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A B S T R A C T

Service operation vessels are becoming the dominant mode for the maintenance of most offshore wind farms.
To minimize turbine downtime, it is essential to bring the right components to the wind farm, while budget and
volume constraints prohibit having excess inventories on board. This setting can be interpreted as a repair kit
problem, which seeks to define a set of components that may be necessary for on-site maintenance operations in
a given time period during which emergency resupply is costly. Current repair kit problem approaches however,
do not cater sufficiently for some of the characteristics of offshore wind farm maintenance, including weather-
dependent deterioration and the possibility to perform emergency resupplies. We propose mixed-integer
programming models both to determine (tactical model) and validate (operational model) repair kits when
maintenance operations are performed under different weather conditions. The models are flexible enough to
be used with real world data considering multiple turbines composed of different deteriorating components,
service operation vessels characteristics (speed and volumetric capacity), different weather conditions, and
emergency resupplies. An important feature of this approach is its ability to consider detailed maintenance
and vessel routing operations to test and validate repair kits in realistic wind farm environments. We provide
valuable insights on the composition of repair kits and on relevant business indicators for a set of different
scenarios. The practical implications are that repair kits should be adapted depending on weather forecasts
and that considerable downtime reductions can be achieved by allowing emergency resupplies.
. Introduction

Renewable energy generation is clearly on the rise. The European
ommission (EC), for instance, has set the ambitious target for Europe
hat in 2030 at least 32% of total energy consumption should come
rom renewable energy [1]. The energy generated by offshore wind
arms plays a crucial role in the energy transition. In 2019, Europe
as reached 22.1 GW of offshore wind capacity [2], while recently
he EC announced a 2050 offshore wind target of 300 GW [3]. Recent
ears have witnessed significant cost reduction of offshore wind energy
roduction, while several offshore wind farms are currently planned
ased on zero subsidies. Yet lowering the offshore wind levelised cost
f energy remains vital [4], especially as future costs may increase as
ffshore wind farms are built at larger distances from shore. It is well
nown that Operations and Maintenance (O&M) costs are a significant
ortion of total cost in a large number of industries, particularly in
he offshore wind sector [5]. Although accurate estimates are hard

Abbreviations: m.u., Monetary units; MIP, Mixed-integer programming; O&M, Operations and maintenance; PHM, Proportional hazards model; POD,
eriod-oriented decomposition; RKP, Repair kit problem; SOD, Scenario-oriented decomposition; SOV, Service operation vessel; TOD, Turbine-oriented
ecomposition
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E-mail addresses: f.neves.moreira@rug.nl (F. Neves-Moreira), j.veldman@rug.nl (J. Veldman), r.h.teunter@rug.nl (R.H. Teunter).

to obtain, it is frequently mentioned that O&M costs are 20%–25%
of an offshore wind farm’s total life cycle cost [6,7]. Despite the
growing body of knowledge and experience from offshore O&M, new
methodologies are still needed to deal with the uncertain and disruptive
events that occur on site, and that often result in considerable loss of
availability [8]. Such methodologies are particularly critical for the
maintenance of wind farms located far from shore. To avoid costly
travel time and ensure quick response, many service providers make
use of SOVs for the maintenance of small to medium sized turbine
components. SOVs are capable of staying offshore during uninterrupted
periods of typically 2 to 3 weeks, providing shelter and accommodation
for crew and technicians. It is important to determine how many
components should be taken on each trip, which relates to the selection
of components that a repair (wo)man stores in the so-called repair kit,
in practice also referred to as the car stock. Determining the optimal
selection of components in such situations has been studied in the
literature, termed the Repair Kit Problem (RKP).
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List of abbreviations

m.u. monetary units.
MIP Mixed-Integer Programming.
O&M Operations and Maintenance.
PHM Proportional Hazards Model.
POD Period-Oriented Decomposition.
RKP Repair Kit Problem.
SOD Scenario-Oriented Decomposition.
SOV Service Operation Vessel.
TOD Turbine-Oriented Decomposition.

We adapt and extend existing methods to allow for such consider-
tions. Fig. 1 provides a general visual overview of the challenges and
rade-offs implicit in the RKPs we aim to solve.

The RKP literature is limited in terms of solution approaches and
pplications. Current approaches address unrealistic problems while
isregarding important business constraints. Most publications dealing
ith the RKP propose knapsack heuristics to tackle the maintenance

hallenges of appliance and printer manufacturers [9–11]. In a recent
ublication, [12] propose a Mixed-Integer Programming (MIP) model
o optimize inventory, ordering, and replenishment decisions in an
ffice equipment manufacturer. However, studying the RKP in the
ffshore wind setting has not yet been done. In this paper, we propose
tactical model that is able to provide efficient repair kits for the

ase where a vessel needs to maintain a set of turbines in an offshore
ind farm for a period of approximately two weeks (a 16-day planning
orizon is considered). The repair kits provided by the tactical model
re then validated using a more detailed operational model that is
ble to consider a larger set of business constraints. This validation is
arely considered in the RKP literature. Moreover, we apply a flexible
ailure generator that simulates turbines with several components that
eteriorate differently according to their sensitivity to weather factors.
his allows us to explore a large set of realistic scenarios when real
ata is absent.

The main contributions of this paper are threefold. First, we propose
novel approach to include new realistic features in the RKP. Second,
e validate our approach with realistic data describing an offshore
ind farm. Third, new managerial insights on the repair kit problem
re provided to guide practitioners on how to define repair kits under
he considered conditions.

. Literature review

In order to develop an approach capable of capturing critical fea-
ures present in offshore wind maintenance operations, we focus our
eview on the literature related to three main research fields: relia-
ility engineering, spare part management, and maintenance routing
nd scheduling. The terms ‘‘component’’ and ‘‘part’’ are used inter-
hangeably to refer to elements that are part of a more complex
ystem.

.1. Reliability engineering

Reliability is given as the probability that a component will per-
orm its required function under certain conditions for a certain time
nterval [13]. It is common for reliability analysts to use several dis-
rete or continuous probability distribution functions in reliability and
afety studies. The most important discrete probability distributions
re binomial, Poisson, hyper geometric, and geometric distributions.
he continuous distributions that are used often include exponential,
ormal, lognormal, Weibull, and Gamma distributions [14].
2

Fig. 1. The failure rate of each component is dependent on the weather conditions
to which the equipment is exposed. Expected weather conditions therefore affect the
efficient repair kit.

Proper reliability analysis is critical. For instance, [15] show that
availability of wind farms largely depends on failure distribution. In re-
ality, reliability is influenced by several factors, such as the operational
environment, geographical location and material design. Therefore,
ignoring these factors often leads to incorrect reliability analysis [16].
However, despite their usefulness, models based on the aforementioned
distributions still ignore most of the direct relationships between the
environment, operating conditions and the reliability of each system.

Particularly within offshore wind farms, critical assets such as the
wind turbines are constantly exposed to dynamic and demanding op-
erational conditions. Indeed, factors such as varying wind speeds,
wave heights, temperatures, lightning strike densities, may all affect
a turbine’s condition, while at the same time the turbine is expected
to function given some underlying requirements. This means that data
is collected under non-similar conditions, so that the effect of most of
these factors may be hidden.

One way to estimate the factors that influence the time to failure
of a system is the Proportional Hazards Model (PHM) introduced
by [17]. Although it started being used mainly in the medical field,
it is now a widely spread method in the reliability engineering lit-
erature [18]. It has been used in many applications such as marine
gas turbines [19], machine tools [20], diesel engines [21], and power
transmission cables [22]. For a detailed review on PHMs, extensions,
and other reliability models, the reader is referred to [18,23], and [24].

The dependence of the reliability of offshore wind turbines on
weather conditions is well-known among the research community and
practitioners. Nevertheless, only a few papers were published on this
issue [25,26]. In [27], the authors model different failure mechanisms
considering multiple wind turbine subsystems and structures, that are
influenced by external factors. The approach is compared to a constant
failure rate and to empirical wind turbine data to demonstrate its
plausibility. In [28], a weather-centered operations and maintenance
framework is proposed considering wind impacts on energy production
and maintenance plans. The approach is able to improve revenue when
facing high failure risks and energy production losses. For a more
detailed review on degradation models for wind turbines, the reader
is referred to [29] and [30]. Recently, [31] discuss the reliability,
availability, and maintainability of offshore wind turbines to identify
trends in offshore wind energy applications. Due to the scarcity of
data from offshore wind industry, the analysis is complemented with
onshore structures.

Reliability engineering approaches are also important for spare
parts management. For instance, [16] apply the PHM to a real case
study and explore the effect of time-dependent and time-independent
covariates on components demand. An inadequate description and
modeling approach to the behavior of each component can also lead
to inefficient spare part management, which is covered next.



Renewable and Sustainable Energy Reviews 146 (2021) 111158F. Neves-Moreira et al.

p
t
d
t

a
w
r

b
e
h
c
s
p

4

n
m

2.2. Spare part management

The aim of spare parts management is to provide components at
the right time while keeping inventory cost low. For an overview on
spare parts management, the reader is referred to the review papers
of [32,33], and [34]. However, most of the spare parts management
literature does not consider weather effects and restrictions, and many
standard methods are therefore not applicable to wind energy. This also
applies to the so-called repair kit problem, which will be described next
as it is the most relevant spare parts management model for the offshore
farm wind maintenance problem that we will consider.

The RKP is that of deciding what set of components a repair(wo)man
should carry to repair jobs, with the objective to provide good service
but at the same time limit inventory costs. As a first attempt to
model the RKP, [35] assumed a single job with at most one failure of
each component type. Since then, others have looked at more general
settings with e.g. multiple jobs, multiple components of the same type
needed per job, capital budget constraints and capacity restrictions.
The most recent contributions are by [9,12] and [11], who also review
the earlier literature. However, none of the studied models is directly
applicable to stocking offshore wind service operation vessels, since
neither weather influences nor the option of restocking during a tour
of jobs have ever been considered. Our problem description in the next
section will show both these elements to be of crucial importance for
the SOV stocking problem that we consider.

Besides [36,37], and [38], little substantial work on spare part
management for offshore wind farms has been reported.

2.3. Maintenance routing and scheduling

Routing and scheduling offshore wind farm maintenance services
generally map into difficult decision optimization problems that require
advanced solution methods for solving them. Several works on vessel
routing and scheduling were recently published. In [39], a MIP model
considering a crew of technicians is presented and solved with a
commercial general-purpose solver. In [40], an exact decomposition
approach is presented for a single period problem, and [41] discuss
an extension to multiple wind farms and multiple depots and solve
instances with up to 24 maintenance activities using a set partitioning
formulation. An adaptive large neighborhood search procedure in [42]
explores the benefits of sharing technicians between wind farms over
multiple periods. Efficient vessel routes for delivering and picking up
technicians to each wind farm are computed in each period, improving
planning flexibility and reducing operational costs.

In a recent paper, [43] propose an optimization framework for daily
route planning and scheduling of maintenance services in offshore wind
farms. The proposed approach considers climate data, vessels spec-
ifications, failure information, wind farm attributes and cost-related
specifics. The authors state that there is no optimization-based work
reflecting a complete realistic scenario on the usage of SOVs for the
daily route planning. A broad overview on the publications concerning
offshore wind farm maintenance logistics optimization are presented
in [44,45], and [8], but the literature focusing on the operations of
SOVs is absent.

3. The service operations stocking problem

An SOV is a vessel of considerable size with work and storage fa-
cilities, capable of transporting around sixty workers (including crew).
These vessels are specifically designed for performing offshore wind
preventive and corrective maintenance, but can also be an auxiliary
resource for other operations, such as vessel refueling, serving as an
helicopter pad, fire fighting, among others. The SOV is designed to stay
offshore for long periods that may span several weeks. The flexibility
provided by an SOV is critical for the efficiency of offshore wind
3

farm operations, as it allows for a large reduction in the number of d
offshore trips while providing a moving storage facility for technicians,
components, and tools.

Restocking the SOV is costly and is preferably done when the vessel
is in the harbor near storage locations. Furthermore, adverse weather
conditions may yield unexpected maintenance tasks, which may have
to be postponed to later periods. Thus, weather uncertainty may disturb
the balance between the supply and demand for technicians, compo-
nents, and tools available on board of an SOV. Therefore, restocking the
SOV can be seen as an RKP (discussed in the previous section) where
weather conditions play a crucial role.

3.1. Formal problem description

The RKP we aim to tackle is of utmost relevance to the offshore
wind industry. In this setting, an SOV needs to maintain a set of wind
turbines  located offshore. Each wind turbine 𝑖 ∈  is composed of
a number of components of type 𝑝 belonging to the set of component
types  . From time to time, these components may fail and have to
be replaced or repaired by a team of technicians, using a component
transported by the SOV. The crew of the SOV has enough supplies to
stay offshore for a trip of  time periods, including a travel time of
2𝑇 time periods (i.e., for an SOV lead time 𝑇 of 1 period, one time
eriod to travel in each direction). To provide a sense of scale, consider
hat a time period is typically one day and that the entire trip lasts 16
ays. During a trip, a stochastic number of jobs can occur according
o some unknown probability distribution and at most 𝐽 maintenance

jobs demanding several components of each type are expected. In each
maintenance job, the time taken to repair or substitute a component 𝑝 is
𝑠𝑡𝑝. This number of jobs should be defined according to past experience
regarding the number of jobs that the SOV is able to serve in each
period. To serve these jobs, the SOV is able to transport a repair kit
 comprising a number of components of each type 𝑝 ∈  . This repair
kit is defined by  = [𝑛1, 𝑛2,… , 𝑛

||

], where 𝑛𝑝 denotes the number
of components of type 𝑝 included in the kit, 𝑝 ∈  . There is also an
option to resupply some components using an helicopter with capacity
of 𝑅 volumetric units for additional components. This helicopter is used
for emergency purposes as it can reach the wind farm within a short
period of time represented by 𝐿. The SOV has limited capacity of 𝐶
volumetric units that needs to be respected at any time. The SOV is
also assumed to travel at an average speed of 𝑠, taking a time of 𝑔
for docking to a wind turbine. Note that the wind turbine failures are
assumed to be dependent on the weather conditions to which they are
exposed. Therefore, for each trip, a weather forecast 𝑍̂𝑓𝑡 is available
indicating the value of weather factor 𝑓 ∈  for each period 𝑡 ∈  .
This weather factor is to be incorporated in the methodology to define
failure probabilities. In each trip, the weather forecast is assumed to be
perfect. In this work, we consider that a scenario 𝜔 ∈ 𝛺 is a trip with

set of failures which demand 𝑑𝑡𝜔𝑝𝑖 components 𝑝 to be substituted at
ind turbine 𝑖 in period 𝑡. Each scenario has a probability of occurrence

epresented by 𝑝𝜔.
The unitary holding cost per period for component type 𝑝 is denoted

y ℎ𝑝, the downtime cost per turbine and period is 𝑒, and a resupply
vent costs 𝑟. The objective is to minimize the sum of the expected
olding, resupply, and downtime costs per trip. Throughout the paper,
osts will be expressed in monetary units (m.u.). Fig. 2 depicts a
chematic overview of the entities and parameters involved in this
roblem.

. Tackling the repair kit problem in offshore wind farms

Our RKP solution approach is composed of three main phases,
amely (1) scenario generation, (2) tactical model, and (3) operational
odel. These phases are presented in Fig. 3.

The first phase aims at generating realistic failure scenarios. Using

ata describing component reliability and different operating weather
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Fig. 2. An example of a trip performed by an SOV. The main parameters considered in this work are also presented.
Fig. 3. Schematic overview of the three-phase approach.
conditions, we generate a set of failures to be used in the two subse-
quent phases.

In the second phase, a set of scenarios with controlled operating
weather conditions serves as an input in a tactical model for the
RKP associated with SOV activities. This model approximates several
business constraints in order to consider relatively large sets of failure
scenarios. For instance, explicit vessel routing is not considered but an
estimation of the number of possible repairs per period is required. This
allows the model to be treatable with current general-purpose solvers.
The output of this model is a repair kit which serves as an input in
the operational model. Note that to provide good decisions, the type
of scenarios considered in this tactical model should be similar to the
ones appearing later in the operational model.

The third and last phase of our approach deals with the operational
level of SOV activities. The repair kit defined in the tactical model is
tested considering additional business constraints along with explicit
vessel routing and a costly resupply option which can be used to
partially restock the repair kit. The operational model is, by definition,
more complex and thus decomposition approaches are necessary to
solve it in case the planning horizon is long. These decomposition
approaches are introduced later in the paper.

The following subsections details the three phases of the proposed
RKP solution approach.
4

4.1. Scenario generation

The baseline deterioration of each component is modeled as a
stationary gamma process with shape parameter 𝛼 > 0, scale parameter
𝛽 > 0, and density function 𝑓 given by

𝑓𝛼, 𝛽 (𝑡) =
1

𝛤 (𝛼) 𝛽𝛼
𝑡𝛼−1 𝑒−

𝑡
𝛽 , 𝑡 > 0,

where 𝛤 (𝛼) = ∫ ∞
0 𝑧𝛼−1 𝑒−𝑧 𝑑𝑧 is the usual gamma function. The sta-

tionary gamma process has a shape function 𝑎𝑡 with a shape parameter
𝑎 > 0 and a scale parameter 𝑏 > 0. It is a continuous-time process
{𝑋(𝑡) ∶ 𝑡 ≥ 0} with 𝑋(𝜏) −𝑋(𝑡) ∼ 𝑓𝑎(𝜏−𝑡),𝑏 for 𝜏 > 𝑡 ≥ 0. As shown in the
sample path presented in Fig. 4, the gamma process is a jump process
and if we assume that a failure occurs when a certain deterioration
threshold 𝐻 is crossed, failure times follow a distribution function 𝐹𝐻
given by

𝐹𝐻 (𝑡; 𝑎, 𝑏) = 𝑃 (𝑋(𝑡) > 𝐻) = ∫

∞

𝐻
𝑓𝑎𝑡,𝑏(𝑥)𝑑𝑥 =

𝛤 (𝑎𝑡,𝐻𝑏−1)
𝛤 (𝑎𝑡)

, 𝑡 > 0

in which

𝛤 (𝛼, 𝑥) = ∫

∞

𝑥
𝑧𝛼−1𝑒−𝑧𝑑𝑧, 𝑥 ≥ 0, 𝛼 > 0,

is the upper incomplete gamma function. For further details on the sta-
tionary gamma process on which our baseline deterioration is inspired,
the readers are referred to the work of [46].
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Fig. 4. Gamma sample path with small and large jumps in added deterioration.

To consider the effect of operating conditions, we further enhance
this gamma process by hybridizing it with the Cox proportional haz-
ards model [17]. In our model, the baseline deterioration 𝛿𝑡 (i.e., the
deterioration increment of one gamma jump) is aggravated by a set
of covariates representing the operating conditions. Each component is
affected in a distinct manner, depending on its sensitivity to each of
the covariates. In each period 𝑡, the operating conditions are described
by a 1 × 𝑓 vector of covariate values given by 𝐱𝑡 = (𝑥𝑡1,… , 𝑥𝑡𝑓 ). The
ensitivity of each component to each covariate 𝑓 is adjusted by a 𝑓 ×1
ector of values given by 𝜷 = (𝛽1,… , 𝛽𝑓 ). Using these parameters in
onjunction with the baseline gamma process, it is possible to compute
he new incremental deterioration for each period 𝑡 as follows

𝛿𝑡 = 𝛿𝑡 exp(𝐱𝑡 𝜷),

where 𝛿𝑡 is the Cox proportional hazards deterioration in period 𝑡
obtained by aggravating the baseline deterioration 𝛿𝑡.

Using this method, we are able to consider incremental deteriora-
tion quantities caused by a number of factors that were present at a
given moment in time. In the example presented in Fig. 5, we present
the baseline (normal operating conditions) and the Cox proportional
hazards-based (harsh operating conditions) gamma sample paths. The
effect of harsh operating conditions cause the component to fail earlier.

After modeling the deterioration process of a component we are
ready to also model the operation of a machine or a set of machines
through a set of subsequent periods. To do so, we follow a gamma-
increment sampling technique [47] to draw independent samples 𝛿𝑡 =
𝑥𝑡−𝑥𝑡−1, where 𝑥0 = 0, from the gamma density function. This sampling
technique iteratively simulates the increment on the deterioration level
that occurs in each time period 𝑡. In each time period, the deterioration
of the component will increase by a certain amount and when the
deterioration level reaches the threshold 𝐻 , the component fails. The
deterioration level is re-set to 0 (assuming that repairs are immediate
and the component becomes as good as new) and this continues until
a certain number of periods 𝑡 is achieved.

4.2. Tactical model

We propose a two-stage stochastic optimization programming
model. We use decision variables 𝑛𝑝 for the first stage decisions (i.e.,
tactical repair kit definition) and decision variables 𝑥𝑡𝜔𝑝 , 𝑜𝑡𝜔𝑝 , 𝑦𝑡𝜔, 𝑧𝑡𝜔𝑖 ,
nd 𝑓 𝑡𝜔𝑖 to model the second stage decisions (i.e., maintenance job
5

cheduling, resupply events, and component inventories). Recall that
integer variables 𝑛𝑝 indicate the number of components 𝑝 to be included
in the repair kit. Let 𝑥𝑡𝜔𝑝 be the integer variables that define the
number of components 𝑝 available at the end of period 𝑡 of scenario

. The integer variables 𝑜𝑡𝜔𝑝 indicate the number of components 𝑝 made
available by a resupply event in period 𝑡 of scenario 𝜔. Binary variables
𝑦𝑡𝜔 are positive if a resupply trip is performed in period 𝑡 of scenario

. Binary variables 𝑧𝑡𝜔𝑖 model the state (i.e., active or inactive) of
ach turbine 𝑖 in period 𝑡 of scenario 𝜔. Finally, let 𝑓 𝑡𝜔𝑖 be the binary

variables defining whether a turbine 𝑖 is maintained in period 𝑡 of
scenario 𝜔. The proposed formulation reads as follows:

Sets
𝛺 Set of scenarios
 Set of time periods
 Set of turbines
 Set of components

Cost parameters
𝑒 Lost energy revenue per time period (m.u.)
ℎ𝑝 Holding cost of component 𝑝 ∈  per time period

(m.u.)
𝑟 Cost of a resupply delivery (m.u.)

System parameters
𝑝𝜔 Probability of occurrence for scenario 𝜔
𝐽 Maximum number of jobs served per period
𝐶 SOV volumetric capacity (m3)
𝑅 Resupply volumetric capacity (m3)
𝐿 Resupply lead time (periods)
𝑑𝑡𝜔𝑝𝑖 Demand of turbine 𝑖 for components 𝑝 in period 𝑡

of scenario 𝜔
Decision variables
𝑛𝑝 Number of components 𝑝 assigned to the repair

kit
𝑥𝑡𝜔𝑝 Stock of components 𝑝 available at the end of

period 𝑡 of scenario 𝜔
𝑞𝑡𝜔𝑝𝑖 Components 𝑝 used in period 𝑡 of scenario 𝜔
𝑜𝑡𝜔𝑝 Components 𝑝 resupplied in period 𝑡 of scenario 𝜔
𝑦𝑡𝜔 Equal to 1 if a resupply trip is performed in

period 𝑡 of scenario 𝜔; 0 otherwise
𝑧𝑡𝜔𝑖 Equal to 1 if wind turbine 𝑖 is inactive in period 𝑡

of scenario 𝜔; 0 otherwise
𝑓 𝑡𝜔𝑖 Equal to 1 if wind turbine 𝑖 is repaired in period 𝑡

of scenario 𝜔; 0 otherwise

TPRKP:

inimize
∑

𝜔∈𝛺
𝑝𝜔

(

∑

𝑡∈

∑

𝑝∈
ℎ𝑝 𝑥

𝑡𝜔
𝑝 + 𝑟

∑

𝑡∈
𝑦𝑡𝜔 + 𝑒

∑

𝑡∈

∑

𝑖∈
𝑧𝑡𝜔𝑖

)

(1)

.t.

𝑝 +
𝑡

∑

𝑡′=1

(

𝑜𝑡
′𝜔
𝑝 −

∑

𝑖∈
𝑞𝑡

′𝜔
𝑝𝑖

)

= 𝑥𝑡𝜔𝑝 𝑝 ∈  , 𝑡 ∈  , 𝜔 ∈ 𝛺 (2)

∑

𝑖∈
𝑞𝑡𝜔𝑝𝑖 ≤ 𝑥𝑡−1,𝜔𝑝 𝑝 ∈  , 𝑡 ∈  , 𝜔 ∈ 𝛺 (3)

𝑡
∑

𝑡′=1
(𝑑𝑡

′𝜔
𝑝𝑖 − 𝑞𝑡

′𝜔
𝑝𝑖 ) ≤ 𝑧𝑡𝜔𝑖

𝑡
∑

𝑡′=1
𝑑𝑡

′𝜔
𝑝𝑖 𝑖 ∈  , 𝑝 ∈  , 𝑡 ∈  , 𝜔 ∈ 𝛺 (4)

𝑞𝑡𝜔𝑝𝑖 ≤ 𝑓 𝑡𝜔𝑖

𝑡
∑

𝑡′=1
𝑑𝑡

′𝜔
𝑝𝑖 𝑖 ∈  , 𝑝 ∈  , 𝑡 ∈  , 𝜔 ∈ 𝛺 (5)

∑

𝑖∈
𝑓 𝑡𝜔𝑖 ≤ 𝐽 𝑡 ∈  , 𝜔 ∈ 𝛺 (6)

∑

𝑝∈
𝑣𝑝 𝑥

𝑡𝜔
𝑝 ≤ 𝐶 𝑡 ∈  , 𝜔 ∈ 𝛺 (7)

∑

𝑣𝑝 𝑜
𝑡𝜔
𝑝 ≤ 𝑅𝑦𝑡−𝐿,𝜔 𝑡 ∈  , 𝜔 ∈ 𝛺, 𝐿 < 𝑡 (8)
𝑝∈
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Fig. 5. Comparison between the gamma sample paths of a component operating in
normal conditions and a component operating in harsh conditions.

𝑛𝑝, 𝑥
𝑡𝜔
𝑝 , 𝑞

𝑡𝜔
𝑝𝑖 , 𝑜

𝑡𝜔
𝑝 ∈ Z+

0 , 𝑦𝑡𝜔, 𝑧𝑡𝜔𝑖 , 𝑓
𝑡𝜔
𝑖 ∈ {0, 1}. (9)

The objective function (1) minimizes the offshore wind farm ex-
pected holding cost, expected resupply cost, and expected downtime
cost among all the scenarios. Constraints (2) define the inventory of
components 𝑝 available at the end of period 𝑡 of scenario 𝜔, based
on the repair kit that is brought from shore, on the number of re-
supplied components, and on the number of components used in the
maintenance jobs until period 𝑡. Constraints (3) ensure that components
can only be used if they are available in the inventory (number of
components remaining at the end of the previous day), excluding
resupplies from the same day. Constraints (4) track the state of each
turbine 𝑖 in each period 𝑡 based on the number of failures and repairs
performed until period 𝑡. Constraints (5) ensure that components are
used only if a maintenance job is performed. The right hand side of the
constraint ensures that the number of parts used in one period is never
larger than the total number of failures until period 𝑡. Constraints (6)
to (8) are related to the capacities of the system. Constraints (6) impose
a maximum number of maintenance jobs that can be performed by the
SOV in each period. This constraint forbids the model to perform all
maintenance jobs in a single period, capturing costs induced by the
time dimension. Constraints (7) ensure that the total volume occupied
by the stock of components in the SOV never surpasses its volumetric
capacity. Constraints (8) impose a volumetric capacity on the vehicle
that performs each resupply delivery. Finally, expressions (9) define the
domains of all variables.

4.3. Operational model

In this section, we present an operational planning problem that,
differently from the tactical model, considers vessel routing and can
be implemented in a rolling horizon setting. As to the latter, we will
explain in Section 5.3 how this is done.

This operational model considers one scenario at a time, meaning
that one instance contains one scenario only. The repair kit is not
a decision in this model, but rather an input parameter provided
by a tactical model that is solved beforehand. The main purpose of
the operational model is to come up with a route and schedule for
maintenance services to test and validate the solutions (i.e., repair kits)
provided by the tactical model. The detail of the operational model is
6

higher due to the consideration of vessel routing decisions including
service times, allowing the calculation of downtime, resupply, holding,
and travel costs.

The operational model uses binary decision variables 𝑥𝑖𝑗𝑡, 𝑧𝑖𝑡, 𝑧−𝑖𝑡 ,
𝑧+𝑖𝑡 , 𝑜

+
𝑡 , 𝑓𝑖𝑝𝑡, and 𝑢𝑖𝑡. Variables 𝑥𝑖𝑗𝑡 are routing variables indicating that

he SOV moves from turbine 𝑖 to turbine 𝑗 in period 𝑡. Variables 𝑧𝑖𝑡 are
isiting variables to indicate that the vessel visits turbine 𝑖 in period 𝑡.
ariables 𝑧−𝑖𝑡 and 𝑧+𝑖𝑡 indicate the initial and final position of the vessel in
ach period 𝑡, respectively. Variables 𝑜+𝑡 are used to model the requests
or resupply deliveries in each period 𝑡. Maintenance operations to
ach component 𝑝 of each turbine 𝑖 in each period 𝑡 are modeled with
ariables 𝑓𝑖𝑝𝑡. The state of each turbine 𝑖 in each period 𝑡 is indicated
y variables 𝑢𝑖𝑡.

Integer decision variables 𝑛𝑝𝑡 and 𝑜𝑝𝑡 indicate the quantity of com-
onents of type 𝑝 in stock and resupplied in period 𝑡, respectively. 𝑛𝑝0
s used to set the initial repair kit in the formulation.

The formulation also uses continuous decision variables 𝑤𝑖𝑡, 𝑑𝑖𝑝𝑡,
𝑖𝑝𝑡. Variables 𝑤𝑖𝑡 keep track of arriving times of the SOV at each turbine
in each period 𝑡. Variables 𝑑𝑖𝑝𝑡 represent the deterioration level of
ach component 𝑝 of each turbine 𝑖 in each 𝑡, whereas 𝑞𝑖𝑝𝑡 represent
decrease of deterioration provided by a maintenance operation.

The remaining parameters and decision variables are presented in
he summary table preceding the model. The proposed formulation
eads as follows:

Sets
 Set of time periods
 Set of turbines
 Set of components

Cost parameters
𝑐𝑖𝑗 Cost for moving from turbine 𝑖 to turbine 𝑗 (m.u.)
𝑒 Energy revenue per time period (m.u.)
ℎ𝑝 Holding cost of component 𝑝 ∈  per time period

(m.u.)
𝑟 Cost of a resupply delivery (m.u.)

System parameters
𝑣𝑝 Volume of component 𝑝 (m3)
𝐶 SOV volumetric capacity (m3)
𝑅 Resupply volumetric capacity (m3)
𝐿 Resupply lead time (periods)
𝑔 Docking time (periods)
𝑠𝑡𝑝 Time to repair/substitute component 𝑝 of turbine

𝑖 (periods)
𝑡𝑖𝑗 Time to move from turbine 𝑖 to 𝑗 (periods)
𝛿𝑖𝑝𝑡 Deterioration of component 𝑝 of turbine 𝑖 in

period 𝑡
𝑀 Big number for modeling purposes

Decision variables
𝑥𝑖𝑗𝑡 Equal to 1 if the SOV moves from turbine 𝑖 to

turbine 𝑗 in period 𝑡; 0 otherwise
𝑧𝑖𝑡 Equal to 1 if the SOV visits turbine 𝑖 in period 𝑡; 0

otherwise
𝑧−𝑖𝑡 Equal to 1 if initial position of the SOV is at

turbine 𝑖 in period 𝑡; 0 otherwise
𝑧+𝑖𝑡 Equal to 1 if final position of the SOV is at

turbine 𝑖 in period 𝑡; 0 otherwise
𝑜+𝑡 Equal to 1 if a resupply delivery is requested in

period 𝑡; 0 otherwise
𝑓𝑖𝑝𝑡 Equal to 1 if component 𝑝 of turbine 𝑖 is repaired

in period 𝑡; 0 otherwise
𝑢𝑖𝑡 Equal to 1 if turbine 𝑖 is down in period 𝑡; 0

otherwise
𝑛𝑝𝑡 Number of components 𝑝 available in the SOV at

the end of period 𝑡
𝑜𝑝𝑡 Number of components 𝑝 resupplied in period 𝑡
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𝑑𝑖𝑝𝑡 Deterioration level of component 𝑝 of turbine 𝑖 in
period 𝑡

𝑞𝑖𝑝𝑡 Deterioration level reduction of component 𝑝 of
turbine 𝑖 in period 𝑡

𝑤𝑖𝑡 Arrival time at turbine 𝑖 in period 𝑡

OPRKP:
minimize

∑

𝑖∈

∑

𝑗∈

∑

𝑡∈
𝑐𝑖𝑗𝑥𝑖𝑗𝑡+

𝑟
∑

𝑡∈
𝑜+𝑡 +

∑

𝑝∈

∑

𝑡∈
ℎ𝑝𝑛𝑝𝑡+

𝑒
∑

𝑖∈

∑

𝑡∈
𝑢𝑖𝑡+

𝑒
∑

𝑖∈

∑

𝑡∈

∑

𝑝∈
𝑠𝑡𝑝𝑓𝑖𝑝𝑡

(10)

s.t.
∑

𝑗∈
𝑥𝑖𝑗𝑡 + 𝑧+𝑖𝑡 = 𝑧𝑖𝑡 𝑖 ∈  , 𝑡 ∈  (11)

∑

𝑗∈
𝑥𝑗𝑖𝑡 + 𝑧−𝑖𝑡 = 𝑧𝑖𝑡 𝑖 ∈  , 𝑡 ∈  (12)

∑

𝑖∈
𝑧−𝑖𝑡 = 1 𝑡 ∈  (13)

∑

𝑖∈
𝑧+𝑖𝑡 = 1 𝑡 ∈  (14)

𝑧+𝑖,𝑡−1 = 𝑧−𝑖𝑡 𝑖 ∈  , 𝑡 ∈  (15)

𝑤𝑖𝑡 +
∑

𝑝∈
𝑠𝑡𝑝 𝑓𝑖𝑝𝑡 + (𝑡𝑖𝑗 + 𝑔) 𝑥𝑖𝑗𝑡 ≤ 𝑤𝑗𝑡 + (1 − 𝑥𝑖𝑗𝑡)

𝑖 ∈  , 𝑗 ∈  , 𝑡 ∈ 
(16)

𝑑𝑖𝑝𝑡 = 𝑑𝑖𝑝𝑡−1 + 𝛿𝑖𝑝𝑡 − 𝑞𝑖𝑝𝑡 𝑖 ∈  , 𝑝 ∈  , 𝑡 ∈  (17)

𝑑𝑖𝑝𝑡 − 1 ≤𝑀 𝑢𝑖𝑡 𝑖 ∈  , 𝑝 ∈  , 𝑡 ∈  (18)

𝑞𝑖𝑝𝑡 ≤ 𝑓𝑖𝑝𝑡 𝑖 ∈  , 𝑝 ∈  , 𝑡 ∈  (19)

𝑓𝑖𝑝𝑡 ≤ 𝑧𝑖𝑡 𝑖 ∈  , 𝑝 ∈  , 𝑡 ∈  (20)

𝑛𝑝𝑡 = 𝑛𝑝𝑡−1 + 𝑜𝑝𝑡 −
∑

𝑖∈
𝑓𝑖𝑝𝑡 𝑝 ∈  , 𝑡 ∈  (21)

∑

𝑝∈
𝑣𝑝 𝑛𝑝𝑡 ≤ 𝐶 𝑡 ∈  (22)

∑

𝑝∈
𝑣𝑝 𝑜𝑝𝑡+𝐿 ≤ 𝑅𝑜+𝑡 𝑡 ∈  , 𝑡 + 𝐿 ≤ | | (23)

𝑜𝑝𝑡 = 0 𝑡 ∈  , 𝑡 ≤ 𝐿 (24)

𝑜+𝑡 = 0 𝑡 ∈  , 𝑡 + 𝐿 > | | (25)

𝑑𝑖𝑝𝑡, 𝑞𝑖𝑝𝑡 ∈ R+
0 , 𝑛𝑝𝑡, 𝑜𝑝𝑡 ∈ Z+

0 , 𝑥𝑖𝑗𝑡, 𝑧𝑖𝑡, 𝑧
−
𝑖𝑡 , 𝑧

+
𝑖𝑡 , 𝑜

+
𝑡 , 𝑓𝑖𝑝𝑡, 𝑢𝑖𝑡 ∈ {0, 1}, 𝑤𝑖𝑡 ∈ [0, 1]

(26)

Objective function (10) minimizes the transportation cost, the re-
supply deliveries cost, the components holding cost, and the downtime
cost due to failures and service time. Constraints (11) and (12) ensure
the vessel flow conservation through the transportation network. We
assume that the can vessel start and finish the trip in any turbine
position (starting point is not a parameter). The degree of starting
(finishing) nodes is one, as the vessel only leaves (arrives at) that node.
7

Constraints (13) and (14) ensure that there is a starting and a finishing
location for the vessel, respectively, in each period. Constraints (15)
ensure that the vessel remains in the same position between periods.
Constraints (16) define the arrival times of the SOV at each location.
When the vessel traverses an arc (𝑖, 𝑗), its arrival time at location 𝑗
needs to be greater than the arrival time at location 𝑖, plus the service
time on substituting some components, plus the travel time 𝑡𝑖𝑗 and
docking time 𝑔. These constraints also eliminate sub-tours and are
responsible for most of the computational complexity of the model.
The deterioration level of each turbine is modeled by constraints (17).
When this level of deterioration surpasses 1 in any component of a
turbine, the turbine is considered to be down. The turbine states are
modeled by constraints (18). The variable representing a deterioration
reduction can only be positive if a component is used, as ensured by
constraints (19). Constraints (20) ensure that a repair operation is only
performed if the turbine is visited by the SOV. The stock of components
in the SOV is modeled by constraints (21). Note that the values of
period 0, 𝑛𝑝0, are set to the values of the repair kit received by the
tactical model. Constraints (22) ensure that the SOV capacity is not
violated. Constraints (23) impose the capacity of the resupply vehicle
and set the resupply delivery lead time. If a request is done in period
𝑡, the components are only received in period 𝑡 + 𝐿. Constraints (24)
and (25) ensure that no components are received before the lead time
and that no resupply requests are done if there is no time to make the
delivery, respectively. Finally, expressions (26) define the domains of
each variable.

To illustrate the rationale of this model, we present Fig. 6. In
this example, the SOV starts on Day 1 by performing maintenance
interventions on turbines 6 and 5 (in this order). Since there was not
enough time left on that day, turbine 0, which failed, stays inactive
until the end of Day 1. On Day 2, the vessel first fixes turbine 0 and
then performs maintenance operations on turbines 1 and 3. On Day
3, the SOV returns to turbine 5 to perform additional maintenance
and thereafter also visits turbines 9 and 4 to perform maintenance
operations. Note that components can be substituted before (preventive
maintenance) or after a failure (corrective maintenance).

4.4. Decomposition approach

The tactical and operational models presented before are MIP for-
mulations which can become intractable for larger problems. Therefore,
to solve larger instances, we propose a matheuristic approach based on
the fix-and-optimize approach proposed by [48]. In this matheuristic
approach, predefined decomposition strategies are used to iteratively
solve a series of tractable subproblems to find improvements in a large
problem.

4.4.1. Decomposition strategies
We refer to a decomposition strategy as a subset of variables to

find local improvements, maintaining the remaining variables fixed.
Small sets of decisions are made iteratively using a MIP formulation.
Consider the entire set of integer variables 𝛶 in the formulation. Each
decomposed subproblem is defined by selecting a subset of variables
𝛶𝑂𝑝𝑡 ⊆ 𝛶 to be re-optimized. The remaining variables 𝛶 𝐹 𝑖𝑥 = 𝛶 ⧵ 𝛶𝑂𝑝𝑡

are fixed with the values obtained in the incumbent solution. Hence, as
an example, a subproblem for the operational model 𝑂𝑃𝑅𝐾𝑃 − 𝑆𝑈𝐵
can be stated as follows:

(𝑂𝑃𝑅𝐾𝑃 − 𝑆𝑈𝐵) ∶ minimize objective function (10) subject to con-
straints (11)–(26) and the additional constraints:

𝑥𝑖𝑗𝑡 = 𝑥̄𝑖𝑗𝑡 ∀ (𝑖, 𝑗, 𝑡)|(𝑖, 𝑗, 𝑡) ∈ 𝛶 𝐹 𝑖𝑥 (27)

𝑧𝑖𝑡 = 𝑧̄𝑖𝑡 ∀ (𝑖, 𝑡)|(𝑖, 𝑡) ∈ 𝛶 𝐹 𝑖𝑥 (28)

𝑓𝑖𝑝𝑡 = 𝑓𝑖𝑝𝑡 ∀ (𝑖, 𝑝, 𝑡)|(𝑖, 𝑝, 𝑡) ∈ 𝛶 𝐹 𝑖𝑥 (29)

𝑢𝑖𝑡 = 𝑢̄𝑖𝑡 ∀ (𝑖, 𝑡)|(𝑖, 𝑡) ∈ 𝛶 𝐹 𝑖𝑥, (30)



Renewable and Sustainable Energy Reviews 146 (2021) 111158F. Neves-Moreira et al.

r

w
s

t
s
c
t
g

p

4

p
b
s
q
n
s
m
A

Fig. 6. Example of three periods of a solution to the operational model considering 10 wind turbines. Turbines represented in blue are repaired by the SOV whereas turbines
epresented in orange are down. Note that the routing model maintains the position of the vessel from one period to another.
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here 𝑥̄𝑖𝑗𝑡, 𝑧̄𝑖𝑡, 𝑓𝑖𝑝𝑡, and 𝑢̄𝑖𝑡 are values coming from an incumbent
olution.

The subset 𝛶𝑂𝑝𝑡 is based on a combination of dimensions related to
he problem we are tackling, which are identified by a decomposition
trategy 𝜓 ∈ 𝛹 . There is always a trade-off between computational
omplexity and the potential for finding improvements. To achieve
ractable subproblems we propose three different decomposition strate-
ies:

1. Period-Oriented Decomposition (POD): each subproblem consid-
ers the variables related to a subset of periods 𝑡 (all turbines and
components considered).

2. Turbine-Oriented Decomposition (TOD): each subproblem con-
siders the variables related to a subset of turbines 𝑖 (all periods
and components considered).

3. Scenario-Oriented Decomposition (SOD): each subproblem con-
siders the variables related to a subset of scenarios 𝜔 (all turbines
and components considered). This strategy can only be used in
the tactical model which is the only one that considers scenarios.

In Fig. 7, we provide a visual representation of the proposed decom-
osition strategies.

.4.2. Matheuristic algorithm
Our matheuristic algorithm iteratively solves a set of MIPs to ex-

lore the search space of the global problem. This kind of approach has
een successful in several real world problems across several business
ectors (see [49–51]) and it can improve the applicability and solution
uality of optimization techniques that are currently applied to re-
ewable energy problems [52]. The method requires a feasible integer
olution to begin. In this problem, most variables can be set to zero
eaning that there is no maintenance operation or SOV movement.
lthough this solution will have a low quality, it allows us to quickly
8

tart an iterative improvement phase. In the iterative improvement
hase, the algorithm randomly selects one of our three decomposition
trategies and solves the subproblem that is defined by using the set
f variables to optimize 𝛶 𝑜𝑝𝑡. This is repeated until a maximum time
imit 𝑡𝑙𝑖𝑚𝑖𝑡 or a maximum number of solutions without improving
he objective function 𝑛𝑜𝑖𝑚𝑝𝑚𝑎𝑥. Each subproblem iteration runs for

maximum time of 𝑠𝑢𝑏_𝑡𝑙𝑖𝑚𝑖𝑡. We present the pseudo-code of the
proposed matheuristic approach in Algorithm 1.

Algorithm 1 Matheuristic Approach
1: procedure MH(𝑛𝑜𝑖𝑚𝑝𝑚𝑎𝑥, 𝑡𝑙𝑖𝑚𝑖𝑡, 𝑠𝑢𝑏_𝑡𝑙𝑖𝑚𝑖𝑡)
2: 𝑠𝑡𝑜𝑝 ← 𝑓𝑎𝑙𝑠𝑒, 𝑛𝑜𝑖𝑚𝑝← 0, 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛← 0, 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑏𝑒𝑠𝑡 ← 0
3: 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑏𝑒𝑠𝑡 ← Set integer variables to zero
4: while not 𝑠𝑡𝑜𝑝 do
5: 𝛶 𝑂𝑝𝑡 ← Select variables using random strategy 𝜓 ∈ 𝛹
6: 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛← SolveSubproblem(𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑏𝑒𝑠𝑡, 𝛶 𝑜𝑝𝑡, 𝑠𝑢𝑏_𝑡𝑙𝑖𝑚𝑖𝑡)
7: if 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 < 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑏𝑒𝑠𝑡 then
8: 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑏𝑒𝑠𝑡 ← 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛, 𝑛𝑜𝑖𝑚𝑝← 0
9: else

10: 𝑛𝑜𝑖𝑚𝑝← 𝑛𝑜𝑖𝑚𝑝 + 1
11: if 𝑛𝑜𝑖𝑚𝑝 > 𝑛𝑜𝑖𝑚𝑝𝑚𝑎𝑥 or 𝑡𝑖𝑚𝑒 > 𝑡𝑙𝑖𝑚𝑖𝑡 then
12: 𝑠𝑡𝑜𝑝 ← 𝑡𝑟𝑢𝑒
13: return 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑏𝑒𝑠𝑡

5. Numerical experiments

The framework has been developed using Python 3.7 programming
language and it is composed of methods to generate the necessary
data and call external procedures to solve the tactical and operational
models. For improved performance, the external procedures have been
written in C++ and use the general-purpose solver CPLEX 12.9 to solve
the mathematical formulations.
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Fig. 7. Schematic representation of the proposed set of decomposition strategies 𝛹 .
Table 1
Factor intensification parameters used to build different operating conditions in the
instances.

Conditions Wind Rain Temperature

Normal 1 1 1
Windy 10 1 1
Rainy 1 10 1
Hot 1 1 10
Harsh 10 10 10

5.1. Instances generation

We start by using the failure generator to simulate the operation of
a wind farm composed of a set of wind turbines through 3650 periods.
Given that one period corresponds to one day, the output includes
approximately ten years of operation. We considered a chessboard
layout where the distance between turbines is 150 meters. This value
is chosen for illustration purposes as wind turbines in the newest wind
farms are further apart (i.e., 5 to 10 rotor diameters).

We consider three (weather) factors which will be simply called as
wind, rain, and temperature. Each of these factors is described by a
vector of random numbers 𝑍𝑓𝑡 between zero and one. There is a value
or each factor 𝑓 and each period 𝑡. Based on these factors, we derive
ive types of operating conditions, namely windy, rainy, hot, normal,

and harsh, by intensifying certain factors according to each case. In our
experiments, to intensify a factor, we multiply its random vector by 10
o obtain the intensified vector 𝑍′

𝑓𝑡. The harsh conditions correspond to
he case where all factors are intensified. Table 1 shows the parameters
sed to obtain each operating condition. Through the intensification
arameters different weather conditions are created according to the
xample depicted in Fig. 8. Although it would be straightforward for
he proposed models to include turbine accessibility issues related to
eather conditions (e.g., impose new constraints in inaccessible peri-
ds), the time-dependence of the weather conditions is kept simplistic
n our illustrative examples.

Discussions with a large turbine manufacturer led to the identifica-
ion of five main components, each with its associated failure rate. Al-
hough in reality these components consist of different sub-components
nd parts, we consider the component level to be appropriate for the
ake of our study and illustration. Components deteriorate differently
ccording to the operating conditions described by the three factors
onsidered in the experiment. We consider one component that is not
ffected by any of the factors, one component that is affected by all
actors, and three components that are affected by a single factor: wind,
ain and temperature, respectively. To model these sensitivities we
onsider that the beta value figuring in our Cox proportional hazards
eterioration model is different from zero. Table 2 summarizes the
omponent shape, scale, and beta parameters. In Fig. 9 we present the
verage number of failures per turbine under the different conditions.
able 3 summarizes additional parameters related to the subassemblies
onsidered in our experiments.
9

Table 2
Component scale, shape, and weather sensitivity parameters.

Component Shape Scale Sensitivities (𝛽)

Wind Rain Temperature

Pitch/Hydraulics 1 0.204 0.050 0.000 0.000
Generator 1 0.156 0.000 0.050 0.000
Gearbox 1 0.084 0.000 0.000 0.050
Electrical components 1 0.072 0.025 0.025 0.025
Converter 1 0.036 0.000 0.000 0.000

Table 3
Component parameters considered in the computational experiments.

Component Volume
(m3)

Price
(m.u.)

Yearly
holding
cost (m.u.)

Sensitivity
factors

Pitch/Hydraulics 10 82.19 8.219 Wind
Generator 8 10.95 1.095 Rain
Gearbox 9 27.39 2.739 Temperature
Electrical components 2 8.22 0.822 All
Converter 5 10.96 1.096 None

Table 4
Parameters used in the tactical and operational models.

Description Symbol Value Model usage

SOV job capacity 𝐽 3 (jobs per period) TP
SOV speed 𝑠 7.716 (m/s) OP
SOV capacity 𝐶 250 (m3) TP and OP
SOV lead time 𝑇 1 (periods) TP and OP
Resupply capacity 𝑅 20 (m3) TP and OP
Resupply lead time 𝐿 2 periods TP and OP
Resupply delivery cost 𝑟 1 000 (m.u. per delivery) TP and OP
Energy revenue 𝑒 10 000 (m.u. per period) TP and OP
Transportation unitary cost 𝑐 0.027 (m.u./m) OP
Docking time 𝑔 5 min OP
Service time per component 𝑠𝑡𝑝 0.05 (periods) OP

After setting the parameters related to each component and its
relation to the operating conditions, the simulation outputs the dete-
rioration of each component in each period, from where we can derive
the instances for the tactical and operational models.

In our experiments one scenario is considered to be an SOV trip
composed of 16 periods. The SOV stays offshore during this trip and is
able to be resupplied by an helicopter. The parameters related to the
SOV and the resupply events are described in Table 4. Additionally, we
indicate in which models the parameters are needed.

The data or parameters used in our illustrative case are based on
multiple sources. Apart from sensitivities, which have been constructed
arbitrarily, the information in Tables 2 and 3 is mainly inspired by
information provided by a large turbine manufacturer and by the pa-
rameters used in [38] and [6]. Table 4 was deducted using information
from different SOV manufacturers and from [53].

To generate a tactical model instance we sample a set of scenarios
of 16 consecutive periods (| | − 2𝑇 = 14 periods offshore where
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Fig. 8. An example with 3 weather factors. Factor 𝑓3 is intensified.
Fig. 9. Average number of failures per turbine for the generated instances, per combination of weather condition and number of scenarios.
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able 5
arameters used in to build tactical and operational model instances.
Dimension Values

#Operating conditions {Normal, Windy, Rainy, Hot, Harsh}
#Scenarios {50, 100, 150, 200}
#Turbines {10, 20, 30, 40, 50, 60, 70, 80, 90, 100}

Total TP instances 200 (5 × 4 × 10)
Total OP instances 20000 (200 × 100)

Each repair kit coming from a TP instance is tested for 100 OP instances.

maintenance can be performed, 2𝑇 = 2 periods for going back and
forth). Each scenario includes a set of failures indicating the period
in which the failure occurred and the corresponding turbine and the
component.

To generate operational model instances, we continue the scenario
sampling process but the instance files will now include a higher degree
of detail. Each instance is composed of a single scenario with the
initial deterioration of each component, and deterioration jumps of
each component in each period. These deterioration jumps are based
on a set of weather factors generated in each period. This is done for
the five types of operating conditions considered.

Since the numbers of turbines and scenarios impact the computa-
tional complexity of our models, we tested our approach for certain
combinations of the number turbines and scenarios. For each of these
combinations, we test the repair kit on 100 operational instances with
the same weather conditions and number of turbines that were used to
compute the repair kit. Table 5 provides a summary of all the instances
that were generated and solved.
10
5.2. Tactical model results

In this section we assess the computational efficiency and provide
managerial insights regarding two versions of the tactical model. In
the first version, 𝐍𝐨 𝐑𝐞𝐬𝐮𝐩𝐩𝐥𝐲, the resupply option is deactivated by
setting variables 𝑜𝑡𝜔𝑝 to zero. In the second version, 𝐖𝐢𝐭𝐡 𝐑𝐞𝐬𝐮𝐩𝐩𝐥𝐲, the
esupply option is allowed.

.2.1. Computational efficiency
The results obtained for the 200 tactical instances are presented

n Table 6. Each row of the table corresponds to a set of 5 in-
tances (weather conditions) with a certain number of turbines | |

and number of scenarios |𝛺|. For both versions of the tactical model
(𝐍𝐨 𝐑𝐞𝐬𝐮𝐩𝐩𝐥𝐲 and 𝐖𝐢𝐭𝐡 𝐑𝐞𝐬𝐮𝐩𝐩𝐥𝐲), we indicate the number of instances
that are solved to optimality (with an optimality gap of less than
0.1%) and provide averages for the objective function, relative gap,
and runtime. These computational experiments were run with a time
limit of 1 h.

As expected for both cases, larger instances, considering a larger
number of turbines and scenarios, are more challenging, taking longer
runtimes to be solved. The average optimality gap obtained is 0.01%
when the resupply option is not allowed and 2.88% when the resupply
option is allowed.

In terms of the objective function, which includes holding, resupply,
and downtime costs, the results suggest a clear superiority of the model
allowing resupplies, suggesting that extending the repair kit problem
with the possibility to resupply additional components offers potential
savings at the cost of more challenging problems to be solved. We will
dive deeper into this in what follows, but first consider the effect of
weather conditions on the tactical solutions.
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Table 6
Results obtained using the general-purpose solver to solve the tactical model (No Resupply and With Resupply versions).
| | |𝛺| No Resupply With Resupply

Objective
function

Optimal Relative
gap (%)

runtime (s) Objective
function

Optimal Relative
gap (%)

runtime (s)

10 50 1.99 5/5 0.00 0.00 1.99 5/5 0.00 0.00
10 100 1.93 5/5 0.00 0.00 1.93 5/5 0.00 0.60
10 150 1.91 5/5 0.00 0.00 1.91 5/5 0.00 0.60
10 200 2.35 5/5 0.00 0.40 2.35 5/5 0.00 0.80

20 50 2.19 5/5 0.00 0.20 2.19 5/5 0.00 0.20
20 100 62.89 5/5 0.00 0.00 2.89 5/5 0.00 0.40
20 150 29.63 5/5 0.00 0.40 2.96 5/5 0.00 1.00
20 200 22.96 5/5 0.00 1.00 2.96 5/5 0.00 1.20

30 50 203.76 5/5 0.00 0.40 3.76 5/5 0.00 0.20
30 100 343.45 5/5 0.00 0.40 19.37 5/5 0.00 3.40
30 150 83.64 5/5 0.00 0.80 4.97 5/5 0.00 1.40
30 200 323.70 5/5 0.01 1.20 9.64 5/5 0.01 16.20

40 50 1963.62 5/5 0.00 0.20 39.60 5/5 0.01 2.20
40 100 1503.77 5/5 0.00 1.00 31.76 5/5 0.00 4.00
40 150 2630.15 5/5 0.00 1.00 52.89 5/5 0.05 32.20
40 200 2513.80 5/5 0.00 1.20 51.70 3/5 1.82 1021.80

50 50 7963.72 5/5 0.00 1.00 131.64 5/5 0.00 4.60
50 100 5583.83 5/5 0.00 1.00 99.67 5/5 0.04 28.80
50 150 7990.45 5/5 0.00 1.60 115.79 5/5 0.02 149.60
50 200 9323.90 5/5 0.00 2.60 148.83 0/5 7.99 3600.00

60 50 8483.68 5/5 0.00 0.20 123.69 5/5 0.00 4.00
60 100 11743.63 5/5 0.00 1.20 191.55 4/5 0.54 514.40
60 150 19430.40 5/5 0.00 2.20 272.99 1/5 5.22 1949.20
60 200 19193.66 5/5 0.01 3.60 267.69 0/5 7.90 3600.00

70 50 24563.68 5/5 0.00 0.20 315.68 4/5 0.34 514.60
70 100 32183.76 5/5 0.02 1.60 425.76 2/5 3.44 1736.60
70 150 38923.82 5/5 0.02 3.20 483.72 0/5 7.97 3600.00
70 200 35503.64 5/5 0.00 4.00 458.68 0/5 12.90 3600.00

80 50 37603.94 5/5 0.00 0.80 579.90 4/5 0.43 687.00
80 100 47083.86 5/5 0.03 2.20 589.79 1/5 5.17 1973.20
80 150 62523.78 5/5 0.01 3.20 757.22 0/5 8.08 3600.00
80 200 40713.88 5/5 0.00 3.80 551.08 0/5 11.73 3600.00

90 50 64603.90 5/5 0.00 0.80 767.87 1/5 1.41 1922.20
90 100 80824.06 5/5 0.02 1.80 1239.80 2/5 2.54 1533.20
90 150 71523.84 5/5 0.00 4.20 833.09 0/5 8.55 3600.00
90 200 80713.86 5/5 0.01 4.20 947.80 0/5 8.86 3600.00

100 50 87923.80 5/5 0.03 1.20 899.57 0/5 1.83 3600.00
100 100 111004.00 5/5 0.04 2.40 2079.80 0/5 2.19 3600.00
100 150 105430.46 5/5 0.01 4.40 1293.17 0/5 7.49 3600.00
100 200 100263.78 5/5 0.02 6.40 1131.77 0/5 8.67 3600.00

Avg 28019.83 200/200 0.01 1.65 373.48 117/200 2.88 1382.60
Table 7
Average relative contribution of each component to the repair kit cost (allowing
resupplies).

Conditions Comp. 1 Comp. 2 Comp. 3 Comp. 4 Comp. 5
(Wind) (Rain) (Temp.) (All) (None)

Normal 0.649 0.101 0.151 0.053 0.047
Windy 0.662 0.098 0.135 0.059 0.047
Rainy 0.641 0.112 0.141 0.060 0.046
Hot 0.651 0.096 0.151 0.058 0.043
Harsh 0.646 0.107 0.150 0.055 0.043

5.2.2. Impact of weather conditions
Table 7 shows the ability of the tactical model to adapt the repair kit

to the weather conditions. The first column indicates the weather con-
ditions and the remaining columns give the relative contribution to the
total holding cost for each component in the repair kit. An indication
of the sensitivity to the weather factors is given in parentheses.

As shown in Table 7, a higher proportion of the repair kit cost is allo-
cated to components that are sensitive to the type of weather conditions
that are encountered in the considered scenarios. An additional take-
away comes from the fact that, in the presented computational tests, the
SOV capacity is generally completely used. This means that although
11
we could not verify a large impact on the total number of components
in the repair kit, the model is trading off different component failure
rates, holding costs, and volumes to adapt the composition of the repair
kit.

5.2.3. Impact of the resupply option
To assess the value of considering a resupply option in the tactical

model we detail the values obtained for the repair kit and for the
business indicators in Table 8.

The results suggest that the holding and downtime costs can be
substantially reduced by allowing resupplies. This does of course lead
to resupply costs, but there is still a sharp decrease in the total cost.
Resupply avoids situations where several turbines are stopped for sev-
eral periods until a new SOV trip is performed with a restocked repair
kit.

5.2.4. Impact of the number of scenarios
Generally, with a larger number of scenarios it is expected that the

repair kit cost increases, as it gets more difficult to perform well in all
the scenarios. This trend should, however, stabilize with a sufficient
number of scenarios. In Table 9, we present the distribution of the
average costs per turbine for each combination of number of scenarios
and operating conditions.
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Table 8
Average repair kit and business indicators for each type of operating conditions and tactical model version.
Model Conditions Gap Repair Kit Indicators Business Indicators (per turbine)

#
Components

Volume
(m3)

Holding
(m.u.)

Resupply
(m.u.)

Downtime
(m.u.)

Total
(m.u.)

No Resupply Normal 0.00 32.95 226.08 0.086 0.00 298.69 298.78
Windy 0.00 33.85 228.58 0.091 0.00 294.00 294.09
Rainy 0.00 33.70 227.30 0.086 0.00 332.03 332.12
Hot 0.00 33.10 225.50 0.089 0.00 358.74 358.83
Harsh 0.00 33.53 228.55 0.085 0.00 394.66 394.75

Avg 0.00 33.43 227.20 0.087 0.00 335.63 335.71

With Resupply Normal 0.03 31.68 225.35 0.087 3.77 0.00 3.85
Windy 0.03 32.80 228.08 0.091 3.57 0.00 3.66
Rainy 0.03 32.50 226.63 0.085 4.25 1.56 5.90
Hot 0.03 32.00 225.05 0.088 4.41 0.00 4.50
Harsh 0.03 32.03 227.00 0.084 4.65 0.15 4.88

Avg 0.03 32.20 226.42 0.087 4.13 0.34 4.56
Table 9
Average costs per turbine obtained using the general-purpose solver to solve the tactical
model for each number of scenarios.

Model Conditions |𝛺|

50 100 150 200

No Resupply Normal 255.71 301.83 312.98 324.60
Windy 243.99 273.38 331.19 327.79
Rainy 230.76 390.76 357.03 349.92
Hot 362.88 315.82 396.10 360.51
Harsh 294.09 426.31 472.94 385.65

Avg 277.49 341.62 374.05 349.70

With Resupply Normal 3.31 3.81 4.04 4.25
Windy 3.02 3.49 4.03 4.11
Rainy 3.29 10.88 4.78 4.65
Hot 4.52 4.11 4.83 4.53
Harsh 3.57 5.20 5.94 4.82

Avg 3.54 5.50 4.73 4.47

We observe from Table 9 that there is generally quite an increase
n average cost when using 100 instead of 50 scenarios, which indicates
hat 50 scenarios is not enough to determine a kit that performs well
nder all conditions. Going from 100 to 150 scenarios, and even more
hen going from 150 to 200 scenarios, the average costs do stabilize and

ndeed sometimes go down, indicating that the number of scenarios is
ufficiently large to obtain a robust solution.

Of course, more scenarios does imply a higher computation time on
verage. So, for the settings that we considered, using 150 scenarios
eems the best choice.

.3. Operational model results

In this section we evaluate the repair kits provided by the tactical
odel using the operational model proposed in Section 4.3. To do

o, we apply a realistic rolling horizon planning process where the
perational model is solved for a reduced number of periods 𝜆 in each
lanning iteration. At the end of each planning iteration, the planned
ecisions are implemented (fixed) and the horizon rolls 𝜆 periods in
rder to continue the process. Fig. 10 provides a visual representation
f two iterations of the devised rolling horizon planning process.

The model will decide upon the best moment to use a certain
omponent and upon the best vessel route to be performed. Each
lanning iteration considers two days (𝜆 = 2) and is solved using the
eneral-purpose solver with a time limit of 30 seconds. After these 30 s,
f the relative gap is larger than 10%, we use the matheuristic approach,
lgorithm 1, to improve the solution for another 60 seconds.

Table 10 presents the results. These results confirm that significant
ost savings can be achieved by allowing resupplies. The travel cost
12
has a low impact on the total cost, but this will increase if we con-
sider larger spacing between turbines. In the 𝐖𝐢𝐭𝐡 𝐑𝐞𝐬𝐮𝐩𝐩𝐥𝐲 version,
we observe a slight reduction of the holding cost and, logically, the
appearance of resupply costs. The downtime cost is drastically reduced
when resupplies are allowed.

We observe that the repair kits obtained considering only 50 sce-
narios are the ones with the worst performances in the simulation,
confirming that at least 100 scenarios are needed for the settings that
we considered. Overall, considering a larger number of scenarios in the
tactical model leads to better performance in the operational phase.

One last insight obtained from the operational model is that the
repair kits proposed by the tactical model required resupplied com-
ponents in 13.7% of the trips. The great majority of the trips that
need at least one resupplied component required at least 5 repairs.
This conclusion is illustrated in Fig. 11, which depicts the average
number of repairs and the average number of resupplied components
for several samples of trips. For each combination of weather condition
and number of turbines, we consider 400 trips. These trips include
100 trips simulating the repair kit obtained with the four numbers of
scenarios considered in the computational tests of the tactical model.
These samples are divided into two samples. The first sample includes
all the trips where no resupplies were performed and the second sample
includes all the trips where at least one component was resupplied.

6. Conclusion

In this paper, we propose a novel MIP-based methodology to pro-
pose repair kits to be used during SOV trips where maintenance op-
erations are to be performed in offshore wind farms. A two-stage
stochastic optimization problem considers weather-dependent deteri-
oration models for each component and the possibility to perform
costly emergency resupplies. Furthermore, we propose an operational
model which takes into account a detailed environment where vessel
routing is integrated with the scheduling of maintenance operations
using different components.

Using the proposed methodology, we analyze the impacts of weather
conditions and resupply options on the repair kit composition and
on holding, resupply, and downtime cost. We observe that the model
adapts the repair kit with different components depending on the type
of scenarios considered in the tactical problem. The results suggest that
even under capacity constraints (commonly found in real applications),
slight differences in the composition of the repair kits may result in
turbine downtime (and cost) reductions. Therefore, in applications
where the weather is accepted as an important factor influencing
component reliability, considering weather-dependent deterioration is
advisable. Moreover, considering resupplies allows for smaller repair
kits, inducing smaller holding costs at a cost of some (not so frequent)

resupply deliveries, while significantly lowering downtime cost. These
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Fig. 10. Example of two successive iterations (𝑘 − 1 and 𝑘) of the a rolling horizon planning process with | | periods. In each iteration, a subproblem considering 𝜆 periods is
solved. The decisions made in this iteration are fixed and the a new subproblem is defined, considering the following 𝜆 periods. The process ends when all the periods have been
planned and fixed.
Fig. 11. Average number of repairs and the average number of resupplied components for several samples of trips.
findings stress the important role of service logistics in reducing the
cost of renewable energy generation.

To test the repair kits provided by the tactical model, we evaluated
them in a rolling horizon planning process for an offshore wind farm
environment. This model is more detailed in the sense that it considers
vessel routing and service times for each maintenance operation. The
results suggest that the cost efficiency of the repair kits is improved
when a larger number of scenarios is considered in the tactical model.

We consider that this approach can be extremely valuable to off-
shore wind energy generation. From a practical perspective, we expect
to enable practitioners to improve SOV repair kits based on scientific
methods, and reduce the cost of operations and maintenance.

Throughout this paper the resupply option has appeared to be
important, which can largely be attributed to significant downtime
reduction. In practice, service providers seem hesitant to incorporate
resupply into their strategies, as resupply (particularly by means of
helicopters) may expose workers to additional safety risks. Although
we did not consider those risks, our results show that resupply should
at least be seriously considered by wind farm service operators.
13
As future work, we encourage researchers to develop new exten-
sions and rules to improve some aspects of the our approach. For
example, we assumed that all emergency supplies were deterministic
in terms of availability and lead time. However, it would be interesting
to consider stochasticity in these two factors. Another interesting chal-
lenge would be to extend the model to consider several SOVs, serving
several wind farms, using a central supplier of components. This would
clearly open new opportunities to collaboration in the offshore wind
industry. A preliminary analysis (available upon request) studied the
effect of weather forecasting, showing that adapting the repair kit to
specific forecasted weather conditions generally leads to reduced total
costs. It is interesting to study the effect of forecast quality on the
composition of repair kits and on wind turbine accessibility. The latter
is particularly important for introducing periods where maintenance
operations need to stop due to safety reasons. The models proposed
in this paper can easily be extended to consider inaccessibility periods,
enabling the exploration of the time-dependence of weather conditions.
Alternatively, it is interesting to study long-term maintenance planning
when a single SOV serves multiple wind farms, which is something
that is considered in practice. Finally, data analytics approaches using
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Table 10
Results obtained for the simulation of each repair kit (determined using the tactical model) in 100 operational instances. Each row corresponds to the average over 1000 instances
(100 trips considering a number of turbines ranging from 10 to 100).

Conditions |𝛺| No Resupply With Resupply

Holding Resupply Downtime Travel Total Holding Resupply Downtime Travel Total

Normal 50 3.16 0.00 25183.50 34.72 25221.37 3.14 321.00 2191.50 42.74 2558.37
Normal 100 3.15 0.00 22390.00 34.91 22428.06 3.08 309.00 2161.50 42.01 2515.59
Normal 150 3.15 0.00 22667.50 34.54 22705.20 3.15 304.00 2131.50 41.94 2480.59
Normal 200 3.25 0.00 21318.00 35.28 21356.52 3.32 279.00 2141.50 42.63 2466.45

Windy 50 2.97 0.00 26187.50 39.75 26230.22 2.96 290.00 2588.00 47.67 2928.63
Windy 100 3.20 0.00 22645.00 41.04 22689.24 3.23 274.00 2479.50 47.49 2804.22
Windy 150 3.24 0.00 23417.00 40.50 23460.74 3.24 286.00 2549.50 48.05 2886.79
Windy 200 3.26 0.00 21214.50 40.78 21258.54 3.28 274.00 2649.50 47.39 2974.17

Rainy 50 3.25 0.00 25772.00 40.32 25815.58 3.19 303.00 2949.50 48.31 3304.00
Rainy 100 3.10 0.00 25591.50 39.81 25634.41 2.97 288.00 2889.50 48.46 3228.92
Rainy 150 3.11 0.00 21745.00 40.60 21788.71 3.11 287.00 2859.50 47.73 3197.34
Rainy 200 3.20 0.00 22397.50 40.93 22441.63 3.15 281.00 2869.50 48.59 3202.24

Hot 50 3.17 0.00 25920.50 37.10 25960.77 3.14 296.00 2494.00 45.61 2838.75
Hot 100 3.23 0.00 24067.50 37.42 24108.15 3.24 286.00 2435.00 44.94 2769.17
Hot 150 3.19 0.00 23873.50 37.79 23914.49 3.17 284.00 2394.50 44.75 2726.42
Hot 200 3.30 0.00 24152.50 37.30 24193.10 3.28 267.00 2424.50 44.66 2739.44

Harsh 50 2.93 0.00 26409.50 42.85 26455.29 2.90 304.00 3043.50 50.59 3400.99
Harsh 100 3.11 0.00 25951.50 42.82 25997.44 3.09 324.00 3013.00 50.79 3390.87
Harsh 150 3.02 0.00 25234.50 42.89 25280.41 3.02 287.00 3003.50 50.88 3344.39
Harsh 200 3.07 0.00 24940.50 43.23 24986.80 3.08 284.00 2993.00 51.05 3331.13

Avg 3.15 0.00 24053.95 39.23 24096.33 3.14 291.40 2613.08 46.81 2954.42
dynamic programming and machine learning could be explored in
order to improve the performance of the optimization methods related
to the offshore wind farm RKP.
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