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Traveling Salesman Problem

The Traveling Salesman Problem (TSP) is one of the most studied optimization problems. Various meta-
heuristics (MHs) have been proposed and investigated on many instances of this problem. It is widely
accepted that the best MH varies for different instances. Ideally, one should be able to recommend the
best MHs for a new TSP instance without having to execute them. However, this is a very difficult task.
We address this task by using a meta-learning approach based on label ranking algorithms. These
algorithms build a mapping that relates the characteristics of those instances (i.e., the meta-features)
with the relative performance (i.e., the ranking) of MHs, based on (meta-)data extracted from TSP
instances that have been already solved by those MHs. The success of this approach depends on the
quality of the meta-features that describe the instances. In this work, we investigate four different sets of
meta-features based on different measurements of the properties of TSP instances: edge and vertex
measures, complex network measures, properties from the MHs, and subsampling landmarkers prop-
erties. The models are investigated in four different TSP scenarios presenting symmetry and connection
strength variations. The experimental results indicate that meta-learning models can accurately predict
rankings of MHs for different TSP scenarios. Good solutions for the investigated TSP instances can be
obtained from the prediction of rankings of MHs, regardless of the learning algorithm used at the meta-
level. The experimental results also show that the definition of the set of meta-features has an important

impact on the quality of the solutions obtained.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

The Traveling Salesman Problem (TSP) is one of the most
intensively studied problems in combinatorial optimization and
theoretical computer science. TSP has been used to represent
applications from different domains, such as machine scheduling,
DNA sequencing, transportation, and microchip manufacturing [1].
A TSP can be informally described as: given a set of cities and their
respective pairwise distances, find the tour with the lowest pos-
sible cost that starts in one of the cities, visits all the other cities
only once, and ends at the initial city [2]. The number of cities and
how they are connected define different instances of the TSP. It is
difficult to find a global optimal solution for a given TSP instance,
since TSP belongs to the class of problems known as NP-hard [3].
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Therefore, exhaustive search methods are not applicable to find
the best solution for large TSP instances, due to their high com-
putational cost. For example, there are approximately 1.22 x 10'7
feasible solutions for a TSP with 20 cities. Thus, an exhaustive
search to find a global optimum solution would take a long time.

The high computational cost involved in solving TSP problems
can be significantly reduced by the use of Meta-Heuristics (MHs),
which are often able to provide near-optimal solutions in rea-
sonable time. MHs are high-level search strategies that guide the
search to more promising regions of the solution space and try to
escape from local optimal solutions [4]. Several MHs have been
successfully used for TSP instances, including Tabu Search [5],
Greedy Randomized Adaptive Search Procedure [6], Simulated
Annealing [7], Genetic Algorithms [8], and Ant Colony Optimiza-
tion [9].

In spite of their general success, different MHs have different
biases, which make each of them more suitable for a particular
class of instances [10]. Therefore, given a set of MHs and a new TSP
instance to be solved, the best choice depends on the
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characteristics of the TSP instance. About a decade ago, the con-
cept of hyper-heuristic was introduced as an alternative approach
to the choice of MHs for solving optimization problems [11]. The
key idea was to apply different MHs to different parts of the
solution process according to the strength of each MH. Never-
theless, it is not possible to ensure the existence of inter-
dependence between different parts of an optimization problem
like the TSP. Furthermore, for each part of the problem, the most
suitable MH must still be selected.

Mapping the characteristics of problem instances with the
relative performance of a set of algorithms that can deal with
these instances is a task that can be performed with meta-learning
[12]. Meta-learning allows the selection of the most promising
techniques using an inductive learning process. Recently, a meta-
learning approach addressed the problem of recommending MHs
for new TSP instances as a multilabel classification task [13].
However, when multiple MHs are recommended, the user is left
without any guidance concerning which one should be initially
tried. We address this problem by using a label ranking approach
[14], which predicts a ranking of MH candidates, according to their
expected performance for a new TSP instance. A ranking is more
useful for the user, since it recommends the execution of the MHs
in the predicted order until a satisfactory result is obtained.

Previous approaches have investigated only a single TSP sce-
nario, usually containing only symmetric and strongly connected
instances [15,13,16]. The TSP instance is symmetric if the cost of
traveling from city i to the adjacent city j is equal to the cost of
traveling from j to i; and it is asymmetric when the costs of tra-
veling between cities i and j are different. The TSP instance is
strongly connected when all cities are interconnected; and it is
weakly connected if the TSP instance has at least one pair of cities
that is not directly connected. In our study, we completed those
earlier approaches by systematically investigating the four possi-
ble scenarios in terms of symmetry and connectedness: symmetric
and strongly connected, asymmetric and strongly connected, sym-
metric and weakly connected, and asymmetric and weakly
connected.

The main contributions of this work are:

® We show that meta-learning models can accurately predict
rankings of MHs for different TSP scenarios.

® We investigate new meta-features for TSP to be applied to the
meta-learning process.

e We offer evidence that good solutions for new TSP instances can
be obtained from the prediction of rankings of MHs regardless
of the learning algorithm used at the meta-level.

The remainder of this paper is organized as follows. A short
description of the TSP is given in Section 2. The required back-
ground for meta-learning for algorithm selection and label ranking
is provided in Section 3. Adaptations of some machine learning
techniques to the label ranking problem are described in Section 4.
Section 5 presents the sets of meta-features used to characterize
the TSP instances. Practical application scenarios of interest are
given in Section 6. Based on these scenarios, the experimental
setting is detailed in Section 7, while the obtained results are
reported and analyzed in Section 8. Finally, the main conclusions
are presented in Section 9.

2. The Traveling Salesman Problem

Formally, the Traveling Salesman Problem (TSP) can be defined
by means of a graph G=(V,E), in which V = {v{,v,,...,v,} is a set
of vertices and E = {(v;,v;) : v;,v; € V} is a set of edges. Each vertex
v;eV represents a city and each edge (v;,v;) eE connects the
vertices v; and v;. The cost associated with the edge (v;,v;) (i.e., the
cost of traveling from city v; to city v;) is indicated by the value c;;.

Given a TSP instance, the goal is to find the minimum value for
Eq. (1):

n n
min z= > cx; 1

ic1j=i

subject to:

n

> xj=1 VjeV )
i=1

n

> xj=1 vieV 3)
j=1

D> xi<ISI-1 vScV )
ijeS

xje{0,1} Vi#jeV (5)

If the tour traverses edge (v;,v;) then x;=1, and x;=0,
otherwise.

The best solution for a TSP is given by the Hamiltonian cycle of
minimum total cost. A cycle is Hamiltonian if all cities are visited
only once and the route ends at the initial city [2]. Fig. 1 illustrates
a TSP instance with six cities. The route given by the edges in bold
indicates the optimal solution.

TSP instances can be characterized according to strength of
their connections and to their symmetry. A TSP instance is strongly
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Fig. 1. A TSP instance and its optimal solution.
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connected if V(v;,v;)3(v;,v;) € E. Otherwise, it is weakly connected.
If v (v;,v;) € E : c;j = cj;, the TSP instance is symmetric. Otherwise, it
is asymmetric. The TSP instance in Fig. 1 is symmetric and strongly
connected.

The solution for a TSP instance can be identified by an adja-
cency matrix A, where a;=x;. For the TSP illustrated in Fig. 1, the
solution can also be represented by the following adjacency matrix
A

001000
000100
000010

A=1o 000 0 1
010000
100000

In this adjacency matrix, the row number and the column
number are vertex labels representing cities.

3. Meta-learning and label ranking

The selection of the best algorithm for a given task has been
investigated in a sub-area of Machine Learning (ML) known as
meta-learning [12]. Meta-learning studies how to improve the
recommendation of the most promising techniques for a given

processed by
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task by learning from their previous use in related tasks. Meta-
learning has been used to recommend algorithms for ML [17] and
optimization [18] tasks. For example, the SATzilla method applies
meta-learning to select algorithms to solve instances of the pro-
positional satisfiability problems [19]. In [18], Multilayer Percep-
tron networks (MLPs) are meta-learners that recommend opti-
mization algorithms to solve instances of the quadratic assignment
problem.

Regarding the TSP, a meta-learning approach to recommend
MHs is described in [13]. In their study, the authors addressed the
recommendation of MHs as a classification task, in which the class
associated with each instance is the MH that provides the best
solution for the instance. As the best solution for a given TSP
instance may be achieved by more than one MH, multilabel clas-
sification techniques were investigated. Another study that applies
meta-learning in TSP is described in [15], where meta-features are
generated from the two-dimensional location information of each
city. The authors used MLP-based models to predict the search
effort needed by different optimization algorithms to find their
best solution. The search effort of a given algorithm is measured by
the number of edges exchanged during the search for the best
solution.

The general framework of a meta-learning approach to
recommend MHs for TSP instances is illustrated in Fig. 2. Basically,
the induction of the meta-learning model (meta-model) occurs in
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Fig. 2. Meta-learning approach to select meta-heuristics for the TSP.
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two phases: (1) generation of meta-data and (2) creation of the
meta-model. In the first phase, a set of TSP instances is used to
generate the meta-data. The meta-data is stored in a matrix whose
rows are meta-examples and columns are meta-features. A meta-
example is a particular instance of TSP and the meta-features are
attributes that represent relevant properties that describe those
instances. Each meta-example is labeled with the quality of the
solution obtained by different MHs when applied to the corre-
sponding TSP instance. In the case of the TSP, it is the cost of the
best solution obtained by the corresponding MH. In the second
phase, a ML technique uses the meta-data to induce a meta-model.
After the meta-model has been induced, it can be used to predict
the performance value of the MHs for new TSP instances, which
can then be used for MH recommendation.

The target of the meta-model can represent the performance of
the MHs in different ways [12], like the cost of the solution
obtained by each of the MHs. In this case, the meta-learning
problem is addressed as multiple regression problems, with one
target variable for each MH. Alternatively, the target may repre-
sent the best MH for the corresponding instance. If the target is a
single MH, we have a traditional classification task. If the target
consists of one or more MHs, representing the most promising
methods for the corresponding instance, we have a multilabel
classification task [13]. A drawback of using this approach for MH
recommendation is that it does not inform the order with which
the selected algorithms should be used. For instance, if the model
recommends meta-heuristics MH1, MH3, and MH4 for a new
problem and only one of them can be executed (e.g., due to the
lack of computational resources), the user is still left with the
decision of which of these three meta-heuristics to execute.

To overcome this difficulty, meta-learning can be used for a
label ranking task [20]. In label ranking, the learning task is to map
the instances x from a dataset X to rankings >, (total strict
orders)' over a finite set of labels £ = {44, ...,4q}, where J; > x4
means that, for the instance x, the label A; is preferred to /1j. A
ranking over £ can be represented by a permutation, since there is
only one permutation 7 such that 4; > «4; iff 7(4;) < ©(4;), where 7
(4;) denotes the position of the label /; in the ranking. A survey on
label ranking is provided in [21].

Evaluation of label ranking methods has issues similar to those
found in other learning problems. Here we discuss the evaluation
measures, baselines, and statistical validation of the differences in
accuracy. The quality of label ranking methods is typically assessed
using measures of ranking accuracy. The accuracy of a predicted
ranking is measured by comparing it to the true ranking for the
corresponding example. The comparison is often based on rank
correlation coefficients, such as Spearman's correlation coefficient
(rs) [22]

657, (rri—iry)?
?-q
where r7; and ir; are the recommended and ideal ranks of algo-
rithm i and g is the number of algorithms, respectively.
According to this coefficient, a value of r¢s=+1 means full
concordance — i.e. perfect correlation between the two rankings
being compared — whereas rs= —1 implies that the order of the
labels between the two rankings is inverted. To estimate the
accuracy of a label ranking algorithm, typical resampling proce-
dures can be used, such as 10-fold cross validation [23]. As usual,
the output is the mean of the ranking accuracies of all predictions.
To assess whether the learning algorithm is extracting any
useful pattern, it is important to compare its accuracy with the

rs=1 (6)

! The problem of label rankings can address less restrictive forms of rankings,
such as partial orders [21].

accuracy of a simple baseline method. A typical baseline in label
ranking is the average ranking on the whole dataset [17]. For each
instance j from the dataset, a ranking of algorithms is computed.
The average ranking position of each algorithm i is used to com-
pose the baseline ranking br;
br, — 2 =1005) 7)
z

Finally, it is necessary to assess whether the differences in
accuracy between two different label ranking methods are statis-
tically significant, using a suitable statistical test. In the experi-
ments performed for this study, multiple methods are compared.
Thus, to provide some reassurance about the validity and non-
randomness of the obtained results, the outcomes of statistical
tests, following the study of Demsar [24], are reported. Essentially,
we compare multiple algorithms on multiple datasets by using the
Friedman test, with a corresponding post hoc test. The Friedman
test is a non-parametric statistic test equivalent to the repeated-
measures ANOVA. If the null hypothesis, which states that the
algorithms under study have similar performances, is rejected,
then we proceed with the Nemenyi post hoc test for pair-wise
comparisons between MHs.

4. Learning techniques for label ranking

Three adaptations of popular ML algorithms are used here for
label ranking prediction: multi-layer perceptron (MLP) neural
network trained by the backpropagation algorithm [25,26], the k-
nearest neighbor (k-NN) algorithm [27,13], and the predictive
clustering tree (PCT) induction algorithm [28].

A very simple adaptation of MLPs [13,26,16] is also adopted: it
uses m MLPs to predict the rank of each one of the labels A;. The
output values of the MLP networks are ordered to create the
predicted ranking of the labels, indicating the most promising
MHs for new TSP instances.

The employed adaptation of k-NN for label ranking was pro-
posed in [12]. It is essentially the same k-NN used for classification
or regression [23], except for the generation of the prediction
process. It averages the rank of each label across the target rank-
ings of the k training instances nearest to the new instance. The
average ranks are ordered to obtain the predicted label ranking.

Our decision tree-based method for label ranking is based on
the predictive clustering tree (PCT) [28]. In this adaptation of this
decision tree induction algorithm for label ranking, two compo-
nents are changed. The splitting criterion maximizes the gain in
homogeneity of the target rankings in the nodes. Homogeneity is
measured in terms of the average correlation between those
rankings. The predicted ranking is generated like in the previous
two algorithms.

We shall note that previous works [13,15] employed decision
trees to recommend MHs. Other classifiers (SVM and Naive Bayes)
were used in [13].

5. Meta-features for TSP

A key challenge for a meta-learning task is the characterization
of the problem instances through suitable measures [29]. These
measures, named meta-features, must include informative char-
acteristics, i.e., properties of the instances that affect the perfor-
mance of the MHs. As in any learning problem, the chances of
inducing a good meta-model increase with the quality of the
mapping between the characteristics of the problem instances and
the performance of the MHs.
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Table 1
Meta-features based on edge and vertex measures (EVM).

Table 2
Meta-features based on complex network measures (CNM).

Meta- Mathematical expression Description
features
Viumber length(V) Number of vertices (n)
Chin min(c!,....c%) The lowest vertex cost
Cax max(C},....c%) The highest vertex cost
C‘a/vg 1 i C,V Average vertex cost
ni=
% Standard deviation of the vertex

1 n V_ Vo2
n-1 21 =Cag)”  costs

CY edian median(C, -~aCX) Median of the vertex costs
c’ noo Sum of the edge costs from each city
,-Z:] min(Cit, -+, Cin) to its nearest neighbor
Enumber length(E) Number of edges (m)
Chin min(Ct, ..., CE) The lowest edge cost
Chax max(CE, ..., CE) The highest edge cost
Chug o Average edge cost
m
ct 1 - E F 2 Standard deviation of the edge costs
=1 2i=1 (G —Cayg)
CE edian median(Ct, ...,C,E,,) Median of the edge costs
Clowest Z”: ord(Ct) Total cost of the n lowest edge costs
) i

i=1

We investigate four sets of meta-features obtained by different
approaches [13,26]. Since TSP instances can be represented as
graphs, the first approach uses simple meta-features extracted
from the graph structure representing an instance of TSP — see
Section 5.1. The second set of meta-features represents TSP
instance graphs by complex network characteristics (Section 5.2).
The third proposal, named knowledge-based, extracts measures
specific for the MHs used (Section 5.3). The final set of meta-
features is based on a subsampling landmarkers approach [30]
(Section 5.4).

Other meta-features were considered in the literature. For
instance, features based on the two-dimensional location infor-
mation of each city — such as the standard deviation of the pair-
wise distances between cities, distances from the nearest neighbor
cities, the coordinates of the instance centroids, and other geo-
metric measures, to name a few — were adopted in [15].

5.1. Edge and vertex measures (EVM)

This first group of meta-features, proposed in [26], extracts
measures directly from a graph representing a TSP instance.
Table 1 shows a simple set of EVM meta-features that describe
properties from the edges and vertices of a graph. A simple meta-
feature, the number of vertices, suggests the size of the search
space. Since the meta-features investigated explore the neigh-
borhood of promising solutions, properties associated with vertex
cost and edge cost may provide important information regarding
the most suitable search strategy for a particular graph.

The edges with lower costs are more likely to belong to the
solutions generated by the MHs, so properties related to the costs
of the edge (CF) were also extracted. These measures can rapidly
be obtained from a TSP graph. Another relevant information that
we can extract from a graph is the vertex cost (C"), which is
measured as the average cost of the edges connected to the vertex.
Other measures able to describe important features of the graph
that represent a TSP were also used.

The route to an instance of TSP with n cities is composed of n
adjacent cities. The cost of the best route is not smaller than the
sum of n smallest costs of the edge. For this reason, the lower
bound of the solution is also an important property to be

MF  Mathematical expression Description

AGD 1 Z": . Average geodesic
m y distance
GE 121 Global efficiency
m iy
HM m Z“: 1 Harmonic mean of
iZiCi the geodesic
distances
NV . _ GE—GE; Network
Max(NVy,....NVa); NVi= GE vulnerability
CCT 3Ny Clustering coeffi-
N3 cient for
transitivity
ACC 12z N4(i) Alternative clus-
n ;=4 N3 (i) tering coefficient
aw 1 i 1 nooI G+ Cik Gt Clustering coeffi-
n iy simi=1) ;2 25 Caael cient for weighted
networks
NCC 1 2 nonoq Network cyclic
— _c S —aja;
n =y mimi—1) ;72450 S ik coefficient

MDV max{my,...,mu} Maximum degree
of the vertices
Correlation of the
degrees at both

ends of the edges

CED A/m)y; . mimyag —[(1/2m);  (m;+myag]
(1/2m)y; . (m? +ma; —[(1/2m)3; . (mi+my)ag)?

EDD n Entropy of the
B k§1 PamplogP(m;) degree
distribution
n n
TE 1 aycilog ¢y Target entropy
niy 1=
PCV 1 =n Y (g2 Participation coef-
n= 1- 521 (ﬁ) ficient of the
vertices
ER 100 Edge reciprocity
— 4
m .';1 j§1 v

Correlation coeffi-
cient of the adja-
cency matrix

A i, Z]n: (@ —a)(a;—a)
S X (@ —a)

identified. Given a set of values, the ord(n) function returns n
values in ascending order.

5.2. Complex network measures (CNM)

The measures from the previous section are computationally
very simple. However, they may not be able to capture important
properties of the graph that represents a TSP instance. There is
extensive research on more complex measures to characterize
graphs, particularly in complex networks. A survey of measures
used in the literature to characterize complex networks can be
found in [31]. A new set of meta-features was created from these
measures, here named CNM meta-features (Table 2).

Complex networks are commonly used to analyze graphs. The
different variations of the TSP can be modeled using the resources
available in a graph. Relevant information on the structure of a TSP,
such as the distribution of connections between cities, can be
extracted from the graph.

The first meta-feature, the average geodesic distance (AGD),
measures the average distance between each pair of nodes. To
capture information between vertices we compute by the global
efficiency (GE) measure, which assumes that the efficiency for
sending information between two vertices v; and v; is inversely
proportional to their distance. The harmonic mean (HM) of the
geodesic distances is also calculated.

Critical components of a network are directly related to the
most vulnerable vertices. The vulnerability of a vertex i, named
NV;, can be measured by the decrease in efficiency of the network
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@ 3

Fig. 3. Example of undirected and unweighted graph.

when the vertex i and all its edges are removed from this network
(Eq. (8)). Network vulnerability is given by the maximum vulner-
ability of all its vertices (NV).

n m;
wie L (31§ &

n—m; i#jcij j:]cij

where m; is the vertex degree that corresponds to the number of
edges connected to the vertex i.

The clustering coefficient transitivity (CCT) depends on the
number of triangles in the network (N, ) and the number of con-
nected triples (N3) calculated from (Egs. (9) and 10), respectively

Na= > ayaga, C)
k>j>i

N3 = Z (@jQik + i Qi + Ay Q). (10)
k>j>i

where a;; are elements of the adjacency matrix. The sum is taken
over all triples of distinct vertices i, j, and k only once. One way of
measuring the clustering coefficient is to calculate the average
ratio between the number of triangles and the number of triples
connected to each vertex (ACC).

In the graph in Fig. 3 there are two triangles A124 and A234. For
each triangle, the value of N3 is equal to 3, and for other combi-
nations of three different vertices the value of N5 is equal to 2.

For weighted graphs, we can use a specific clustering coeffi-
cient (CCW), which requires the sum of all the costs (s;= >} ¢y)
from each vertex i. Another property of complex networks is
related to the quality of the network cycles. The network cyclic
coefficient (NCC) is calculated from the average of the cyclic
coefficient of each vertex. The smallest cycle is a triangle (S, = 3)
but, as there is no loop passing through i, j, k, they are treelike
connected (S = o).

The network in-degree is given by the highest vertex in-degree
(MDV). The degree correlation (CED) is measured by the Pearson
correlation coefficient. The heterogeneity of a network can be
identified by the entropy of the degree distribution (EDD).
Exchanges of messages can occur in a network, thus entropy is
used to quantify the predictability of the message flow. Assuming
that messages always flow through the shortest paths and all pairs
of vertices exchange the same number of messages at same rate,
the value of target entropy (TE) is a relevant information. Low
values for this entropy mean that the vertex that will send the
next message to vertex i can be easily predicted.

In a network, a set of vertices can be seen as a community that
is generally defined in a strong or a weak sense. In a strong sense, a
subgraph is a community if all of its vertices have more connec-
tions between them than with the rest of the network. In a weak
sense, a subgraph is a community if the sum of all vertex in-
degrees inside the subgraph is larger than outside it. In order to
identify if the edges of a vertex i are “well distributed” among the
different communities, the participation coefficient (PCV) can be

calculated. For this purpose, the number of edges (g;s) from vertex i
to community s and the degree of this vertex (m;) are required. The
coefficient value is equal to O if all edges are in their own com-
munity. The coefficient is equal to 1 if its edges are uniformly
distributed among all communities.

Edge reciprocity is a measurement that helps us to characterize
a network in terms of existence of undirected edges between two
vertices. This measurement is captured by the ER meta-feature,
which calculates the ratio between the number of undirected
edges and the total number of edges (m). Finally, we used the
mean value (@) of the adjacency matrix to calculate the correlation
coefficient (CCA) of the adjacency matrix, which is another way to
measure the edge reciprocity.

5.3. Meta-heuristics properties (MHP)

We use five MHs: Tabu Search (TS) [5], Greedy Randomized
Adaptive Search Procedure (GRASP) [6], Simulated Annealing (SA)
[7], Genetic Algorithms (GAs) [8], and Ant Colony Optimization
(ACO) [9]. They were chosen because they make different
assumptions about the search space. Therefore, each one will be
more suitable for some spaces. In this set of meta-features, we
extract characteristics of the search space of TSP instances that are
expected to affect the search procedures of these MHs.

Given its size, it is impossible to generate an accurate char-
acterization of the search space for all but the most trivial of the
TSP instances. Therefore, we estimate those characteristics on a
sample of randomly generated solutions. The cost of computing
these meta-features can thus be controlled by setting the number
of solutions generated. The set of meta-features based on meta-
heuristics properties, named MHP (Table 3), is defined according
with the following notation:

e Si={sl,....s"}: set of all feasible solutions for the TSP instance
i

® Ri={rl,...r7}: set of y randomly generated solutions such that
RiCSi;

Table 3

Meta-features (MF) based on meta-heuristic properties (MHP).

MF  Mathematical expression Description

QBN 1 ¥ o X Expected proportion of neigh-
v k; Ttem™ <) bors with a better solution

RNS 1 v C(ngﬁﬂ) Expected ratio between the
v kgl ) costs of the best neighbor of a

! given solution

QNS 1 o v i X Quality index of the neighbors
ngl El le(m) < ctriy of the random solutions

QS 1 »n Y i " Quality index of the greedy
ny ].; ,;::1 lc(gy) <) solution

RGR & 2 C(ng) Average ratio between the route
O cost of the greedy solution and

the cost of the random solution
QBO Xr) I(C(best(ffl}l’f]l:-z)) < c(best(P!, 72y)) Quality of the best offspring
=1

i t solution
rRep 1 & c(best(?{:‘],f{l)) Average ratio betyveen thef cost
T = c(best(f’:’l fj,z)) of the best offspring solution
= Pt and the cost of the best solution
of their parents
1 8 2 2 i i Reproduction quality rate
RRQ 2 3 X 3 I <cih
j=1k=11=1
ISE 2 non length(E{:ﬂEﬂ‘) Index of shared edges
nn-1) ;= S5 n

Relative frequency of the most
common edge in greedy
solutions

10 .
REM L 5" lenc e )
n;y>




J. Kanda et al. / Neurocomputing 205 (2016) 393-406 399

® G ={gl,...g"}: set of n greedy solutions generated from n
different cities such that G; < S;;

° N’ n’1 n’.v : set of v neighbor solutions of s/, where the
nelgh ors are the solutions obtained by swapping two adjacent
cities of s{. The best neighbor solution (n’*) of s/ is the solution
with the lowest route cost among all its neighboring solutions,
oy = min{c(ni.l), c(ni")}.

The first meta-feature (QBN) is the proportion of random
solutions r/ in R; that have a better solution in their neighboor-
hood N{. The Indicator function I(c(x) < c(y)) returns 1 if the value
of ¢(x) is smaller than the value of c(y) and returns O otherwise.
The average ratio between the cost of the best neighbor solution
and the generated solution is given by RNS. The expected quality of
a randomly generated solution is measured by QNS. It is the
average number of neighbors of the solutions r/ in R; that are
better than r{. The QGS meta-feature compares the greedy solu-
tions in G; with the random solutions in R;, returning the relative
number of greedy solutions that are better than the random
solutions. The average ratio between the cost of greedy routes and
the cost of random routes is captured by RGR.

The next three meta-features (QBO, RCP, and RRQ) are related
with properties of genetic algorithms. They are based on a set of ¢
parent solutions, R; = {(f1 ¢l 2) (f” ”rz)} These solutions are
randomly selected from R;. Each pair of selected solutions,
("f“,Akz) is combined using a crossover operator — e.g. partial
mapped crossover operator [32] — to generate two new solutions,
(f’” %2). This results in a new set of offspring solutions,

{(f1 LS s W (e & sz)}. The QBO meta-feature measures the
average number of times that the best offspring solution in a pair
is better than the best solution of the corresponding parents. This
measure is calculated by using the best(x,y) function, which
returns x if c(x) is smaller than c(y) and y otherwise. The RCP meta-
feature is the average of the ratio between the route cost of the
best offspring solution in each pair and the route cost of the best of
the corresponding parents. RRQ is the average number of times
that an offspring is better than its parents.

The ISE meta-feature captures the information about the aver-
age number of edges shared among the solutions generated by the
greedy procedure. For this meta-feature, El = {el......e/ ! is the set
of edges that compose the route of the s; solution in G; and length
(X) is a function that returns the number of elements from the set
X. Considering q : E-» R, a function that maps each edge to the
number of solutions that use it, the most common edge, e, is
identified by ey =arg max.{q(e1),...,q(em)}. Finally, the RFM
meta-feature indicates the relative frequency of e, in which the
I(e e X) function returns 1 if e € X and 0 otherwise.

5.4. Subsampling landmarkers properties (SLP)

Landmarkers are fast estimates of algorithm performance on a
given task. The estimates can be obtained by running simplified
versions of the algorithms [12]. As an example, a small number of
ants can be a landmarker for an ant colony optimization meta-
heuristic. Another way of obtaining fast performance estimates is
to run the algorithms whose performance is to be estimated on a
sample from the target task, obtaining the so-called subsampling
landmarkers [12]. This method uses the sample size as a parameter.
Some authors have used increasing sample sizes (partial learning
curve), which has been claimed to produce better results [33].

As we used five MHs to investigate the predictive ability of the
meta-models, five different SLP meta-features were extracted from
subsampling landmarkers properties, as shown in Table 4. These
meta-features are related with the algorithms performance after
processing the simplified version of these MHs. The performance

Table 4
Meta-features (MF) based on subsampling landmarkers properties (SLP).

MF  Mathematical expression Description

PTS  tabu(i) solution value provided by TS fast estimate
for sub(i)

PGR  grasp(i) solution value provided by GRASP fast esti-
mate for sub(i)

PSA  sa(i) solution value provided by SA fast estimate
for sub(i)

PGA  genetic(i) solution value provided by GAs fast estimate
for sub(i)

PACO ant(i) solution value provided by ACO fast estimate
for sub(i)

of these MHs were estimated on a subsample, sub(i), from each
TSP instance i. In this study, performance means the value of the
solution provided by an optimization algorithm.

6. Recommendation scenarios

Previous meta-learning approaches for TSP [15,13,26] have
considered a single scenario: the recommendation of MHs for TSP
instances that are strongly connected and symmetric. In this sce-
nario, all cities are adjacent to each other and the cost of traveling
from one city to an adjacent city is the same, regardless of the
initial city. While this scenario is realistic in some tasks that can be
represented as a TSP, such as optimizing the path of a computer-
ized numerical control (CNC) machine to drill holes in a circuit
board [34], it is not adequate for other tasks. For instance, in the
original TSP scenario, there are no direct roads between all the
cities. This means that the graph is not strongly connected. Addi-
tionally, if the transportation is by commercial flights and the cost
function is the cost of the tickets, then the graph is not symmetric,
as the price of flying from city A to city B is often different from the
opposite flight. Therefore, it is important to consider different
types of graphs. We consider three additional scenarios:

® Weakly connected and symmetric scenario: There is no edge
between some pairs of cities and for each pair of connected
cities A and B, the cost to go from A to B is equal to the cost to go
from B to A.

® Strongly connected and asymmetric scenario: Although there is
an edge for each pair of cities, the cost to go from A to B can be
different from the cost to go from B to A.

® Weakly connected and asymmetric scenario: There is no edge
between some pairs of cities and for each pair of connected
cities A and B, the cost to go from A to B can be different from
the cost to go from B to A.

Fig. 4 shows examples of graphs representing these four TSP
scenarios. It can be seen that in symmetric scenarios (Fig. 4a and
4c), the connection between two vertices occurs by an undirected
edge, while directed edges connect vertices in asymmetric scenar-
ios (Fig. 4b and 4d).

The best solution for the illustrated instances is a route that visits
all cities of the problem in the following order: A, B, D, C, and A. In this
case, the route is a Hamiltonian cycle whose cost is equal to 14.

7. Experimental setup

Our datasets have been generated from some benchmark instan-
ces of TSP found in the TSPLIB library [35]. Due to computational
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and symmetric scenario. asymmetric scenario,
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Weakly connected

Weakly connected and

and symmetric scenario. asymmetric scenario,

Fig. 4. Different TSP scenarios, varying the connectedness and symmetry of the graph.

Edges rewired with probability p = 0.

i

Edges rewired with probability pss 1.

Fig. 5. Construction of a small-world network from a regular network. Figure adapted from [31].

limitations to run our experiments,” we did not use instances with a
large number of cities in the experiments. For each scenario, the
meta-data has 600 meta-examples, corresponding to 600 sub-
problems generated from four TSP files. From each TSP file, 150 dif-
ferent subproblems (subset of instances) of the same size were gen-
erated. For the symmetric scenarios, the files eil76, ch150, lin318, and
u724 were chosen to generate subproblems with 10, 25, 50, and 100
cities, respectively. For the asymmetric scenarios, the files p43,
kro124p, ftv170, and rbg443 were used for the generation of sub-
problems with 10, 25, 50, and 100 cities, respectively.

The subproblems in the weakly connected scenarios (sym-
metric and asymmetric) were generated from the strongly con-
nected subproblems by applying the small-world model [36]. In a
network generated with the small world model, most of the ver-
tices can be reached from all other vertices using a small number
of edges. In our experiments, the network was built connecting
each vertex with its k-nearest neighbors, where the value of k
corresponds to 60% of the number of cities of the problem. Then,
each edge was randomly reconnected with probability p=0.1.
When this parameter is equal to 0, the network has an ordered
structure with a large number of loops constituted by three ver-
tices. On the other hand, if p=1 then the network is a random
graph with short distances and few loops. The values of k and p
were chosen according to [31]. Fig. 5 shows the construction of a
small world network from a regular network.

2 Recall that for training a meta-model a dataset with many instances is
necessary. Besides, the solutions for the meta-heuristics must be known for every
instance.

As previously mentioned, five meta-heuristics were used in our
experiments: TS, GRASP, SA, GAs, and ACO. After preliminary
experiments with different parameter values, the following para-
meter settings were adopted:

e TS: tabu list size=2; number of iterations with no improvement
of the current solution=2;

GRASP: number of iterations=10; level of randomness and
greedy search=0.5;

SA: initial temperature=0.1; temperature increase rate=0.1;
acceptance rate of neighbor solution=0.9; cooling rate=0.01;
GA: crossover operator=partial mapped crossover (PMX) [32];
population size=20; tournament selection; mutation
rate=0.05; elitism rate=0.5;

ACO: number of ants=5; pheromone evaporation rate=0.5;
pheromone influence=1; heuristic information influence=1.

We shall stress that our main goal was neither to optimize the
performance of each MH, nor to empirically compare their relative
performances. We are not trying to promote any particular MH.
Instead, the focus is on the prediction of the ranking of MHs, with
particular emphasis on how the user can take advantage of this
ranking to obtain better solutions for new TSP instances.

Since these MHs are stochastic, different results can be
obtained for each run. Thus, for each TSP instance, every MH was
run 30 times (with different initial seeds), producing 30 solutions
each. The same maximum processing time was adopted as a
stopping criterion for each of these 30 runs of the MHs. This cri-
terion has two main advantages: (1) it simulates a scenario in
which the amount of time available to obtain a solution is limited
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and known a priori; (2) the same opportunity is given to all MHs
to search for a good solution. The average cost of the route
obtained from those 30 solutions was adopted as the performance
of each MH, which was used to build the target ranking of MHs for
each instance.

To estimate the predictive performance of the meta-learning
approach, ten-fold cross-validation was used. MultiLayer Percep-
tron (MLP), K-Nearest Neighbor (K-NN), and Decision Tree (DT)
were implemented® from the packages nnet, FNN, and Clus,
respectively. For the MLP networks, we used brackpropagation
with momentum and 1 hidden layer with the number of neurons
set to half of the number of predictive attributes and neurons in
the output layer [37].

To generate the SLP meta-features from fast executions of a
simplified version of the MHs, we used the same settings that
were previously described, except for the following parameters:

® TS: number of neighbors=2; number of iterations with no
improvement of the current solution=1;

GRASP: number of iterations=1;

SA: initial temperature=1; cooling rate=0.5;

GA: population size=4;

ACO: number of ants=2.

8. Experimental evaluation

This section presents the experimental results obtained by
comparing the rankings recommended using different sets of
meta-features and different label ranking methods in the four
application scenarios presented earlier.

The average rank of each MH that generates a solution for
different TSP instances in our experiments can be viewed in
Table 5. Note that there is a variation in the rank of a particular
MH, indicating that the computational model has to learn about
different rankings.

Table 6 summarizes the data obtained from the performance of
MHs in different scenarios of TSP. Higher performance variations
occurred in weakly connected scenarios due to lack of some edges
that influence the search for solutions. Although there was a
diversity of rankings, it is important to analyze the predominance
of the majority ranking. In our experiments, the frequency of the
majority ranking ranged from 25% to 46%. These results point out
the difficulty of learning the predictive models. Among the rank-
ings obtained a uniform distribution was not observed as shown
by the standard deviation of their frequencies.

8.1. Strongly connected and symmetric graph scenario

Table 7 shows the ranking accuracy (rs) of the predictive
models for each set of meta-features. According to the statistical
test, all learning models induced from different ML techniques and
different sets of meta-features had better predictive performance
than the baseline (s =0.89). Note that this represents a high
accuracy ranking.

These values suggest that the meta-models induced from the
same ML technique have similar predictive performance regard-
less of the set of meta-features used. The comparison between
different algorithms leads to similar conclusions, as the differences
are very small.

3 Using the default values for their parameters.

Table 5
Average rank and standard deviations of MHs for different TSP scenarios.

Graph scenario TS GRASP  SA GA ACO

Strongly connected and symmetric 4+1 140 4+1 341 2+1

Strongly connected and asymmetric 3+2 2+1 441 3+1 4 ; 2
Weakly connected and symmetric 3+41 341 341 341 1+0
Weakly connected and asymmetric 34+1 3+1 341 341 1+1

Table 6
Metadata of the MHs ranking for different TSP scenarios.

Graph scenario Number of Frequency of the Standard deviation
different majority of the frequencies of
rankings ranking rankings

Strongly connected 10 227600 77

and symmetric

Strongly connected 18 150/600 42

and asymmetric

Weakly connected 26 181/600 42

and symmetric

Weakly connected 58 275/600 36

and asymmetric

Table 7

Spearman Correlation coefficient for different sets of meta-features using meta-
models induced by different learning algorithms in the strongly connected and
symmetric graph scenario.

Set of meta-features MLP K-NN DT

EVM 0.96 +0.08 0.95 +0.09 0.95 +0.09

CNM 0.96 +0.09 0.94+0.10 0.96 + 0.07

MHP 0.94+0.11 0.95+0.07 0.96 + 0.09

SLP 0.95 +0.09 0.95+0.10 0.96 +0.07
Table 8

Spearman Correlation coefficient for different sets of meta-features using meta-
models induced by different learning algorithms in the strongly connected and
asymmetric graph scenario.

Set of meta-features MLP K-NN DT

EVM 0.94 +0.12 0.93 +0.12 0.94 +0.12
CNM 0.92 +0.17 0.93+0.14 0.94 +0.12
MHP 0.91 +0.17 0.93 +£0.13 0.93 +£0.13
SLP 0.93 +0.14 0.93+£0.15 093 +0.14

8.2. Strongly connected and asymmetric graph scenario

In this scenario, the predictive accuracy of the baseline ranking
is lower (s = 0.59). This is explained by the higher diversity of the
target rankings, which indicates that the problem is harder to
learn than the problem from Section 8.1. However, the experi-
mental results in Table 8 are similar to those obtained in the
previous set of experiments indicating that, even in a more diffi-
cult scenario, models with good predictive abilities were found. As
in the previous experiment, the results are very similar both across
different sets of meta-features and learning algorithms.

8.3. Weakly connected and symmetric graph scenario

As in the first scenario, the accuracy of the baseline ranking is
high (s =0.81). This occurred because several meta-heuristics
were not always able to find a feasible solution for weakly con-
nected TSP instances. In the experiments, MH5 found most often a
feasible solution. Nevertheless, meta-learning was also able to find
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Table 9

Spearman Correlation coefficient for different sets of meta-features using meta-
models induced by different learning algorithms in the weakly connected and
symmetric graph scenario.

Set of meta-features MLP K-NN DT

EVM 0.93 +0.14 0.93 +0.14 0.93+0.15

CNM 0.934+0.14 0.93+0.14 0.93 +0.13

MHP 0.92 +0.16 0.93 +0.14 0.92 +0.15

SLP 0.92 +0.18 0.92 +0.16 0.93+0.15
Table 10

Spearman Correlation coefficient for different sets of meta-features using meta-
models induced by different learning algorithms in the weakly connected and
asymmetric graph scenario.

Set of meta-features MLP K-NN DT

EVM 0.83 £0.27 0.85+0.25 0.86 +0.25
CNM 0.83+£0.29 0.84 +0.26 0.86 +0.24
MHP 0.80 +0.33 0.83+0.28 0.86 +0.23
SLP 0.78 +£0.27 0.79 £0.27 0.80+0.24

models with a superior predictive accuracy, as shown in Table 9.
As in the previous experiments, the differences are statistically
significant and the results are very similar both across different
sets of meta-features and learning algorithms.

8.4. Weakly connected and asymmetric graph scenario

In this scenario, the variance in the results is higher than in the
previous scenarios, as shown in Table 10. The baseline perfor-
mance is slightly lower than in the previous scenario, (s =0.77),
but is still high. In general, meta-learning obtained higher accu-
racy than the baseline, although the gain is small in some cases.
The results of the statistical tests indicate the existence of sig-
nificant differences between the baseline and the meta-learning
approach only for the following meta-models: MLP with MHP
meta-features, MLP with SLP meta-features, and K-NN with SLP
meta-features.

Table 10 also shows that the variance in the accuracy within the
same experiment is also higher than in the previous experiments.
The values of the standard deviation indicate that there is a high
variation in the accuracy predictions by the induced meta-models.
This is likely due to the weakly-connected nature of the instances.
The lack of edges directly influences the optimization performance
of the MHs. This is particularly important for those that search for
a good solution from random initial solutions. With fewer con-
nections, the path is probably longer and harder to find. The
diversity in the solution quality was observed particularly for
instances with small number of cities.

The results obtained with different sets of meta-features lead to
interesting observations. The SLP meta-features obtained the worst
results, with statistical significance, regardless of the ML technique
used. This can be explained by the impossibility, for many TSP
instances, to estimate the solutions by executing the MHs on
problems defined by subgraphs of the original instance. If the
original graphs are weakly connected, which makes it hard for the
MHs to find solutions, the problem becomes more difficult in
subgraphs of those instances.

Considering the set of MHP meta-features, some of them
require generating random solutions and comparing them to their
neighboring solutions. For weakly connected TSP instances, many
random solutions and their neighboring solutions are not feasible.
This problem affected mainly the MLP algorithm. This seems to be
caused by some particularly poor predictions, as indicated by a
higher than usual predictive variance. The statistical test confirms

this observation by detecting a significant difference between the
meta-features EVM and MHP when they were used with the MLP
algorithm.

8.5. Computational effort

For the TSP scenarios discussed here, the meta-models pre-
sented high predictive performance regardless of the set of meta-
features investigated. Since the predictive performances obtained
by the learning algorithms were similar, it is important to inves-
tigate the computational cost to generate each set of meta-
features. This cost should be lower than the cost to run all the
MHs, otherwise running all of them would be the best strategy for
algorithm selection.

The average computational time to run all the five available
MHs is adopted as a reference value to evaluate the processing
time for each set of meta-features. The computational time saved
by generating the meta-features with respect to running all the
MHs is shown in Tables 11-14.

To understand the values in the tables, consider the hypothe-
tical situation in which the time to run all MHs for a given TSP
instance is equal to 5 s, while the time to generate the set of meta-
features for the same instance is 1 s. In this case, the use of meta-
learning represents a saving of 80% in computational time. A
negative value shows that running all MHs is faster than com-
puting the set of meta-features. For example, if the time necessary
to generate the set of meta-features in the previous example is
10 s, there was an increase equivalent to 100% in processing time.
In this case, we will adopt a negative signal notation (—100%).

According to Table 11, the EVM meta-features have a low pro-
cessing cost, saving, in the worst case, 80% of the time necessary to
run all MHs. This is expected as these are the simplest measures
investigated.

For the set of SLP meta-features, significant gains were not
observed in the processing time for small TSP instances, probably
because good solutions can be quickly found by the MHs when
applied to the original version of the instances. There is some gain
in computational time for larger instances but there is not a clear
trend. This may be due to the constructive meta-heuristics con-
sidered (e.g. MH2), which require almost the same time to build a
solution regardless of the version of the instance used (original or
simplified).

The runtime to generate the set of MHP meta-features largely
increases with the number of cities. This occurs because the

Table 11
Average relative time saved in generating meta-features instead of running all the
candidate meta-heuristics in the strongly connected and symmetric graph scenario.

TSP size EVM (%) MHP (%) SLP (%) CNM (%)

10 cities 93 81 0 77

25 cities 93 44 12 59

50 cities 92 -31 26 23

100 cities 82 —499 19 -226
Table 12

Average relative time saved in generating meta-features instead of running all the
candidate meta-heuristics in the strongly connected and asymmetric graph
scenario.

TSP Size EVM (%) MHP (%) SLP (%) CNM (%)
10 cities 93 85 0 77

25 cities 92 47 15 51

50 cities 92 3 26 20

100 cities 80 -394 22 —274
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complexity of some of these meta-features is quadratic with the
number of cities. Thus, this set of meta-features would not be a
good choice for many TSP instances. A similar behavior can be
observed with the CNM set of meta-features. The justification is
the same as some of them are also quadratic on the number of
cities. Thus, these approaches would not be good choices to extract
meta-features for the recommendation task. Similar results were

Table 13
Average relative time saved in generating meta-features instead of running all the
candidate meta-heuristics in the weakly connected and symmetric graph scenario.

TSP Size EVM (%) MHP (%) SLP (%) CNM (%)

10 cities 97 90 11 88

25 cities 97 66 14 75

50 cities 96 20 28 52

100 cities 91 —-277 20 —-109
Table 14

Average relative time saved in generating meta-features instead of running all the
candidate meta-heuristics in the weakly connected and asymmetric graph scenario.

TSP Size EVM (%) MHP (%) SLP (%) CNM (%)

10 cities 97 90 12 89
25 cities 96 66 14 77
50 cities 97 28 23 59
100 cities 92 —228 18 -83

1,60%

obtained for the analysis of the computational times for the
strongly connected and asymmetric graph scenario, which are
shown in Table 12.

The results for the two scenarios with weakly connected TSP
instances are presented in Tables 13 and 14. The gain in time
(positive values) were similar in both scenarios, no matter the set
of meta-features or TSP size. It is worth noticing that the set of
EVM meta-features, which already had the best result in the pre-
vious scenarios, obtained computational cost savings always
higher than 90%. In these scenarios, the absence of edges between
cities leads to the use of a few values to compute the measures
based on the edge and vertex cost. Consequently the generation of
the EVM meta-features was faster. Additionally, due to reduction in
the number of edges, the MHP and CNM sets of meta-features were
also computed faster in the weakly connected scenarios than in
the strongly connected scenarios.

In all the TSP scenarios, the average time required to calculate
the SLP meta-features was similar, except for small instances
belonging to weakly connected scenarios. In these cases, the
computational time required was smaller, due to the few feasible
solutions that could be found in the search space of the subgraph
of the TSP instance.

The experimental results show that only the EVM and SLP sets
of meta-features had lower runtimes than the execution of all MHs
for the different sizes of TSP instances. On the other hand, the
negative values obtained with the other two sets indicate that they
should not be used to induce a meta-model for MH recommen-
dation for a new TSP instance.

1,20%
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0,40%
0,00% -
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-0,80%
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Fig. 6. Cost rate when using the predicted ranking of MHs regarding the ideal ranking for a strongly connected TSP instance.
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8.6. Analysis of the recommended solutions

Although the meta-models were able to predict rankings of
MHs more similar to the ideal ranking than the baseline ranking, it
is also important to evaluate the magnitude of the solutions (cost
of routes) generated by the ranked MHs. This evaluation can be
carried out using the desired ranking and the value of the solu-
tions provided by MHs as a reference for each TSP instance. If the
highest ranked recommended MH does not match the MH in the
first position of the desired ranking, the route obtained will have a
cost higher than the route associated with the first suggested MH.
To illustrate this situation, consider an example in which the ideal
ranking £; = {MH{,MH,,MH3,MH,4} has the following values:
MH; =100, MH, =120, MH3 =130,MH, =150. If the recom-
mended ranking is £; = {MH,, MH{, MH4, MH3}, the user will have
a higher cost solution when using the MH in the first ranking
position (120 instead of 100). The MH in the third position will
also produce a higher cost solution (150 instead of 130). The sum
of the differences, in this case the resulting value is 40, represents
the extra cost by following the recommended ranking, and this is
equivalent to 8% (40/500) of the total costs of the solutions gen-
erated by the MHs.

Figs. 6 and 7 illustrate the results of the additional cost rates of
the solutions generated by MHs recommended by the meta-
models. The closer the average cost is to zero percent, the lower
the rate of extra cost if the ranking recommended by the meta-
model is adopted. All meta-models presented computational cost
lower than the baseline in the symmetric and strongly connected
scenario (Fig. 6a). In this scenario, the extra cost ratio did not
exceed 0.25%. The meta-model induced from an MLP with EVM

meta-features presented the best performance (average
rate=0.08% and standard deviation=0.17%). The standard devia-
tion of the results generated by the MLP with MHP meta-features
was higher than the other learning algorithms and meta-features
because the most recommended MH for some instances of TSP
were not in the top positions of the desired ranking.

In the asymmetric and strongly connected scenario (Fig. 6b), the
additional cost generated by the use of meta-models, regardless of
the meta-features and learning techniques, was lower than the
baseline model. The model induced from the decision tree induc-
tion algorithm with CNM meta-features presented the best perfor-
mance (average rate=0.44% and standard deviation=2.58%). This
may have occurred because most of the features extracted from the
complex networks are related to connectivity between network
nodes, not taking into account the weighting of the edges.

Although the baseline cost rate was lower in the symmetric and
weakly connected scenario (Fig. 7a), the meta-models were able to
maintain a good performance in predicting the MH ranking. In this
scenario, the use of the CNM meta-features by the PCT algorithm
obtained again the best results in terms of extra costs (average
rate= 0.53 and standard deviation=4.48%). Finally, Fig. 7b shows
that the performance obtained by meta-models in the asymmetric
and weakly connected scenario — average rate=4.08% and stan-
dard deviation=15.12% — was not as good as those observed in the
other scenarios. There were large variations in the quality of the
predicted rankings, resulting in high standard deviation values.
The learning process may have been harmed by the lack of infor-
mation about some of the connections between the vertices. If a
user follows the recommended rankings to solve a TSP instance
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Fig. 7. Cost rate when using the predicted ranking of MHs regarding the ideal ranking for a weakly connected TSP instance.
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with the characteristics described in this scenario, the estimated
cost of the solution will be at least 4% higher than the ideal cost.

9. Conclusion

We addressed the problem of recommending the ranking of the
best MHs for a given instance of the TSP. To do so, a meta-learning
approach was used. In particular, we used machine learning
techniques to induce a model able to associate properties of the
TSP instances with the optimization performance of MHs. Adap-
tations of MLP, K-NN, and Decision Tree were employed for label
ranking. Four sets of meta-features were evaluated: edge and
vertex measures (EMV), meta-heuristics properties (MHP), sub-
sampling landmarkers properties (SLP), and complex network
measures (CNM). Additionally, four different scenarios of the
symmetry and level of connectivity of the graphs representing the
TSP instances were considered.

Experimental results show that it is possible to predict the
ranking of MHs and that, by following the recommendations from
the rankings, it is possible to obtain solutions better than simpler
selection strategies, like recommendation based on average rank-
ing. Even in the more complex scenarios, like those that have
asymmetric costs of travel and weak connectivity, the meta-
learning approaches showed good predictive performance, inde-
pendent of the set of meta-features.

We also analyzed the average time necessary to generate each
set of meta-features and the gains compared with not using meta-
learning. Some meta-features have a computational complexity
that is quadratic on the number of cities and result in processing
time longer than the time necessary to run all MHs. As expected,
this is especially true in the larger TSP instances. Thus, only two
sets of meta-features obtained effectively satisfactory results: the
set based on measures from edges and vertex and the set based on
properties of subsampling landmarkers.

To address the computational issues of two of the approaches
to compute the meta-features, we plan to combine them with the
subsampling landmarkers approach. This means computing them
on a subgraph of the graph representing the instance. Additionally,
more extensive experimentation is required to confirm whether
the different approaches to compute the meta-features are
equivalent in terms of predictive accuracy. If this observation is
confirmed, it is important to understand the reasons that make it
hold. In addition, we are going to use a feature selection technique
to improve the ranking accuracy. It is also important to evaluate
the performance of the meta-learning system in terms of the base
level TSP solution found by the MHs selected by the meta-models.

Additional future work includes using a meta-learning
approach for label ranking (e.g. decision tree) to induce meta-
models from the meta-data of each scenario and evaluate their
predictive performance in other scenarios. Decision trees generate
more intelligible meta-models, since they show the rules used by
the meta-model to produce the result on their output. Finally, we
want to improve the composition of the ranking of MHs taking
into account the probability of each MH to find a feasible solution.
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