
 Empirical Evaluation of the ProcessPAIR Tool for

Automated Performance Analysis

Mushtaq Raza

INESC TEC/Faculty of Engineering

of the University of Porto

Rua Dr. Roberto Frias, s/n 4200-465

Porto, Portugal

+351920055092

uomian49@yahoo.com

João Pascoal Faria

INESC TEC/ Faculty of Engineering of

the University of Porto

Rua Dr. Roberto Frias, s/n 4200-465

Porto, Portugal

+351225081400

jpf@fe.up.pt

Rafael Salazar

Tecnológico de Monterrey

Ave. Eugenio Garza Sada 2501 Sur Col.

Tecnológico C.P. 64849, Monterrey,

Nuevo Léon, Mexico

+528183582000

rafael.salazar@itesm.mx

Abstract— Software development processes can generate

significant amounts of data that can be periodically analyzed

to identify performance problems, determine their root causes

and devise improvement actions. However, conducting that

analysis manually is challenging because of the potentially

large amount of data to analyze and the effort and expertise

required. ProcessPAIR is a novel tool designed to help

developers analyze their performance data with less effort, by

automatically identifying and ranking performance problems

and potential root causes. The analysis is based on

performance models derived from the performance data of a

large community of developers. In this paper, we present the

results of an experiment conducted in the context of Personal

Software Process (PSP) training, to show that ProcessPAIR is

able to accurately identify and rank performance problems

and potential root causes of individual developers so that

subsequent manual analysis for the identification of deeper

causes and improvement actions can be properly focused.

Keywords- Automatic Performance Analysis; Performance

Analysis Tool; Personal Software Process; Empiric Assessment.

I. INTRODUCTION

Development processes making intensive use of metrics

and quantitative methods, such as the Team Software

Process (TSP) [1] and Personal Software Process (PSP) [2],

can generate large amounts of data that can be periodically

analyzed by developers to identify their performance

problems, determine root causes and devise improvement

actions [3]. Although tools exist to automate data collection

and produce performance charts and reports for manual

analysis of TSP/PSP data [4][5][6], practically no tool

support exists to automate developer performance analysis.

The manual analysis of performance data for determining

root causes of performance problems and devising

improvement actions is challenging because of the amount

of data to analyze [3] and the effort and expertise required.

To address those shortcomings, in previous work [7][8]

we developed models, techniques, and tools to automate the

analysis of performance data produced in the context of

high maturity software development processes. The

developed ProcessPAIR tool, available freely in

http://blogs.fe.up.pt/processpair/, is able to automatically

identify and rank performance problems and potential root

causes of individual developers in their performance data.

In the current paper, we focus on the empirical

assessment of ProcessPAIR approach and tool, through a

case study in which we analyze the performance data and

analysis reports produced by several PSP trainees at

Tecnológico de Monterrey, Mexico. Specific objectives and

research questions are presented in Section III.

Section II presents some background information on our

approach and tool. Sections III, IV, V and VI present the

case study planning, performance model preparation,

performance analysis, and results and discussion. Section

VII presents some related work and section VIII presents

final conclusions and future work.

II. BACKGROUND

Our approach involves three main steps (see Figure 1):

1. Define: Process experts define the structure of a

performance model (PM) suited for the development

process under consideration (TSP, PSP, or other). In our

approach, a PM comprises a set of performance indicators

(PIs) organized hierarchically by cause-effect relationships

[8]. Examples are given in section IV.

2. Calibrate: The PM is automatically calibrated

based on the performance data of many process users. The

statistical distribution of each PI and statistical relations

between PIs are computed from the data set [8].

3. Analyze: Once a PM is defined and calibrated, the

performance data of individual developers can be

automatically analyzed with ProcessPAIR, to identify and

rank performance problems and root causes.

DOI reference number: 10.18293/SEKE2016-205

http://blogs.fe.up.pt/processpair/

1. Define

Performance

Model

Structure

2. Calibrate

Performance

Model

3. Analyze

subject

performance

data

Performance

Analysis and

Recommendation

Report

Performance data

of a single subject

Calibrated

Performance

Model

• Performance

indicators (PIs)

• Relationships

between PIs

• Statistical

distribution of PIs

• Statistical relations

between PIs

Performance

Model

Structure

• Performance

problems

• Ranked root

causes

Performance data

of many users

Process

Experts
ProcessPAIR ProcessPAIR

Figure 1. The ProcessPAIR approach.

Further details about each step are given next.

A. Model definition

The firsts step in our approach is the definition (as a tool

extension) of the following elements of the PM:

- list of relevant PIs, including a formula for its

computation from base measures;

- subset of top-level PIs;

- cause-effect relationships between PIs, determined by a

formula or statistical evidence;

- sensitivity coefficients [9] between PIs related by a

formula.

The performance model defined for analyzing PSP

performance data will be presented in section IV.A.

B. Model calibration

The PM is automatically calibrated by ProcessPAIR

from training data sets, generating the following data:

- approximate statistical distribution of each PI,

represented by a cumulative distribution function;

- recommended performance ranges for each PI;

- sensitivity coefficients between PIs not related by an

exact formula.

The approximate cumulative distribution function of

each PI is computed by linear interpolation between a few

percentiles computed from the training data.

Performance ranges are needed for classifying values of

each PI of a subject under analysis into three categories:

green - no performance problem; yellow - a possible

performance problem; red - a clear performance problem.

Such ranges are calibrated automatically from the training

data, so that there is an approximately even distribution of

data points by the colors.

Sensitivity coefficients between PIs not related by an

exact formula are computed by first determining a linear

regression equation from the training data and subsequently

computing the corresponding sensitivity coefficient.

The data set used for calibration in the case study will

be described in section IV.B.

C. Performance analysis

Having defined and calibrated the performance model,

the performance data of individual developers can be

automatically analyzed by ProcessPAIR, to identify and

rank performance problems and potential causes of

individual developers. The results of the analysis are

presented in multiple views, as shown in section V.B.

III. CASE STUDY PLANNING

D. Objectives and research questions

The overall objective of the case study is to assess

whether ProcessPAIR is able to accurately identify

performance problems of individual developers and their

potential causes in the context of PSP training so that

subsequent manual analysis for the identification of deeper

causes and remedial actions can be properly focused and

effort can be saved.

In PSP training, students develop a sequence of projects,

with the stepwise introduction of the following practices:

performance measurement (based on size, effort and

defects); size and effort estimation; coding standards;

design and code reviews; design templates and design

verification; quality management [2].

More specifically, the goal of the case study is to answer

the following research questions:

- RQ1 (problem identification): Is it possible to

automatically analyze the performance data of an

individual PSP developer in order to identify

performance problems, with similar results but less

effort than in manual analysis?

- RQ2 (root cause identification): Is it possible to

automatically analyze the performance data of an

individual PSP developer in order to determine the root

causes of the identified performance problems, with

similar results but less effort than in manual analysis?

E. Performance data under analysis

The subject data under analysis is based on a data set

from Tecnológico de Monterrey, in Mexico, referring to 10

subjects (students) that developed 6 projects each using the

PSP, in the scope of the “Software Quality and Testing”

course in 2015. The subjects used Process Dashboard

(http://www.processdash.com/) for collecting the standard

PSP base measures. In the end of the sequence of projects,

the subjects analyzed their personal performance in those

projects and documented their findings and improvement

proposals in a Final Report (written in Spanish).

F. Performance analysis procedures

Two of the authors of this paper, not involved in PSP

training in Tec de Monterrey, both fluent in English and

one with a good reading understanding of Spanish,

translated into English and analyzed the final reports (in

both English and Spanish), in order to extract relevant

information for comparison with the tool-based analysis.

Results from the tool-based analysis for each subject were

effortlessly obtained by uploading the performance data

http://www.processdash.com/

stored in Process Dashboard to ProcessPAIR. The extracted

results from the final reports and from the tool for each

subject were then collected into an appropriate table, as

illustrated in Section VI. Subsequently, the results were

classified according to the categories defined in Section V

and statistics were computed shown in VI.

IV. PERFORMANCE MODEL PREPARATION

A. Performance model definition

To best fit the specific context of PSP training in Tec de

Monterrey, we used the PSP performance model defined in

our previous work [8] with minor changes. The full set of

top-level and nested PIs can be seen in the first column of

Figure 2. We consider three top-level PIs regarding

predictability, quality, and productivity.

The major predictability PI in the PSP is the Time

Estimation Accuracy, which we measure by the ratio

between actuals and estimates. Since in the PSP’s PROBE

estimation method [2], a time (effort) estimate is obtained

based on a size estimate of the deliverable (in added or

modified size units) and a productivity estimate (in size per

time units), we consider that the Time Estimation Accuracy

is affected by the Size Estimation Accuracy and the

Productivity Estimation Accuracy. Hence, the latter PIs are

presented in Figure 2 as child nodes of the Time Estimation

Accuracy. The rational for further drilling down the

Productivity Estimation Accuracy can be consulted in [8].

Product quality is usually measured by post-delivery

defect density [10]. However, since the scope of the PSP is

the development of small programs or components of large

programs, post-delivery defects are seldom known. The

PSP proposes an aggregated quality measure—the Process

Quality Index (PQI)—that constitutes an effective predictor

of post-delivery defect density [2][11]. Hence, we use the

PQI as the top-level quality indicator to analyze. The PQI is

computed based on five components, which are presented

in Figure 2 as factors that affect the PQI. The exact formula

can be consulted in [8], as well as the rational for further

drilling down these PIs.

In the PSP, productivity is usually measured in lines of

code per hour, in spite of known limitations [10]. Since in

the PSP time is recorded per process phase, when a

productivity problem is encountered one can analyze the

productivity per phase, to determine the problematic

phase(s). Hence, Figure 2 shows a set of PIs for the

productivity per phase, which together affect the overall

productivity. Exact formulas can be consulted in [8], as

well as the rational for further drilling down these PIs.

B. Performance model calibration

To calibrate the performance model, we used a large

PSP data set from the Software Engineering Institute (SEI)

referring to 31,140 projects concluded by 3,114 engineers

during 295 classes of the classic PSP for Engineers I/II

training courses running between 1994 and 2005. In this

training course, targeting professional developers, each

engineer develops 10 small projects. The calibration is

performed automatically by the tool; the user has just to

provide an input file with the data set.

V. PERFORMANCE ANALYSIS

A. Manual performance analysis

Regarding RQ1 (problem identification), based on the

information available in the final report of each subject, we

produced a table with a synthesis of cases in which the

subject explicitly indicated bad performance or good

performance in a PI for a specific project or overall

(summary). Examples are shown in Table III, together with

the support citations extracted from the final report.

Regarding RQ2 (root cause identification), for each case

in which the subject explicitly indicated bad performance

and corresponding causes, we filled in an additional column

with the causes mentioned by the subject, as illustrated in

Table III.

B. Automatic performance analysis

The results from the tool-based performance analysis for

each subject were effortlessly obtained by uploading the

performance data stored in Process Dashboard to

ProcessPAIR. The results of the analysis are presented by

the tool in multiple views.

The relevant view for problem identification is the Table

View. This view presents the detailed evaluation of all PIs

for all projects of the subject under analysis, as depicted in

Figure 2. Each cell is colored green, yellow or red, in case,

its value suggests no performance problem, a potential

performance problem, or a clear performance problem,

respectively. A cell is colored green (red) if its value lies

within the range of the best (worst) 1/3 values in the

calibration data. Cells with missing data are left blank. For

example, the red cells in Figure 2 suggest that the main

problems with time estimation accuracy occur in projects

P2, P5, and P6. By expanding the nodes in this view, one

can drill down to lower level PIs, following the hierarchical

structure of the performance model, in order to identify

potential causes of performance problems. For example,

the red colored cells in Figure 2 suggest that the time

estimation problem in P2 is caused by a size estimation

problem.

The Diagram View (see Fig. 3) helps identifying and

prioritizing, project by project, the causes of performance

problems. The child indicators are sorted according to the

value of a ranking coefficient representing a cost-benefit

estimate that relates the cost of improving the value of the

child indicator with the benefit on the value of the parent

indicator [8]. For example, the diagram of Fig. 3 suggests

that the major cause for the poor productivity in project 5 is

the poor productivity in the Design phase, followed by the

Design Review, Plan, and Code phases.

Figure 2. An example of problem identification (Table View).

Figure 3. An example of root cause identification (Diagram View).

C. Comparison

The results extracted from the performance analysis

report (manual analysis) and from the tool (automatic

analysis), were compared as illustrated in Table III.

Regarding problem identification (RQ1), we considered

that there is a match when the developer explicitly indicated

bad performance and the tool indicated a clear (red) or

potential (yellow) performance problem. False positives

occur when the developer explicitly indicates good

performance, but the tool indicates a clear or potential

performance problem. False negatives occur when the

developer explicitly indicates bad performance, but the tool

indicates no performance problem.

Regarding root causes identification (RQ2), we

encountered three kinds of situations:

- same causes: the developer and tool indicate the same

causes;

- deeper manual analysis: the tool accurately points out

intermediate causes, and the developer points out

deeper causes;

- faults in manual analysis: the developer overlooked

important causes or pointed out erroneous causes.

VI. RESULTS AND DISCUSSION

A. Statistics

From the table produced in the previous step (as

illustrated by the excerpts in Table I), we computed the

statistics shown in Table I and Table II.

Regarding problem identification (RQ1), among the 187

cases analyzed, there are 180 matches (96%), with only 6

false positives (3%) and 1 false negative (1%). The false

positives and the false negative correspond to boundary

situations similar to the one illustrated in Table I.

Regarding root causes identification (RQ2), Table II is

self-explanatory. From the 116 cases in which the

developers explicitly indicated bad performance, only in 52

cases (with some examples in Table III) the developers

pointed out root causes.

TABLE I. PROBLEM IDENTIFICATION STATISTICS.

Automatic analysis

Green Yellow Red

Manual

Analysis

Bad
1

(1% false negative)

45

(match)

70

(match)

Good
65

(match)

6

(3% false positives)
0

TABLE II. ROOT CAUSES IDENTIFICATION STATISTICS.

Classification
Absolute

frequency

Relative

frequency

Same causes

(tool benefit: eliminate manual effort)
10 19%

Developer pointed out deeper causes (tool

pointed out intermediate causes)

(tool benefit: reduce manual effort)

28 54%

Faults in manual analysis

(tool benefit: prevent user errors)
14 27%

Total 52 100%

TABLE III. EXCERPTS OF THE PROBLEM AND ROOT CAUSES IDENTIFICATION AND COMPARISION TABLE.

Data point Manual performance analysis Automatic performance analysis Comparison

Top-level

Indicator

Subject,

Project
Problem identification Root causes identification

Problem

identif-

ication

Root causes

identification (with

ranking coefficient)

Problem

identif-

ication

Root causes

identif-

ication

Time

Estimation

Accuracy

S1, P2

Bad performance: “there are two that

stand out for being very large, the

program 2 and (…)”

“I attribute the bad (time)

estimation to the (bad) size

estimation”

Red
Size Estimation

Accuracy (1.0)
Match

Same

causes

Time

Estimation

Accuracy

S1, P1

Good performance: “the closest

estimates were the program 1 and 4,

with 18.90% and 17.20%”

- Green - Match -

Defects

Injected

S1,

Summary

Bad performance: “almost all programs

have 50 to 100 errors per KLOC, which

can improve”

“most defects injected in

Design (mainly of type

Function), followed by

Code”

Yellow

Defects Injected in

Design (12.4),

Defects Injected in

Code (0.8)

Match

Deeper

manual

analysis (1)

Size

Estimation

Accuracy

S2, P6
Bad performance: “the last program fall

out of the (desired) range of 10% error”
- Green -

False

negative
(2)

-

Time

Estimation

Accuracy

S3, P5

Good performance: “for program 4 and

up (…) the estimation error is

approximately within a range of -10% to

10%, which (…) is a good range”

- Yellow -

False

positive
(3)

-

Productivity S4, P4
Bad performance: “Program 4 represents

a significant (productivity) downward”

“due to some defects (…)

not identified in time,

resulting in a time

consuming testing phase”

Red

Code Productivity

(62.7), Code Review

Productivity (4.8)

Match

Faults in

manual

analysis (4)

(1) The manual and automatic analysis coincide regarding the identification and prioritization of the problematic defect injection phases, with the

quantitative prioritization in the automatic analysis. Additionally, the developer point out the most problematic defect type (Function).

(2) This false negative corresponds to a boundary situation. The actual size estimation error was approximately -15%, which is the threshold considered by

the tool to distinguish green and yellow regarding size estimation. On the other hand, the developer considered an abnormally tight range of +-10%.

(3) This false positive corresponds to a boundary situation. The actual time estimation error was approximately -13%, which is the threshold considered by

the tool to distinguish green and yellow regarding time estimation. On the other hand, the developer was ‘benevolent’ in his analysis, by considering -13%

to be approximately within the +-10% range.

(4) Data shows that defects were removed in Code Review, not in Unit Test, and that much more time was spent in Code Review than in Unit Test.

B. Answers to the research questions

Regarding RQ1 – “Is it possible to automatically

analyze the performance data of an individual PSP

developer in order to identify performance problems, with

similar results but less effort than in manual analysis”, we

conclude that, in this case study, the automatic analysis

produces similar results (without essentially any manual

effort), with very few false positives (3%) and false

positives (1%) corresponding to boundary situations.

Regarding RQ2 – “Is it possible to automatically

analyze the performance data of an individual PSP

developer in order to determine the causes of the identified

performance problems, with similar results but less effort

than in manual analysis”, the results in Table II show that,

in the cases in which the manual analysis was not faulty (we

found faults in 27% of the cases!), the tool-based analysis

was able to point out the same causes as the ones found by

the developers in their manual analysis (19% of the cases)

or was able to point out intermediate causes in the same

direction as the deeper causes identified in manual analysis

(54%) of the cases. Hence, regarding RQ2, we conclude

that the automatic analysis was able to identify either the

same causes or causes in the same direction as the manual

analysis.

Overall, the benefits of the tool-based analysis are:

 it can correctly identify the performance problems,

saving manual effort;

 it can correctly identify causes for the identified

performance problems, so that subsequent manual

analysis for searching deeper causes can be properly

focused, reducing the overall manual effort needed and

the errors in manual analysis.

C. Limitations and threats to validity

In the case study presented, the conclusions obtained by

the model-based analysis are very close to the ones

obtained by the developers in their manual analysis. This

suggests that our approach can be helpful in performance

analysis and process improvement, by pointing out the areas

to focus on manual analysis. However, further experiments

need to be conducted to quantify the effort savings that can

be achieved by conducting performance analysis with the

help of our tool from the beginning.

Although our approach and tool are general and can be

instantiated for any development process, the model and

experiment described in this paper refer only to PSP

performance data. We intend to replicate our approach to

other development processes without having such a well-

defined measurement framework as the PSP, but we expect

to encounter difficulties regarding data availability, data

quality, and standardization.

VII. RELATED WORK

Our approach draws inspiration from existing work on

process performance models (PPM) [9][12], benchmark-

based approaches for software product evaluation [13], and

defect causal analysis (DCA) techniques [14].

In the context of the CMMI process improvement

framework, a PPM is a description of the relationship

among attributes of a process or sub-process and its

outcomes, developed from historical performance data, and

calibrated using collected process and product measures

[15]. The main difference is that our performance model

conveys additional elements needed to identify performance

problems (in the outcomes) and rank potential root causes

(factors): recommended ranges for each PI; approximate

statistical distribution of each PI; sensitivity coefficients

(derived from exact or regression equations).

In our approach, in order to enable the automated

identification of performance problems, after deciding on

the relevant PIs, one has to decide on the relevant ranges.

Our approach for defining such ranges draws inspiration

from the benchmark-based approach developed by

researchers of the Software Improvement Group [13][16] to

rate the maintainability of software products, with

adaptations for process evaluation instead of product

evaluation.

The DCA approach [14] is essentially complementary to

our approach. The main advantage of our approach is that it

has the potential to identify relevant performance problems

and causes in a fully automatic way, so that subsequent

manual activities can be conducted in a more focused and

efficient way, to further determine root causes and devise

improvement actions.

VIII. CONCLUSIONS AND FUTURE WORK

The results of the case study show that the ProcessPAIR

tool is able to accurately identify performance problems of

individual PSP developers and potential causes for those

problems. Hence, subsequent manual analysis for the

identification of deeper causes and remedial actions can be

properly focused, reducing the overall effort and possible

errors in performance analysis.

As future work, we plan to build a comprehensive

catalogue of improvement actions to recommend for the

highest-ranked causes, build similar models for analyzing

performance data produced in the context of other

development processes, and conduct further experiments

for assessing the effort gains with our tool.

ACKNOWLEDGMENTS

The authors would like to acknowledge the SEI and Tec

de Monterrey for facilitating the access to the PSP data for

performing this study. This work is partially financed by the

ERDF – European Regional Development Fund through the

Operational Programme for Competitiveness and

Internationalisation - COMPETE 2020 Programme within

project «POCI-01-0145-FEDER-006961», and by National

Funds through the FCT – Fundação para a Ciência e a

Tecnologia as part of project UID/EEA/50014/2013 and

research grant SFRH/BD/85174/2012.

REFERENCES

[1] Davis, N., and Mullaney, J. 2003. The Team Software Process (TSP)

in Practice: A Summary of Recent Results. CMU/SEI-2003-TR-014.

[2] Humphrey, W. 2005. PSPsm: A Self-Improvement Process for

Software Engineers. Addison-Wesley Professional.

[3] Burton, D. and Humphrey, W. 2006. Mining PSP Data. In TSP

Symposium 2006 Proceedings.

[4] The Software Process Dashboard Initiative home page.

http://www.processdash.com/.

[5] Philip, J., Kou, H., Agustin, J., Christopher, C., Moore, C., Miglani,

J., Zhen, S., Doane, W. 2003. Beyond the Personal Software

Process: Metrics Collection and Analysis for the Differently

Disciplined. In ICSE 2003. Portland, Oregon.

[6] Shin, H., Choi, H., and Baik, J. 2007. Jasmine: A PSP Supporting

Tool. In Proc. of the Int. Conf. on Software Process (ICSP 2007),

LNCS 4470, Springer-Verlag, 73-83.

[7] Raza, M., Faria, J. 2014. A Model for Analyzing Estimation,
Productivity and Quality Performance in the Personal Software
Process. In Proc. of the 2014 Int. Conf. on Software and System
Process (ICSSP 2014), ACM, 10-19.

[8] Raza, M., Faria, J. 2015. A Model for Analyzing Performance
Problems and Root Causes in the Personal Software Process.
Journal of Software: Evolution and Process, John Wiley & Sons

[9] Saltelli, A., Chan, K., Scott, E. M. 2008. Sensitivity Analysis,
Wiley.

[10] Jones, C. 2010. Software Engineering Best Practices: Lessons from

Successful Projects in the Top Companies. McGraw-Hill.

[11] Humphrey, W. 2009. The Software Quality Profile. White Paper,

SEI.

[12] Tamura, S. 2009. Integrating CMMI and TSP/PSP: Using TSP Data

to Create Process Performance Models. CMU/SEI-2009-TN-033.

[13] Alves, T., Ypma , C., Visser, J. 2010. Deriving Metric Thresholds

from Benchmark Data. In 2010 IEEE International Conference on

Software Maintenance (ICSM), 1-10.

[14] Card, D.N. 2005. Defect Analysis: Basic Techniques for

Management and Learning. Advances in Computers, vol. 64, 259-

295, Elsevier.

[15] Chrissis, M. B., Konrad, M., Shrum, S., 2003. CMMI: Guidelines
for Process Integration and Product Improvement, 2nd Edition.
Addison-Wesley.

[16] Alves, T. 2012. Benchmark-based Software Product Quality
Evaluation. Ph Thesis. U. Minho

