm-
ing – choice of items from a large item collection. Collaborative filtering (CF)
is a popular technique to infer unknown user preferences from a set of known
user preferences [1]. This set can be conceptually laid out in a user-item matrix,
where each cell represents the known preference of a user for an item. CF algo-
rithms analyse this matrix and try to “guess” missing values – typically the vast
majority. Recommendations are then produced by extracting the best “guesses”
and making them available to the user.

The ultimate task of any recommender system is straightforward: recommend
items to users. Depending on the type of feedback users provide, this problem
can be formulated in two ways: rating prediction and item prediction. In a rat-
ing prediction problem the main task is to predict missing values in a numeric
user-item ratings matrix. This is a natural formulation when quantified pref-
erences – ratings – are available, and the problem is most naturally seen as a
regression task. However, some systems employ positive-only user preferences.

These systems are quite common – e.g. “like” buttons, personal playlists, shop-
ping history, news reading, website logs. In these cases, numeric ratings are not
available. The user-item matrix can be seen as a boolean value matrix, where
true values indicate a positive user-item interaction, and false values indicate
the absence of such interaction. In systems with positive-only feedback, the task
is to predict unknown true values in the ratings matrix – i.e. item prediction –,
which can be seen as a classification task. This distinction has implications not
only in the algorithms’ mechanics but also in evaluation protocols and metrics.

Our work is focused on the item prediction problem, for two main reasons.
First, while relatively few online systems have an implemented numeric rat-
ing feature, while most systems have some kind of positive-only feedback – e.g.
web page visiting logs, customer buying history, click streams, music listening,
event participation. Algorithms for rating prediction are not directly applicable
in these cases. Second, while the majority of published research focuses on al-
gorithms for rating prediction, some issues related with the specific properties
of positive-only feedback remain unexplored. These properties encompass the
absence of negative feedback, the inherent subjectivity of implicit ratings and
the requirement for specific evaluation measures [2,3].

1.1 Incremental learning

If we look at ratings data in a real world system, it is reasonable to approach it as
a data stream: ratings are continuously being generated, and we have no control
over the data rate or the ordering of the arrival of new ratings [4]. Ideally, algo-
rithms that learn from data streams maintain predictive models incrementally,
requiring a single pass through data.

Research in incremental CF is not abundant in the literature. Incremental
neighborhood-based CF is presented in [5] and further studied in our previous
work [6,7]. One first solution for incremental matrix factorization is presented
in [8], where the authors use the Fold-In method [9] to incrementally update
the factor matrices. In [10] an incremental method to update user factors is
proposed, by using a simplified version of the batch process. An incremental
algorithm for ranking that uses a selective sampling strategy is proposed in [11].
Two incremental methods using Stochastic Gradient Descent (SGD) are evalu-
ated in [12]. Our work differs from the aforementioned for the following. First,
we are solving item prediction problems and second, our proposed evaluation
methodology is substantially different (see Sec. 5), since we use a prequential
approach to measure the algorithms’ evolving accuracy.

Starting with a simple iterative SGD algorithm, we adapt its mechanics to
work incrementally using only the currently available observation. We show ex-
perimental results that indicate that the predictive ability of our proposed incre-
mental algorithm is competitive with state of the art proposals. We also describe
our novel experimental setup specifically designed for streaming user feedback.

The remainder of this paper is structured as follows. In Sec. 2 we introduce
the basics of modern MF algorithms for CF. Sec. 3 describes an incremental

version of the batch algorithm. Some evaluation issues are discussed in Sec. 4.
Results are presented and discussed in Sec. 5. Finally we conclude in Sec. 6.

2 Matrix factorization for CF

Over the last decade several Matrix Factorization (MF) algorithms for CF have
been proposed, and were greatly popularized by the Netflix Prize competition
[13]. So far, MF methods have proven to be generally superior to other alterna-
tives, in terms of both predictive ability and run-time complexity.

Matrix Factorization for CF is inspired by Latent Semantic Indexing [14], a
popular technique to index large collections of text documents, used in the field
of information retrieval. LSI performs the Singular Value Decomposition (SVD)
of large document-term matrices. In a CF problem, the same technique can
be used in the user-item rating matrix, uncovering a latent feature space that
is common to both users and items. As an alternative, optimization methods
[15,16,17,10] have been proposed to decompose (very) sparse ratings matrices.
Supposing we have a ratings matrix R, the algorithms decompose R in two factor
matrices A and B that, similarly to a classic SVD, cover a common latent feature
space. Matrix A spans the user space, while B spans the item space. Given this
formulation, a predicted rating by user u to item i is given by the dot product
R̂ui = Au.B

T
i .

Training is performed by minimizing the L2-regularized squared error for
known values in R and the corresponding predicted ratings:

min
A.,B.

∑
(u,i)∈D

(Rui −Au.B
T
i)2 + λ(||Au||2 + ||Bi||2) (1)

In the above equation, D is the set of user-item pairs for which ratings are
known and λ is a parameter that controls the amount of regularization. The
regularization term λ(||Au||2 + ||Bi||2) is used to avoid overfitting. This term pe-
nalizes parameters with high magnitudes, that typically lead to overly complex
models with low generalization power. The most successful methods to solve this
optimization problem are Alternating Least Squares (ALS) [15] and Stochastic
Gradient Descent (SGD) [16]. It has been shown [16,17] that SGD based opti-
mization generally performs better than ALS when using sparse data, both in
terms of model accuracy and run time performance.

Given a training dataset consisting of tuples in the form< user, item, rating >,
SGD performs several passes through the dataset – iterations – until some stop-
ping criteria is met – typically a convergence bound and/or a maximum number
of iterations. At each iteration, SGD sweeps over all known ratings Rui and
updates the corresponding rows Au and BT

i , correcting them in the inverse di-
rection of the gradient of the error, by a factor of η ≤ 1 – known as step size
or learn rate. For each known rating, the corresponding error is calculated as
errui = Rui − R̂ui, and the following update operations are performed:

Au ← Au + η(erruiBi − λAu)

Bi ← Bi + η(erruiAu − λBi)
(2)

One obvious advantage of SGD is that complexity grows linearly with the
number of known ratings in the training set, actually taking advantage of the
high sparsity of R.

Algorithm 1 BSGD - Batch SGD

Data: D = < u, i, r >
input : feat, iters, λ, η
output: A, B

init:
for u ∈ Users(D) do

Au ← Vector(size : feat)
Au ∼ N (0, 0.1)

for i ∈ Items(D) do
Bi ← Vector(size : feat)
Bi ∼ N (0, 0.1)

for count← 1 to iters do
D ← Shuffle(D)
for < u, i, r >∈ D do

errui ← r −Au.B
T
i

Au ← Au + η(erruiBi − λAu)
Bi ← Bi + η(erruiAu − λBi)

This method – Algorithm 1 – has first been informally proposed in [16] and
many extensions have been proposed ever since [17,18,10,19].

3 Incremental Matrix Factorization for item prediction

As stated in Sec. 1 we are focusing on item prediction problems. In item pre-
diction, the ratings matrix R contains either true values – for positively rated
items – or false values – for unrated items. One important consideration is that
a false value in R may have two distinct meanings: the user either dislikes (neg-
ative preference) or did not interact with that item (unknown preference). In our
current work, we assume that false values are missing values – as opposed to
negative ratings. In practice, this assumption has two main consequences. First,
the sparsity of R is maintained because only positive ratings are used for train-
ing. Second, all false values for each user are valid recommendation candidates.
Another possible approach is to use some criterion to discriminate between nega-
tive and missing ratings within the false values. This technique has been shown

to improve accuracy in some cases [3], however it typically requires batch data
pre-processing, which is not viable in a data stream environment.

3.1 Incremental SGD

The optimization process of Alg. 1 consists of a batch procedure, requiring several
passes – iterations – through the dataset to train a model. While this may be an
acceptable overhead in a stationary environment, it is not acceptable for stream-
ing data. As the number of observations increases and is potentially unbounded,
repeatedly revisiting all available data eventually becomes too expensive to be
performed online.

We propose Alg. 2, designed to work as an incremental process, that up-
dates factor matrices A and B based solely on the current observation. This
algorithm, despite its formal similarity with Alg. 1, has two fundamental differ-
ences. First, the learning process requires a single pass over the available data.
Note that in Alg. 2, at each observation < u, i >, the adjustments to factor
matrices A and B are made in a single step. One other possible approach is to
perform several iterations over each new observation, with potential accuracy
improvements, at the cost of the additional time required to re-iterate. Second,
no data shuffling – or any other pre-processing – is performed. Given that we
are dealing with positive-only feedback we approach the boolean matrix R by
assuming the numerical value 1 for true values. Accordingly, we measure the
error as errui = 1 − R̂ui, and update the rows in A and BT using the update
operations in (2). We refer to this algorithm as ISGD.

Algorithm 2 ISGD - Incremental SGD

Data: D = {< u, i >}, a finite set or a data stream
input : feat, λ, η
output: A, B

for < u, i >∈ D do
if u 6∈ Rows(A) then

Au ← Vector(size : feat)
Au ∼ N (0, 0.1)

if i 6∈ Rows(BT) then
BT

i ← Vector(size : feat)
BT

i ∼ N (0, 0.1)

errui ← 1−Au.B
T
i

Au ← Au + η(erruiBi − λAu)
Bi ← Bi + η(erruiAu − λBi)

Since we are mainly interested in predicting good recommendations, we order
candidate items i for each user u using the function fui = |1− R̂ui|, where R̂ui

is the non-boolean predicted score. In plain text, we order candidate items by
descending proximity to value 1.

4 Evaluation issues

Classic evaluation methodologies for recommender systems begin by splitting the
ratings dataset in two subsets – training set and testing set – randomly choosing
data elements from the initial dataset. The training set is initially fed to the
recommender algorithm to build a predictive model. To evaluate the accuracy of
the model, different protocols have been used. Generally, these protocols group
the test set by user and “hide” user-item interactions randomly chosen from
each group. These hidden interactions form a holdout set. Rating prediction
algorithms are usually evaluated by measuring the difference between predicted
ratings and hidden ratings. Item recommendation algorithms are evaluated by
matching recommended items with hidden items.

The main objective of these protocols is to simulate user behavior in lab
conditions. Regarding this, some limitations need to be pointed out:

– Dataset ordering: randomly selecting data for training and test, as well as
random hidden set selection, shuffles the natural sequence of data. Algo-
rithms designed to deal with naturally ordered data cannot be rigorously
evaluated if data are shuffled;

– Time awareness: shuffling data potentially breaks the logic of time-aware
algorithms. For example, by using future ratings to predict past ratings;

– Online updates: incremental CF algorithms perform online updates of their
models as new data points become available. This means that neither models
or training and test data are static. Models are continuously being readjusted
with new data;

– Session grouping: most natural datasets, given their unpredictable ordering,
require some pre-processing to group ratings either by user or user session
in order to use offline protocols. As data increases in size, it eventually may
become too expensive to group data points;

– Recommendation bias: in production systems, user behavior is – expectedly
– influenced by recommendations themselves. It is reasonable to assume, for
instance, that recommended items will be more likely to be interacted with
than if they were not recommended. Simulating this offline usually requires
complicated user behavior modeling which can be expensive and prone to
systematic error.

These limitations, along with other known issues (see [20]), weaken the as-
sumption that user behavior can be accurately modeled or reproduced in offline
experiments. Nevertheless, offline evaluation still provides a useful tool. In [21]
some clues are provided on how to solve some of these problems.

5 Evaluation and discussion

Given the problems listed in the previous Section, we propose a prequential
approach [22], especially suited for the evaluation of algorithms that deal with
data streams. The following steps are performed for each observed event < u, i >,
representing a positive interaction between user u and item i:

1. If u is a known user, use the current model to recommend N items to u,
otherwise go to step 3;

2. Score the recommendation list given the observed item i;
3. Update the model with the observed event;
4. Proceed to the next event in the dataset;

This protocol provides several benefits:

– It allows continuous online monitoring of the system’s predictive ability;
– Online statistics can be integrated in algorithms’ logic – e.g. automatic pa-

rameter adjustment, drift detection, triggering batch retraining;
– In ensembles, relative weights of individual algorithms can be adjusted;
– The protocol is applicable to both item prediction and rating prediction.

In an offline experimental setting, an overall average of individual scores can
be computed at the end – because datasets are in fact finite. For a recommender
running in a real-world setting, this process allows us to follow the evolution of
the scores throughout the experiment by keeping a statistic of the score. Thereby
it is possible to depict how the algorithm’s performance evolves over time. In
Sec. 5.2 we present both the overall average score and complement it with plots
of the evolving score using a simple moving average.

We compare the overall accuracy of four algorithms, using the datasets de-
scribed in Sec. 5.1. To avoid cold-start issues – which are not the subject of our
research – we perform an initial batch training of the algorithms using the first
20% data points in each dataset. The remaining data is naturally used for in-
cremental training. Five algorithms are tested: our incremental SGD algorithm
(ISGD), Bayesian Personlized Ranking MF (BPRMF) and its weighted variant
WBPRMF [23] and the incremental version of the classic user-based nearest-
neighbors algorithm (UKNN), described in [6].

Parameters for all algorithms are independently tuned for each dataset. Be-
cause cross-validation is not applicable with streaming data, we use the same
evaluation protocol adopted for the presented experiments, but evaluating only
on the initial 20% of data of each dataset.

5.1 Datasets

We use four distinct datasets, described in Table 1. All datasets consist of a
chronologically ordered set of pairs in the form < user, item >. Music-listen
and Lastfm-600k consist of music listening events obtained from two distinct
sources, where each tuple corresponds to a music track being played by a user.
We removed unique occurrences of < user, item > pairs, since these probably
do not reflect a positive interaction. Music-playlist consists of a timestamped
log of music track additions to personal playlists. MovieLens-1M is well known
dataset4 consisting of timestamped movie ratings in a 1 to 5 rating scale. To
use this dataset in an item prediction setting, since we intend to retain only

4 http://www.grouplens.org, 2003

positive feedback, movie ratings below the maximum rating 5 are excluded.
Lastfm-600k consists of the first 8 months of activity observed in the Last.fm5

dataset originally used in [24]. Both Music-listen and Music-playlist are extracted
from the Palco Principal6 website, a social network dedicated to non-mainstream
music enthusiasts and artists.

Dataset Events Users Items Time frame Sparsity

Music-listen 335.731 4.768 15.323 12 months 99,90%

Lastfm-600k 493.063 164 65.013 8 months 99,11%

Music-playlist 111.942 10.392 26.117 45 months 99,96%

MovieLens-1M 226.310 6.014 3.232 34 months 98,84%
Table 1. Dataset description

One particular consideration about Music-listen and Lastfm-600k is that they
contain repeated events – in music listening, users listen to their favorite mu-
sic tracks more than once. Most systems do not recommend items to a user
that already knows them, except in very specific applications, such as automatic
playlist generation. For this reason, we skip the evaluation of these points. How-
ever, we do consider them to update the models, in order to better reflect a real
world scenario.

5.2 Results and discussion

Table 2 lists overall results, including the average incremental update times. We
express accuracy using recall@N at cut-offs N ∈ {1, 5, 10}. Recall yields 1 if item
i is within the N first recommended items, and 0 otherwise.

From the observation of results, we begin by pointing out that ISGD is from
2 to over 25 times faster – depending on the dataset – than the second faster al-
gorithm, while having comparable accuracy. With Music-playlist and even more
with Lastfm-600k, ISGD shows to be superior in both accuracy and processing
time. With Music-listen, ISGD’s accuracy only falls below the classic UKNN,
which is well over 2.000 times slower. The worst relative accuracy obtained by
ISGD is with Movielens-1M, performing under all other algorithms. In terms of
speed, however, ISGD still performs many times faster than all three alterna-
tives.

One relevant observation is that the relative accuracy between algorithms
is highly dependent on the dataset. With Music-listen and Movielens-1M, the
neighborhood algorithm is the most accurate, whereas with Lastfm-600k and
Music-playlist ISGD performs best. Exclusively regarding MF algorithms, ISGD
outperforms the two BPRMF variants with all datasets except Movielens-1M.

5 http://last.fm
6 http://www.palcoprincipal.com

Dataset Algorithm Recall@1 Recall@5 Recall@10 Update time

Music-listen

BPRMF 0,003 0,016 0,028 0,846 ms
WBPRMF 0,012 0,037 0,056 1,187 ms
ISGD 0,017 0,044 0,061 0,118 ms
UserKNN 0,038 0,101 0,139 328,917 ms

Lastfm-600k

BPRMF <0,001 0,001 0,003 28,061 ms
WBPRMF <0,001 0,002 0,003 29,194 ms
ISGD 0,012 0,027 0,034 1,106 ms
UserKNN 0,001 0,004 0,006 290,133 ms

Music-playlist

BPRMF <0,001 0,009 0,020 1,889 ms
WBPRMF 0,011 0,038 0,057 2,156 ms
ISGD 0,060 0,136 0,171 0,949 ms
UserKNN 0,033 0,095 0,132 190,250 ms

Movielens-1M

BPRMF 0,012 0,045 0,080 0,173 ms
WBPRMF 0,013 0,050 0,084 0,229 ms
ISGD 0,007 0,028 0,050 0,016 ms
UserKNN 0,018 0,066 0,110 84,927 ms

Table 2. Overall results. Best performing algorithms are highlighted in bold for each
dataset. Update times are the average value of the update time for all data points.

Overall results are possible to obtain in offline experiments, given that datasets
are finite. However, in an online environment – like production systems – these
results can only be interpreted as a snapshot of the algorithms’ performance
within a predefined time frame. One valuable feature of our adopted evaluation
protocol is that it allows the monitoring of the learning process as it evolves over
time. To do that, we need to maintain statistics of the outcome of the predic-
tions. We study how the algorithms’ accuracy evolves over time by depicting in
Fig. 1 a moving average of the recall@10 metric.

The plotted evolution of the algorithms with each dataset generally confirms
overall results, however more information becomes available. For instance, al-
though the overall averages of ISGD and UKNN are relatively close with the
Music-playlist dataset, Fig. 1 c) shows that these algorithms behave quite differ-
ently, starting with a very similar accuracy level and then diverging substantially,
starting near the 40.000th data point. With this dataset, all algorithms except
ISGD deteriorate over time. With Lastfm-600k and Music-playlist – Figs. 1 b)
and c) –, ISGD clearly outperforms the other algorithms. For these datasets be-
sides obtaining better aggregated scores, ISGD seems to take a clear advantage
of the incremental learning process, yielding increasingly better results. With
Music-listen – Fig. 1 a) – the user-based neighborhood algorithm achieves con-
siderably better scores than all others and ISGD is the second best performing.
With Movielens-1M – Fig. 1 d) –, all algorithms share a similar evolving pattern.

We also conducted statistical significance tests between ISGD and the other
algorithms for every dataset, using the signed McNemar test over sliding windows
[22] of the same size as the ones used for the moving averages used in Fig. 1,

0 10000 20000 30000 40000 50000

0.
00

0.
05

0.
10

0.
15

0.
20

a) Music−listen

index

re
ca

ll@
10

● ● ●
● ●

● ● ●

0 10000 20000 30000 40000 50000 60000

0.
00

0.
02

0.
04

0.
06

b) Lastfm−600k

index

re
ca

ll@
10

● ● ● ● ● ● ● ●

0 20000 40000 60000 80000

0.
00

0.
05

0.
10

0.
15

0.
20

c) Music−playlist

index

re
ca

ll@
10

● ● ●
● ● ● ● ●

0 50000 100000 150000

0.
00

0.
05

0.
10

0.
15

d) Movielens−1M

index

re
ca

ll@
10

●

●

● ●
●

●

● ●

●UKNN BPRMF WBPRMF ISGD

Fig. 1. Evolution of recall@10 with four datasets. The plotted lines correspond to a
moving average of the recall@10 obtained for each prediction. The window size n of the
moving average is a) n = 2000, b) n = 3000, c) n = 5000 and d) n = 5000. The first n
points are delimited by the vertical dashed line and are plotted using the accumulated
average. Plots a) and b) do not include repeated events in the datasets.

with a significance level of 1%. For the sake of space, we omit the details about
these tests since we found that the diferences visible in Fig. 1 are statistically
significant for all tested cases except for the following two:

1. ISGD vs WBPRMF with Music-listen – Fig. 1 a). Here significant difference
is not detected for over 55% of the experiment. In less than 12% of the
datapoints – and only in the first 30.000 –, ISGD is significantly worse than
WBPRMF. In more than 28% of the experiment – mainly after the 30.000th

data point – ISGD is better than WBPRMF.
2. ISGD vs UKNN with Music-playlist – Fig. 1 c). In the first half of the

dataset, ISGD is alternately significantly better, significantly worse or with
no significant difference from UKNN. In the second half of Music-playlist,
ISGD is significantly better than UKNN.

The online monitoring of the learning process allows a more detailed eval-
uation of the algorithms’ performance. Figure 1 reveals phenomena that would
otherwise be hidden in a typical batch evaluation. We consider that this finer
grained evaluation process provides a deeper insight into the learning processes
of predictive models.

The variability in the results suggests that some characteristics of the datasets
– for instance, sparsity, length, user-item ratios or user/item frequency distri-
butions – are somehow determinant in the relative performance of different al-
gorithms. However we were not yet able to correlate meta-data characteristics
with the algorithms’ ability to produce good models.

6 Conclusion and future work

In this paper, we propose a fast matrix factorization algorithm that is able
to deal with a stream of positive-only user feedback. To effectively evaluate CF
algorithms in a streaming environment, we also propose a prequential evaluation
framework that monitors algorithm accuracy as it continuously learns from a
data stream. We use this protocol to compare our algorithm to other incremental
algorithms for positive-only feedback. Results suggest that our algorithm, while
being faster, has competitive accuracy. We further notice that our evaluation
method allows for a finer grained assessment of algorithms, by being able to
continuously monitor the outcome of the learning process.

The analysis of results motivates future work towards a better understand-
ing of the effects of dataset properties, such as sparseness, user-item ratios or
frequency distributions, in the predictive ability of different algorithms. We are
also researching the convergence between the predictive abilities of incremental
and batch variants of matrix factorization algorithms.

7 Acknowledgements

Project “NORTE-07-0124-FEDER-000059” is financed by the North Portugal
Regional Operational Programme (ON.2 - O Novo Norte), under the National
Strategic Reference Framework (NSRF), through the European Regional Devel-
opment Fund (ERDF), and by national funds, through the Portuguese funding
agency, Fundação para a Ciência e a Tecnologia (FCT). The first author’s work
is funded by the FCT grant SFRH/BD/77573/2011. The authors wish to thank
Ubbin Labs, Lda. for kindly providing data from Palco Principal.

References

1. Goldberg, D., Nichols, D.A., Oki, B.M., Terry, D.B.: Using collaborative filtering
to weave an information tapestry. Commun. ACM 35(12) (1992) 61–70

2. Hu, Y., Koren, Y., Volinsky, C.: Collaborative filtering for implicit feedback
datasets. [25] 263–272

3. Pan, R., Zhou, Y., Cao, B., Liu, N.N., Lukose, R.M., Scholz, M., Yang, Q.: One-
class collaborative filtering. [25] 502–511

4. Domingos, P., Hulten, G.: Catching up with the data: Research issues in mining
data streams. In: DMKD ’01: Workshop on Research Issues in Data Mining and
Knowledge Discovery. (2001)

5. Papagelis, M., Rousidis, I., Plexousakis, D., Theoharopoulos, E.: Incremental col-
laborative filtering for highly-scalable recommendation algorithms. In Hacid, M.S.,
Murray, N.V., Ras, Z.W., Tsumoto, S., eds.: ISMIS. Volume 3488 of Lecture Notes
in Computer Science., Springer (2005) 553–561

6. Miranda, C., Jorge, A.M.: Incremental collaborative filtering for binary ratings.
In: Web Intelligence, IEEE (2008) 389–392

7. Vinagre, J., Jorge, A.M.: Forgetting mechanisms for scalable collaborative filtering.
J. Braz. Comp. Soc. 18(4) (2012) 271–282

8. Sarwar, B.M., Karypis, G., Konstan, J., Riedl, J.: Incremental SVD-based algo-
rithms for highly scalable recommender systems. In: Fifth International Conference
on Computer and Information Technology. (2002) 27–28

9. Berry, M., Dumais, S., O’Brien, G.: Using linear algebra for intelligent information
retrieval. SIAM review (1995) 573–595

10. Takács, G., Pilászy, I., Németh, B., Tikk, D.: Scalable collaborative filtering ap-
proaches for large recommender systems. Journal of Machine Learning Research
10 (2009) 623–656

11. Diaz-Aviles, E., Drumond, L., Schmidt-Thieme, L., Nejdl, W.: Real-time top-
n recommendation in social streams. In Cunningham, P., Hurley, N.J., Guy, I.,
Anand, S.S., eds.: RecSys, ACM (2012) 59–66

12. Ling, G., Yang, H., King, I., Lyu, M.R.: Online learning for collaborative filtering.
In: IJCNN, IEEE (2012) 1–8

13. Bennett, J., Lanning, S., Netflix, N.: The netflix prize. In: In KDD Cup and
Workshop in conjunction with KDD. (2007)

14. Deerwester, S.C., Dumais, S.T., Landauer, T.K., Furnas, G.W., Harshman, R.A.:
Indexing by latent semantic analysis. JASIS 41(6) (1990) 391–407

15. Bell, R.M., Koren, Y.: Scalable collaborative filtering with jointly derived neigh-
borhood interpolation weights. In: ICDM, IEEE Computer Society (2007) 43–52

16. Funk, S.: http://sifter.org/˜simon/journal/20061211.html (2006)
17. Paterek, A.: Improving regularized singular value decomposition for collaborative

filtering. In: Proceedings of KDD Cup and Workshop. Volume 2007. (2007) 5–8
18. Koren, Y.: Factorization meets the neighborhood: a multifaceted collaborative

filtering model. In Li, Y., Liu, B., Sarawagi, S., eds.: KDD, ACM (2008) 426–434
19. Salakhutdinov, R., Mnih, A.: Probabilistic matrix factorization. In Platt, J.C.,

Koller, D., Singer, Y., Roweis, S.T., eds.: NIPS, MIT Press (2007)
20. Kohavi, R., Longbotham, R., Sommerfield, D., Henne, R.M.: Controlled experi-

ments on the web: survey and practical guide. Data Min. Knowl. Discov. 18(1)
(2009) 140–181

21. Shani, G., Gunawardana, A.: Evaluating recommendation systems. In Ricci, F.,
Rokach, L., Shapira, B., Kantor, P.B., eds.: Recommender Systems Handbook.
Springer (2011) 257–297

22. Gama, J., Sebastião, R., Rodrigues, P.P.: Issues in evaluation of stream learning
algorithms. In IV, J.F.E., Fogelman-Soulié, F., Flach, P.A., Zaki, M.J., eds.: KDD,
ACM (2009) 329–338

23. Rendle, S., Freudenthaler, C., Gantner, Z., Schmidt-Thieme, L.: Bpr: Bayesian
personalized ranking from implicit feedback. In Bilmes, J., Ng, A.Y., eds.: UAI,
AUAI Press (2009) 452–461

24. Celma, Ò.: Music Recommendation and Discovery - The Long Tail, Long Fail, and
Long Play in the Digital Music Space. Springer (2010)

25. Proceedings of the 8th IEEE Intl. Conference on Data Mining (ICDM 2008), De-
cember 15-19, 2008, Pisa, Italy. In: ICDM, IEEE Computer Society (2008)

