
Chapter 11
The Two-Dimensional Strip Packing
Problem: What Matters?

Alvaro Neuenfeldt Júnior, Elsa Silva, A. Miguel Gomes
and José Fernando Oliveira

Abstract This paper presents an exploratory approach to study and identify the
main characteristics of the two-dimensional strip packing problem (2D-SPP). A
large number of variables was defined to represent the main problem characteristics,
aggregated in six groups, established through qualitative knowledge about the context
of the problem. Coefficient correlation are used as a quantitative measure to validate
the assignment of variables to groups. A principal component analysis (PCA) is used
to reduce the dimensions of each group, taking advantage of the relations between
variables from the same group.Our analysis indicates that the problemcan be reduced
to 19 characteristics, retaining most part of the total variance. These characteristics
can be used to fit regression models to estimate the strip height necessary to position
all items inside the strip.

Keywords Strip packing problems · Cutting and packing problems · Principal
component analysis · Knowledge discovery

11.1 Introduction

In the 2D-SPP the aim is to pack a set of rectangular items inside a rectangular object
with a fixed width, minimizing the height dimension of the object that is infinite.
The small items can be rotated, orthogonally positioned without overlapping and
completely inside the object, also the This description fits in the definition of cutting
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Fig. 11.1 A general view of
the rectangular 2D-SPP

and packing problems and indeed the 2D-SPP can be classified as an open dimension
problem [23]. An example can be found in Fig. 11.1.

Over the years a considerable number of test problem instances appeared in the
literature to test the different heuristics that have been developed to solve the 2D-
SPP. However, none of the developed heuristics were able to solve efficiently all the
existing test problem instances and 2D-SPP variants.

The test problem instances are generally created with the use of some problem
generatorswhichwere developed considering specific characteristics,methodologies
and input parameters. As a consequence, it is possible to find data instances in the
literature with different characteristics and combinations between items and object
shape variation [19].

Data mining techniques can be used to facilitate a better understanding of the test
problem instances characteristics, ensuring that the main details of the problem is
known [21].

In this paper, we conduct an exploratory research to find the most relevant test
problem instances characteristics for the two-dimensional rectangular 2D-SPP. An
initial set of variables (more than fifty) are used to represent these characteristics,
and the PCA was chosen as a technique to explore the relations among variables and
to convert them in a smaller number of components. A sample of 1217 test problem
instances extracted from the literature is explored.

A similar approach was developed by López–Camacho et al. [16], where a PCA
was considered to develop two-dimensional analysiswith the aimof better understand
the structure of the two-dimensional (and three-dimensional) bin packing problems.
This information was used to compare the performance of heuristics with a wide
set of characteristics provided by test problem instances found in the literature.
López–Camacho et al. [17] also developed a hyper-heuristic approach and compared
the computational results with other approaches using the components developed
through the PCA.
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11.2 Strip Packing Problem Characteristics

Problem generators are one of the most efficient ways to replicate real-world appli-
cations of different problems over controlled scenarios, ensuring the reproducibility
of the test problem instances. Problem generators can be used as one source of infor-
mation to study the characteristics of packing problems. A literature review about
problem generators for the 2D-SPP is presented below and will serve as a base for
the development of explanatory variables.

Wang andValenzela [22] developed two important factors to generate test problem
instances for the rectangular placement problems: the maximum area ratio between
all pairs of items; and the aspect ratio, to identify the variation level between the
largest and the smallest dimension of each item. As consequence, the maximum
aspect ratio identifies the item that has a greater difference in its dimensions.

Regardless the total number of items, larger values for aspect ratio and area ratio
indicates a more significant variability in items shape, which allows the generation
of more heterogeneous data instances. For example, “nice” instances have items of
smaller size and variability, which indicate a homogeneous behavior. In contrast,
“path” instances have items with larger size and variability, which characterizes test
problem instances with higher heterogeneity.

Bortfeldt and Gehring [6] used the degree of heterogeneity among the items as
one of the primordial factors to generate data instances. The degree of heterogeneity
measures the ratio between the total number of different items in comparison to the
total number of items of an test problem instance. This characteristic is reaffirmed
by Bortfeldt [5] as one of the most important aspects to be considered in cutting and
packing problems.

In Berkey and Wang [4] is considered the width ratio, that is calculated using
the object width and items dimensions. This measure is one of the most important
to develop test problem instances for both two-dimensional bin packing problems
and 2D-SPP. The influence of width ratio on the quality of solutions for the strip
packing was verified mainly in test problem instances with a smaller number of
items (n < 100). Smaller width ratios indicated a greater probability of obtaining
lower object heights.

The 2DCPackGen problem generator proposed by Silva et al. [20] is able to
generate data instances for all two-dimensional (and three-dimensional) rectangular
cutting and packing problems. In specific, for the 2D-SPP, the number of different
item types, the item type demand and size and shape of the items are some of the
measures that influences the assortment of items.

Leung et al. [15] combined in a dataset with 16 test problem instances some
characteristics of instance gcut13 by Beasley [1] and instances cx by [9] to obtain
items with different maximum and minimum areas using the generator proposed by
Wang and Valenzela [22]. The main objective was to evaluate the capacity of some
heuristics to solve problems with a strongly heterogeneous items shape variation,
where the position of the larger items into the object is a determinant factor to obtain
good solutions.
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Table 11.1 Test problem instances variables summary

Variable Definition

Area

arearatioextr arearatioextr = areamax/areamin

arearatioperc Ratio between percentile 90% and percentile 10% of areai
arearatioquart Ratio between third quartile and first quartile of areai
areacompnormal Compensation between the sum of 50% larger areai and the sum

of 50% smaller areai
areacompquart Compensation between the sum of 25% larger areai and the sum

of 25% smaller areai
areacompextr Compensation between the sum of 10% larger areai and the sum

of 10% smaller areai
areamean Mean value of areai
areamed Median value of areai
areastdev Standard deviation of areai
Perimeter

perimratioextr perimratioextr = perimetermax/perimetermin

perimratioperc Ratio between percentile 90% and percentile 10% of perimeteri
perimratioquart Ratio between third quartile and first quartile of perimeteri
perimcompnormal Compensation between the sum of 50% larger perimeteri and the

sum of 50% smaller perimeteri
perimcompquart Compensation between the sum of 25% larger perimeteri and the

sum of 25% smaller perimeteri
perimcompextr Compensation between the sum of 10% larger perimeteri and the

10% smaller perimeteri
perimmean Mean value of perimeteri
perimmed Median value of perimeteri
perimstdev Standard deviation of perimeteri

Dimensions

vardim vardim = W/[∑(d1i + d2i )/n]
dimratioextr dimratioextr = dimensionmax/dimensionmin

dimratioperc Ratio between percentile 90% and percentile 10% of dimensioni
dimratioquart Ratio between third quartile and first quartile of dimensioni
dimcompnormal Relation between the sum of 50% larger dimensioni and the sum

of 50% smaller dimensioni
dimcompquart Compensation between the sum of 25% higher dimensioni and the

sum of 25% smaller dimensioni
dimcompextr Compensation between the sum of 10% higher dimensioni and the

sum of 10% smaller dimensioni
dimmean Mean value of dimensioni
dimmed Median value of dimensioni
dimstdev Standard deviation of dimensioni

(continued)
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Table 11.1 (continued)

Variable Definition

Width dimensions

widthdimratioextr widthdimratioextr = widthdimensionmax/widthdimensionmin

widthdimratioperc Ratio between percentile 90% and percentile 10% of
widthdimensioni

widthdimratioquart Ratio between third quartile and first quartile of widthdimensioni

widthdimcompnormal Compensation between the sum of 50% larger widthdimensioni and
the sum of 50% smaller widthdimensioni

widthdimcompquart Compensation between the sum of 25% larger widthdimensioni and
the sum of 25% smaller widthdimensioni

widthdimcompextr Compensation between the sum of 10% larger widthdimensioni and
the sum of 10% smaller widthdimensioni

widthdimmean Mean value of widthdimensioni

widthdimmed Median value of widthdimensioni

widthdimstdev Standard deviation of widthdimensioni

Proportions

aspectratio aspectratio = (D1/D2)/[∑(d1i /d2i )/n]
propratioextr propratioextr = proportionmax/proportionmin

propratioperc Ratio between percentile 90% and percentile 10% of proportioni
propratioquart Ratio between third quartile and first quartile of proportioni
propcompnormal Compensation between the sum of 50% larger proportioni measures

and the sum of 50% smaller proportioni
propcompquart Compensation between the sum of 25% larger proportioni measures

and the sum of 25% smaller proportioni
propcompextr Compensation between the sum of 10% larger proportioni measures

and the sum of 10% smaller proportioni
propmean Mean value of proportioni
propmed Median value of proportioni
propstdev Standard deviation of proportioni

Other

n Total number of items in the test problem instance

coe f f icient coe f f icient = [(�d1i /n) + (�d2i /n)]/2 Average items dimensions
values

heterogeneity heterogeneity = nt/n Proportion between the quantity of different
items (nt) for all n

heterognt Measure of heterogeneity considering only types of items with more
than one item

di f coe f f icient For all n, the total number of different items dimensions

objdimratio Number of times that the object lower-bound is bigger than the object
width

i tdimratio Number of times that the items the maximum items dimension is bigger
than the minimum items dimensions

maxcoe f f icient 10% larger items dimensions values

mincoe f f icient 10% smaller items dimensions values
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To help the generation of experimental data to cover more practical applications
for the knapsack problem, Hall and Posner [10] used a wide range of factors to
identify the test problem instances difficulty. Three characteristics can be explored
in the 2D-SPP context: the total number of items (data instances size); the coefficients
of all items values; and the heterogeneity (relation between the size and the number
of different test problem instances).

All the concepts andparameters about the problemgenerators previously described
are used to develop the exploratory variables to study the characteristics of the rectan-
gular 2D-SPP. These variables were created considering both items and object shape
variation, as well as some intrinsic factors of the test problem instances. Table11.1
describes the 56 variables defined for this study, divided into six groups (Area,
Perimeter , Dimensions, Widthdimensions, Proportions, and Other ) accord-
ingly to their origin and level of similarity. To simplify the variables calculation five
reference parameters for each item i were defined:

• areai = A/ai : Ratio between the object area (A) and item i area (ai );
• perimeteri = P/pi : Ratio between the object perimeter (P) and item i perimeter
(pi );

• dimensioni = W/[(d1i + d2i )/2]: Average dimension of item i compared to the
object width (W ). d1i is the largest item dimension and d2i is the smallest item
dimension;

• proportioni = (D1/D2)/(d1i/d2i ): Level of proportion between the object and
item dimensions. D1 is the largest object dimension and D2 is the smallest object
dimension;

• widthdimensioni = W/d1i : Size of the largest item dimensions (d1i ) compared
to the object width (W ).

Small letters (i.e. ai ) represent items dimensions, capital letters (i.e. A) are used to
object dimensions and extended words are reserved for the definition of the reference
parameters (i.e. areai ) and for variables (i.e. arearatio).

11.3 Test Problem Instances

In this section, the most frequently benchmark data instances used over the years for
the 2D-SPP are identified. Table11.2 describes the main characteristics of these test
problem instances, organized by name, number of instances,minimumandmaximum
number of items, organization and source.

InHopper [12], the total number of items and the objectswidth and height similari-
ties were used to generate twenty-one test problem instances divided in seven classes.
Different items shape were randomly generated with a maximum ratio between
the items dimensions equal to seven. The object shape varies for dimensions ratio
between one and three. Hopper and Turton [11] generated all test problem instances
with the same characteristics, but the first 35 test problem instances (NTn) corre-
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Table 11.2 Test problem instances

Dataset Instancesa Itemsb Organization Source

C 21 17–197 7 classes (C1–C7) Hopper and Turton [11]

NTn 35 17–199 7 classes (NTn1–NTn7) Hopper [12]

NTt 35 17–199 7 classes (NT t1–NT t7) Hopper [12]

N 13 10–3152 1 class (N1–N13) Burke et al. [7]

cx 7 50–15000 1 class (cx) Ferreira and Oliveira [9]

iy 170 16–32768 11 classes (i4–i15) Imahori and Yagiura [13]

cgcut 3 23–623 1 class (cgcut) Christofides and Whitlock [8]

bwmv 300 20–100 6 classes (C01–C06) Berkey and Wang [4]

bwmv 200 20–100 4 classes (C07–C10) Martello and Vigo [18]

ngcut 12 7–22 1 class (ngcut) Beasley [2]

gcut 13 10–50 1 class (gcut) Beasley [1]

zdf 16 580–75032 1 class (zd f ) Leung and Zhang [14]

AH 360 1000 6 classes (AH1–AH6) Bortfeldt [5]

beng 10 20–200 1 class (beng) Bengtsson [3]

nice 36 25–5000 8 classes (nice1–nice5t) Wang and Valenzela [22]

path 36 25–5000 8 classes (path1–path5t) Wang and Valenzela [22]
aTotal number of test problem instances
bMinimum and maximum number of items

sponds to guillotine patterns, while the next 35 (NT t) corresponds to non-guillotine
patterns. The data instances are classified into seven classes, according to the total
number of items.

The N test problem instances proposed by Burke et al. [7] were generated with
constant values for the dimensions of the object. In a second moment, these objects
were randomly divided in small items. In Ferreira and Oliveira [9] the main focus
was to create very heterogeneous items, with extreme differences between the max-
imum and minimum items dimensions. Imahori and Yagiura [13] used the generator
proposed by Wang and Valenzela [22] to develop the iy test problem instances. The
main characteristic is the exponential variation of the total number of items per data
instance, varying from 32 to 32768 items.

Christofides andWhitlock [8] prefixed a value for the object area of each cgcut test
problem instance, and the item’s dimensions were generated according to a uniform
distribution. As a consequence, items dimensions are proportional to the object. The
ten classes of the bwmv instances developed by Berkey and Wang [4] (C01–C06)
and later updated by Martello and Vigo [18] (C07–C10) were proposed using some
bin packing problem parameters. Each class has a total of 50 test problem instances,
with item’s dimensions uniformly generated.

InBeasley [2] andBeasley [1], the ngcut and gcut instanceswere generated based
on the object width parameter. Guillotinable cuts were also considered for both x and
y coordinates. Leung et al. [15] divided the zd f instances in two different groups. The
first one (zd f 1–zd f 8) is composed of medium and large number of items, varying
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from 580 to 2532 items. The remaining (zd f 9–zd f 16) are considered extra-large
data instances, varying from 5032 to 75032 items.

In Bortfeldt [5], the AH test problems set was developed using two parameters,
varying in uniform distributions: items heterogeneity; and the ratio between the
object width and items average width. Bengtsson [3] developed ten beng instances,
based on the industrial cutting processes found in the manufacturers of excavators
and mechanical shovels.

As mentioned before, Wang and Valenzela [22] developed one of the most used
problem generators for the 2D-SPP. The process is recursive based on the variation
of items area, according to some parameters defined by the user, and constant object
dimensions (W = 1000 and H = 1000). The nice instances have a high items shape
similarity. In contrast, path instances have extreme shape variations.

The data instances for the 2D-SPP presented have some differences, related to
items and object shape variations and intrinsic test problem instances characteristics.
The main reason for these effects is the use of different types of problem generators.
As a consequence, the total number of test problem instances representing each of
the variables listed in the previous session is not uniform.

11.4 Principal Component Analysis

For the exploratory analysis the use of PCA is proposed, with the aim of decrease
the 56 variables presented in Table11.1. The objective is to reduce the problem
dimension to a more manageable size, retaining as much as possible the original
information, by aggregating similar variables into principal components.

Theworkwas developed in two steps. In a first moment, the consistency of each of
the six groups of variables from Table11.1 was checked, by analyzing the correlation
coefficients between pairs of variables of each group. A linear correlation is used as
a quantitative measure to validate the assignment of predictors to groups. A value
of 0.75 for the correlation coefficient was used. The remaining part of this section
specifies the procedures performed in all groups. Due to space constraints, we have
chosen to show in detail only the results obtained for groups Area and Proportions.
However, the conclusions proposed at the end of this study considers the results of
all groups.

To exemplify this first step, Tables11.3 and 11.4 summarize the correlation coef-
ficients between variables in groups Area and Proportions, respectively. A total of
14 and 16 coefficient correlations higher than the reference value are found for these
groups, and all variables have at least one high correlation coefficient that justifies the
group coherence. Variables with low positive or negative correlation coefficients do
not represent the same characteristic of the problem. To facilitate the interpretation
of the problem and maintain the information provided by the test problem instances
in the original format, the input data was not previously normalized. In some situa-
tions, the correlation may have been suffered small effects of any outliers or obvious
unusual cases.
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Table 11.5 Variance explained by each component for all groups
Group Component Variance

(%)
Cumulative
(%)

Group Component Variance
(%)

Cumulative
(%)

Area areacomp 62.48 Perimeter perimcomp 75.36

areastats 24.92 87.40 perimstats 20.16 95.52

Dimensions dimcomp 77.75 Proportions propcomp 59.76

dimstats 18.00 95.75 propstats 33.39 93.15

Width
dimensions

widthdimcomp 79.13

widthdimstats 16.39 95.52

In a secondmoment, PCA is used individually for each group to reduce the dimen-
sions of the problem. All the PCA are conducted with orthogonal rotation (varimax),
and all requirements were reached: the ratio between the sampling size and the
number of variables is greater than five to one; a minimum of 0.5 for overall Kaiser–
Meyer–Olkin measure of sampling adequacy; and the Bartlett test of sphericity is
statistically significant (<0.001).

As a result, two components with eigenvalues greater or equal to one were
extracted for each of the first five groups, namely: areacomp and areastats for
group Area; perimcomp and perimstats for Perimeter ; dimcomp and dimstats
for Dimensions; propcomp and propstats for Proportions; andwidthcomp and
widthstats for group Width dimensions. For the remaining group, Other , it was
not possible to extract a small number of components, since the variables in this
group are not related with each other (small correlation coefficients). As a result,
a total of 19 characteristics was obtained for the 2D-SPP, 10 components and the
original nine variables from group Other .

Table11.5 presents the percentage of variance explained for the components indi-
vidually in the first five groups. An average of 93% of the data variation is explained
by the components extracted, higher than the variation of 91% obtained if the PCA
was used with all the variables simultaneously.

Figure11.2 represents the variables’ projections along the extracted components
for groups Area and Proportions. In Area there is a clear difference between the
variables with high positive factor loadings for each component. High values for
variables based on ratios (i.e. areratioperc) and compositions (i.e. areacompextr )
establish the component areacomp. In contrast, arestats is based on classical sta-
tistical measures, such asmean, median and standard deviation variables. One excep-
tions is arearatioextr , which is a ratio variable but influences more significantly
the arestats component.

Group Proportions shows a similar behavior, with component propcomp influ-
enced by all ratio and composition variables, and the propstats with all classical
statistical measures and the correlated variable aspectratio.

Figure11.3 presents the distribution of the 1217 test problem instances according
to the components of Area and Proportions. To a better visualization of the data,
the scores for each instance are normalized to a scale between zero and one, according
to the maximum and minimum values found for each component.
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Fig. 11.2 Relations between variables and components for groups Area and Proportions

Fig. 11.3 Distribution of the 1217 test problem instances among components of groups Area and
Proportions

In the first graph, the highest values for areastats are found for seven test problem
instances zd f (zd f 10–zd f 16), a consequence of the high standard deviation and
mean value between the largest and smallest items of each data instance, which
can be verified through variables areastdev and areamed, respectively. Figure11.2
shows the strong influence between these variables and areastats.

Instance cx50 has items with a strip shape, which means that the difference
between the largest and smallest items dimensions is very high, and the object has
a square shape, a fact that reflects the high value of the test problem instance for
areacomp and propcomp. Some similar effects can also be found, with less ampli-
tude, for cx100 and some path and iy instances. In propstats a total of four AH
instances (AH14, AH36, AH50 and AH55) have a high dispersion between the
average value of items proportion compared to the object. As a consequence, these
are test problem instances that have a high degree of heterogeneity.

For both dispersion graphs, almost all test problem instances have similar values.
In Proportions the test problem instances are located near the center of coordinates
graph. In Area almost all instances are between 0.2 and 0.4 for areacomp and
0.1 and 0.2 for areastats. Therefore, these instances have few differences between
them, leading to few variations in the variables and affecting the analysis of the
characteristics of the problem.
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11.5 Conclusions

In this paper, we conduct an exploratory research to identify the most significant
characteristics for the two-dimensional rectangular 2D-SPP. Initially, a total of 56
variables were considered, based on parameters and characteristics found in the most
used problem generators.

To reduce the complexity the PCAwas used to reduce the problem dimensionality.
Our analysis suggests that 19 components can explain the problem consistently. A
relevant result is the similarity showedby the test problem instance from the literature.

In a second moment, it was verified that the number of test problem instances
that represent the possible items and object shape variation must be improved. As a
consequence, during the research the needof generation of new test problem instances
was evident, to overcome the drawback of somemissing characteristics in the existing
test problem instances in the literature.

This study helps in the development of more efficient heuristics for solving the
2D-SPP, by providing a more accurate information on the characteristics of the
problem. Future work will describe the relation between the components developed
(named as features) with a dependent variable, using regression models in order to
allow the prediction of the object height to be used according to the test problem
instances characteristics. Also, new variables will be studied in order to complement
the characterization of the problem.
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