
Knowledge-Based Systems 98 (2016) 130–147 

Contents lists available at ScienceDirect 

Knowle dge-Base d Systems 

journal homepage: www.elsevier.com/locate/knosys 

Tensor-based anomaly detection: An interdisciplinary survey 

Hadi Fanaee-T 

a , ∗, João Gama 

b 

a Laboratory of Artificial Intelligence and Decision Support/ INESC TEC and FCUP/University of Porto, Rua Dr. Roberto Frias, Porto 4200-465, Portugal 
b Laboratory of Artificial Intelligence and Decision Support/ INESC TEC and FEP/University of Porto, Rua Dr. Roberto Frias, Porto 4200-465, Portugal 

a r t i c l e i n f o 

Article history: 

Received 12 October 2015 

Revised 18 January 2016 

Accepted 20 January 2016 

Available online 8 February 2016 

Keywords: 

Anomaly detection 

Tensor analysis 

Multiway data 

Tensor decomposition 

Tensorial learning 

a b s t r a c t 

Traditional spectral-based methods such as PCA are popular for anomaly detection in a variety of prob- 

lems and domains. However, if data includes tensor (multiway) structure (e.g. space-time-measurements), 

some meaningful anomalies may remain invisible with these methods. Although tensor-based anomaly 

detection (TAD) has been applied within a variety of disciplines over the last twenty years, it is not 

yet recognized as a formal category in anomaly detection. This survey aims to highlight the potential of 

tensor-based techniques as a novel approach for detection and identification of abnormalities and failures. 

We survey the interdisciplinary works in which TAD is reported and characterize the learning strategies, 

methods and applications; extract the important open issues in TAD and provide the corresponding ex- 

isting solutions according to the state-of-the-art. 

© 2016 Elsevier B.V. All rights reserved. 
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1. Introduction 

Those patterns in data that do not conform to expected behav-

ior are called anomalies and the process of detection of such pat-

terns is known as anomaly detection [1] . Anomaly detection is an

essential component of many safety, monitoring and surveillance

systems. The reason is that it uncovers significant and critical facts

about the system’s behavior that leads to prevention of further es-

calation and losses. Plenty of methods have been developed dur-

ing the last two decades for anomaly detection in different do-

mains, the majority of which are covered in the survey paper [1] .

One group of methods that is mentioned in this survey is spectral

methods. These approaches attempt to project high dimensional

data onto a lower subspace in which anomalies can be identified

more easily. The main assumption of these techniques is that nor-

mal and abnormal instances appear significantly different in the

projected subspace [1] . However, in many real-world applications

we deal with data with tensor (multiway) structure which unfor-

tunately is widely ignored. In such circumstances, anomalies may

remain invisible with the matrix-based spectral methods. Besides,

ignoring the tensor structure in data can cause some problems and

result in wrong results. As an example some real failure case stud-

ies of matrix-based solutions and superiority of tensor-based so-

lutions over them are listed in Table 1 which can manifest how

much tensors are required for anomaly detection. 
∗ Corresponding author. Tel.: +351 222 094 0 0 0. 
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Although authors in [1] discuss the matrix methods in their

urvey, they exclude tensors and their applications in anomaly de-

ection. This is while over the last twenty years, since the work

f Nomikos and MacGregor [12] , research related to tensor-based

nomaly detection (TAD) has been exponentially growing. Further-

ore, many methods have been developed in multiple disciplines

rom chemometrics and environmental monitoring to signal pro-

essing and data mining. Despite the popularity of this research

rea (though with different terminologies), no comprehensive sur-

ey on TAD is yet available. The most probable reason is that the

AD belongs to wide scopes and spans across different research

elds. 

Our main objective in this survey is to bridge the gap be-

ween two popular research areas of anomaly detection and ten-

ors. We study the literature from all major disciplines where ten-

ors are frequently applied and classify the contributions related

o TAD based on some factors such as applications, learning types,

ethods and evaluation metrics. Moreover, we identify and clas-

ify the important issues and proposed solutions in TAD research.

e follow a motivational strategy in this survey, in the sense that

e do not limit ourselves introducing only techniques that are

lready applied for anomaly detection. Rather, we include those

ethods that are used in the close applications, such as classifi-

ation, regression and forecasting that may show a great potential

or anomaly detection. Therefore, this survey can be regarded as a

omprehensive complement for Section 9 of [1] and from the ten-

or point of view it can be considered as a focused complement

or applications of tensors in data mining, i.e. survey paper in [13] .

ur assumption is that the reader is familiar with basic concepts

http://dx.doi.org/10.1016/j.knosys.2016.01.027
http://www.ScienceDirect.com
http://www.elsevier.com/locate/knosys
http://crossmark.crossref.org/dialog/?doi=10.1016/j.knosys.2016.01.027&domain=pdf
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http://dx.doi.org/10.1016/j.knosys.2016.01.027
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Table 1 

Some empirical evidences in the literature indicating the superiority of tensor-based solutions over matrix solutions. 

Study Tensor method Matrix method Matrix method’s reported problem 

[2] Tucker3 PCA Difficult interpretation of score plots 

[3] PARAFAC PCA Difficult interpretation of score plots 

[4] Non-negative Multiway PCA PCA Lower classification accuracy 

[5] Incremental Tensor subpsace learning PCA Lower tracking performance 

[6] Multiway PCA PCA Higher error rate in damage detection 

[7] Multiway PCA PCA Lower recognition accuracy 

[8] HOSVD SVD Higher prediction error 

[9] Tucker3 SVD SVD fails on modeling tensor structured data 

[10] PARAFAC PCA Loss of multiway linkages plus over-fitting 

[11] PARAFAC PCA PCA fails to identify the right variance 

Table 2 

Tensor-based anomaly detection examples. 

Domain Typical tensor Application Ref. 

Process control Batch × Measurements × Time Detection of faulty batches [12] 

Environment Variables × Site × Time Detection of spatiotemporal source of pollution [18] 

Video surveillance ImgRow × ImgCol × Time Abnormal event/objects discovery [19] 

Network security OriginIP × DestIP × Time Abnormal traffic discovery [16] 

Social networks Person × Person × Time Event detection [20] 

Text-based systems Actor × Keyword × Time Event detection [21] 

Neuroscience Frequency × Channel × Time Seizure recognition [22] 

Remote sensing ImgRow × ImgCol × Wavelength Target detection [23] 

Sensors Measurements × Location × Time Anomaly detection [15] 

Transportation Origin × Destination × Time Detection of urban traffic problems [24] 

Metallurgy Eng. Coils × PSD × Frequency Fault detection in hot strip mill [25] 

Civil structures Location × Time × Frequency Detection of damages in civil structures [26] 

Mechanical systems Experiment × Sensor × Time Damage detection in aircraft wing flap [6] 

Power systems Experiments × Variables × Time Detection of voltage sags [27] 

Medical diagnosis Medication × Patient × Diagnosis Heart failure prediction [28] 

Epidemiology Space × Time × Indicators Disease outbreak prediction [29] 

Seismology Location × Time × Frequency Predicting earthquake ground motion [30] 

Criminology Lng × Lat × Time × Indicators Crime occurrence forecasting [31] 
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n anomaly detection and tensor decomposition (or tensorial learn-

ng). For this reason, we omit explanation of the straightforward

oncepts related to tensor decomposition, anomaly detection and

pectral-based anomaly detection. Instead, we refer the reader to

he recent surveys about anomaly detection [1] and tensor decom-

osition [13,14] that adequately cover essential technical materials

or understanding the current review. 

The article is organized as follows. In Section 2 , we introduce

he history of TAD and its applications. Section 3 presents learn-

ng methods for TAD. Section 4 discusses the techniques for ten-

or decomposition. Section 5 outlines the issues in TAD along with

he corresponding solutions. In Section 6 we discuss the evalua-

ion metrics used in TAD and introduce the available software for

ensor analysis. Section 7 concludes the survey. 

. History and applications 

A tensor is a geometric object used in mathematics and physics

or extension of concepts such as scalars, vectors and matrices to

igher dimensions. The origin of the word ”tensor” is the Latin ten-

ere ”to stretch” firstly appeared in anatomy in the seventeenth

entury to denote muscle’s stretch. It was later used in mid-

ighteenth-century by William Hamilton to describe some con-

epts in quaternion algebra. Tensor calculus, which comes closer

o the word’s current meaning, was introduced in 1900 by Italian

athematician Gregorio Ricci-Curbastro and his doctoral student

ullio Levi-Civita. In 1915, tensor was used by Albert Einstein in

eneral relativity theory for explaining geometric and causal struc-

ure of space-time and definition of concepts such as distance, vol-

me, curvature, angle, future and past. The first principles of ten-

or decomposition [14] were founded by American mathematician

rank Hitchcock in 1927. Complex and multiway structure of hu-
an behaviors was probably the first motivation for use of tensors

n data analysis. Psychologists such as Raymond Cattell, Ledyard

ucker and Richard Harshman were pioneers in extending ten-

or decomposition applications in psychology during three decades

rom 1940s to 1970s. In 1981, tensor decomposition was introduced

y Appellof and Davidson to the Chemometrics community. The

rst applications of tensors in anomaly detection appeared in this

ommunity almost a decade later. The work of Nomikos and Mac-

regor [12] about multi-way batch monitoring was a pioneer in

otivating tensor (multiway) methods in the monitoring and fault

etection problems. The modern application of tensors in anomaly

etection appeared a decade ago in a series of articles from Ji-

eng Sun and colleagues [15–17] who had a major contribution to

he growth of TAD research. Nowadays, TAD’s application has been

idespread in wider areas, including environmental monitoring,

ideo surveillance, network security, social networks, text-based

ystems, neuroscience, remote sensing, engineering and other do-

ains. In the following, some of these applications are discussed

n more detail (See Table 2 for summary). 

.1. Process control 

The first footprint of tensor(multiway) methods as earlier men-

ioned can be seen in the monitoring of batch processes. The com-

on objective in operating batch processes is to achieve value-

dded products of high-quality with competitive prices. The goal

f the batch process analysis is to understand the major sources of

atch-to-batch variations [12] , real-time detection of faulty batches

nd use it to improve the operation policies. 

Tensors are very popular monitoring techniques in production

f chemicals and other manufacturing applications. Examples are

olymerization processes [32–35] , semiconductor etching process
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[36–38] , manufacturing pharmaceutical materials [39,40] , wastew-

ater treatment [41] , bioprocesses [42] , fed-batch fermentation pro-

cess [40,43–45] , nuclear waste storage tank monitoring [46] and

winemaking process [47] . 

In the majority of these applications, the typical tensor is a

three-order tensor of I (batch) × J (measurement) × K (time)

which usually is unfolded in batch or time mode. Therefore, usu-

ally the matrix of I × JK or J × IK is processed which is called

respectively batch-wise and time-wise unfolded matrix. The main

goal of tensor-based batch processing is to identify the abnormal

batches or time instants. 

2.2. Environmental monitoring 

Thanks to recent advances in sensor technologies, it is feasi-

ble to analyze tens of ecological parameters through different lo-

cations and times. The need for tensor analysis has emerged in

this domain, mainly due to existing spatiotemporal variations in

such data. Identification of locations or time periods related to ab-

normal measurement is the main goal of this application. Tensors

have recently been applied in water quality monitoring [2,48–52] ,

air pollution control [18,53] and monitoring of soil quality [54,55] . 

The multi-way data in these applications follows a general

scheme of variables × sampling site × sampling time where the first

dimension normally includes the chemical (e.g. oxygen rate), phys-

ical (e.g. temperature) and biological parameters (e.g. faecal col-

iforms) measured by the sensors. 

2.3. Video surveillance 

Identification of time instants in video surveillance cameras is

of great interest in public security for the prevention of terror-

ism/crime activities. Tensors are natural data models for video data

and therefore can provide more accurate framework for abnormal

activity discovery. Video data can be represented as a 4D tensor of

RGB color × image row × image column × time or a 3D tensor of im-

age row × image column × time . The most relevant works that use

tensor model for anomaly detection are [19,56] which apply TAD

in video surveillance cameras. [57] also model 3D video as tensor

for human action recognition. A tensor-based approach is proposed

in [58] for real-time tracking of moving points from infrared image

sequences. Some other works [5,59,60] also use tensors for object

tracking in video data so that these works are versatile enough

to be adapted for anomaly detection purposes. Some methods like

[61,62] exploit tensors respectively, for crowd density estimation

and motion recognition that can be useful for anomaly detection

as well. 

2.4. Network security 

Computer-based systems are at risk from various attacks and

malicious activities. Anomaly detection in these networks has been

for long years the center of attention by many researchers. Tensors

are powerful tools for anomaly detection in these networks. The

reason is that a tensor can easily model the dynamic of traffic ma-

trices that requires extra dimension of time. Moreover, in network

security application it is very difficult to obtain labels for abnormal

situations. Usually only the history of normal operation is available.

Therefore semi-supervised and unsupervised tools such as tensor

decomposition can be adequate tools. 

There is no unique tensor data structure for analysis of net-

work data. The majority of works use the origin × destination ×
time scheme. This format is used for analyzing a wide range of net-

work data such as TCP/IP network, emails, phone calls, IP-TV and

World Wide Web (WWW). For instance, in TCP/IP network, the two
ost popular models used are SourceIP × TargetIP × Time [16,63–

5,65,66] and SourceIP × TargetIP × Port × Time [16,20] . In email

r phone call networks the tensor models are constructed in the

cheme of Sender × Recipient × Time [16,63,67–69] . There exists

nother type of works that model the interaction of user with the

ystem. Examples are IP × URL × User × Time [70] and Users ×
RL × Time [71] in web-access log data and User × TV Program ×
ime in IP-TV system [72] . Anomaly detection from Internet net-

orks are also addressed in [73] . The authors propose a method

ased on tensor decomposition for finding the source of distur-

ances originated in the network elements in a large Internet net-

ork. A three-order tensor model of VP × AS × time is introduced

here VP denotes the vantage point and AS refers to a network

lement. The built model is then used to track large earthquakes

ccurred during the network activity. 

.5. Social networks 

Social networks are a special case of general networks where

odes of networks are mostly live agents (e.g. humans) and the

dges show the interaction of these agents. Tensors are normally

sed for the detection of anomalous people, links and communi-

ies which is obtained by taking into account their long term be-

avior over time. The general tensor model for this task is person ×
erson × time . One of the popular tensor-based practices is related

o the analysis of anomalies in electronic discussion network data

et such as ENRON [16,17,67–69,74,75] . Tensors are used in analysis

f Facebook data [20] , phone calls [63] , location-based social net-

orks ( user × location × time ) [76] and analysis of physical social

etworks such as face-to-face contacts of individuals [77] . Apart

rom the traditional model, [78] proposed new tensor models such

s nodes × measures × time and communities × measures × time

or dynamic social networks where measures such as betweenness

nd degree closeness are computed from social network in each

napshot. 

.6. Text-based systems 

Tensors are used for modeling the user/topic evolution in text-

ased systems. The constructed models are later applied to event

nd anomaly detection or co-clustering. The general tensor model

or textual data analysis is user × keyword × time . Such model is

sed for anomaly detection from Twitter data [21] and analysis of

hatrooms [9] and bibliographic data ( author × keyword × time )

16,17,68] . The tensor-based topic modeling techniques such as [71]

lso show potential regarding text-based event detection. 

.7. Neuroscience 

The brain is one of the complex systems that produces a rich

ource of multiway data. The reason is that every occurring ac-

ivity in the brain is managed via different regions of the brain

uring a specific period of time. Therefore, brain data is inherently

patiotemporal. The two well-known tools for capturing the brain’s

ctivities in a machine-readable format are Electroencephalography

EEG) signals or Functional Magnetic Resonance Imaging (fMRI).

he data being generated from these tools is analyzed via ten-

or models to detect abnormal activities or patterns in the brain.

or instance, tensors are used to find the responsible regions for

enerating the abnormal neural activity resulting in the initial

eizure discharge [22,79] . The information obtained from this anal-

sis is very helpful for the success of an epilepsy surgery. Different

rom the above-mentioned application, tensors are used for men-

al workload monitoring of operators in safety-critical applications

e.g. controlling the Unmanned Air Vehicle (UAV) [80] ). 
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The general tensor model for EEG data is frequency × chan-

el × time [22,79–82] . If measurements are recorded across dif-

erent subjects or conditions, extra dimensions can be added to

he simple model. These kind of higher-order data structures are

ostly used for classification purposes. For instance, in [83,84] ,

ulti-subject EEG data is modeled as a fourth-order tensor of fre-

uency × channel × time × subject . Likewise, EEG data is mod-

led as a fifth-order tensor frequency × channel × time × subject

condition [82] . Note that the tensor models does not operate di-

ectly on EEG raw signals, instead, a preprocessing step (usually

ia wavelet transformation) is required to transform the raw EEG

ignals to EEG tensors [82] . 

Tensors are also applied to fMRI data analysis. fMRI images

an be used to detect brain regions that have been damaged by

arious neurodegenerative diseases such as Alzheimer and Parkin-

on. A typical fMRI scan image may contain 6 4 × 6 4 × 14 voxels

3D equivalent of pixels) sampled at different consecutive time in-

tants, producing a single matrix. Multiple scans on a given subject

enerate a higher-order tensor of voxel × time × runs which is usu-

lly used in fMRI data analysis [10] . Scans can also be performed

or multiple subjects resulting in voxel × time × subjects [10] . The

ensor model can have extra dimensions such as trials (e.g. rest,

nger tapping, etc.) resulting in a fourth-order tensor of voxel ×
ime × trials × runs [85] . 

.8. Remote sensing 

Nowadays, with the aid of hyperspectral imaging technology we

re able to capture spectral images with a different range of spec-

ra. We can create multiple images of a scene or object via light

rom different parts of the spectrum. Furthermore, these hyper-

pectral images can be used for target and object detection and

dentifying materials from long distances and of course anomalies. 

The simplest tensor model used for hyperspectral images is

 third-order tensor of spatial rows × spatial column × wavelength

hat is used for target detection and classification [23,86,87] or for

pace object material identification [88] . The more advanced ten-

or models are those used by [89] who add two extra dimensions

o the hyperspectral tensor. The new model which is called multi-

eature-tensor representation is a fifth-order tensor of spatial rows

spatial column × wavelength × scale × direction which scale and

irection are the parameters of the Gabor function, chosen as con-

tant numbers. The Gabor function is a popular technique for tex-

ure representation and discrimination in image processing. 

The other dimension that can be added to the simple model

s time. The majority of remote sensing techniques are based on

he assumption that the spectral signature of objects is persis-

ent and uniform over time, which might not be true. Therefore,

 new model called multi-temporal hyperspectral tensor, denoted

y spatial rows × spatial column × wavelength × time is proposed

n [90] . This model is obtained by combining multiple hyperspec-

ral images obtained at different time instances. It is considered

s a new generation model of soft sensors in the remote sensing

ommunity. 

.9. Sensors 

One of the potential applications of tensors is anomaly detec-

ion in sensor networks which uses the same tensor model as

nvironmental monitoring differing in the speed by which sensor

ather data and are mostly used in real time monitoring. The sen-

or networks are modeled as third-order tensor of measurements ×
pace × time in [15,17,91] . In some other circumstances, sensors

ay gather some information from people. The scheme of the ten-

or in this condition is persons × measurements × time . For in-

tance, in [92] six measurements are gathered from 20 people dur-
ng a period of 255 h in an office environment. Then via tensor

ecomposition, some meaningful events are detected which have

een linked to some regular events such as lunch break or general

eeting or a monthly seminar. 

.10. Engineering 

Tensor decomposition has been used in civil engineering [26,93]

or detection of abnormal changes in the structure vibration re-

ponse. Different sensors are employed in different parts of the

tructures and their vibration responses are measured during a pe-

iod of time. Therefore, the tensor model is represented as space ×
ime × frequency . 

Application of tensors in metallurgy engineering can be seen in

25] where tensor decomposition is used for fault detection in the

ot strip mill, specifically for damage on the surface of coils. The

ata generated from ASIS (automatic surface inspection system) is

odeled as a third-order tensor of Coils × PSD × frequencies where

SD (power spectrum densities) and frequencies are obtained via

utoregressive processes of several signals modeled by Fast Fourier

ransform (FFT). 

An example from the mechanical engineering domain can be

bserved in [6] where tensors are applied to detect damage in sen-

itive artefacts such as aircraft wing flap. The main problem in air-

raft wing flap includes barely visible impacts on its surface. To

eal this problem, the authors propose a new multiway model for

etection of damages via monitoring multiple sensors. They sug-

est a tensor scheme of experiment × sensor × time for the analysis

ask. 

The electrical engineering community has also used tensors for

oltage sag detection in power distribution networks [27] . The ten-

or model of experiments × variables × time is proposed which

ater is unfolded time-wise to detect sag points. 

The robotic engineers also used tensors for prediction of fall

p in walking robots [94] . Inspired by the tensor-based batch pro-

ess monitoring, they model the non-linear trajectory of walk-

ng robots and suggest a third-order tensor of trajectory slices ×
caled state variables ( e.g . position , angle ) × time for fault detection. 

.11. Transportation systems 

Traffic data ( Origin × Destination matrix) is frequently used for

raffic planning and management in intelligent transportation sys-

ems. Tensor decomposition has been used on the tensor Origin ×
estination × Time for discovery of spatiotemporal traffic structure

24,95] that has important applications to urban planning and traf- 

c jam control. Sometimes the collected data might also be abnor-

al due to failures in the collection process and recording systems.

his problem which is known as outlier recovery is addressed in

96] with tensors. Tensors also are used for prediction of missing

alues in traffic tensors (known as tensor completion) [97] . 

.12. Medical applications 

Tensors are exploited for analysis of electronic medical records.

n [98] a change detection system is developed for pain manage-

ent decision making. A collection of medical forms completed at

arious treatment and recovery stages are modeled as a sixth-order

ensor of initial pain × initial infusion × sex × surgery site × pain ×
onth and based on that some interesting change patterns are de-

ected. Tensor decomposition is also applied to electronic health

ecords (EHR) for prediction of heart failure [28] . A tensor model

f Medication × Patient × Diagnosis is used for this purpose. Ten-

ors are also used in bio-informatics for modeling micro-array gene

xpression tensors ( gene × sample × time ) that can be used for

iagnosing diseases [99] . Tensor decomposition has recently been
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Table 3 

Existing and potential learning techniques for tensor-based anomaly detection. 

Model Category Examples 

Supervised Dimensionality reduction based Categorical target [26,93] 

Numerical target [30] 

Classification based Support tensor machines [89] 

Supervised tensorLearning [111] 

Tensor least square [112] 

Multilinear discriminant analysis [114] 

Factorization machines [115] 

Tensor subspace learning [116] 

Regression based Multiway PLS (N-PLS) [108] 

Tensor ridge regression [121] 

Support tensor regression [121] 

H-MOTE [123] 

Tensor regression [122] 

Time series based Multilinear dynamical systems [124] 

Greedy low-rank tensor learning [125] 

Tensor hidden Markov model [126] 

Tensor time series models [127,128] 

Tensor singular spectrum analysis [129] 

TriMine [71] 

Semi Supervised Monitoring of decomposition statistics (SPE, T2, etc.) [18,25,35,39,40,44,45,94,118,119,130–132,134–136] 

Eigenspace based [29,100] 

Un-supervised Analysis of score-plots 1D [32,76,77] 

2D [18,37,64,83] 

3D [64,100] 

Latent factors time series [48,67] 

Multivariate-SPC on multiple latent factors [95] 

Streaming residuals Dynamic tensor analysis [16,59,98,101] 

Window-based tensor analysis [15] 

Spatio-temporal tensor streams [91] 

Histogram based [133] 
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exploited in epidemiology for detection and spotting disease out-

breaks [29,100] . A third order tensor of Space × Time × Indicators

is suggested for the monitoring task. 

2.13. Other applications 

Many other applications from tensor-based methods have ap-

peared in recent years, in particular during the last five years that

are inherently different from the traditional applications of tensors.

In [11] spectral changes of substrates and products are monitored

in real time via modeling temporal evolution of enzyme activity

with third-order tensor of wavenumber × time × activity . Tensor

analysis is applied for tracking the analysis of proteins. In [101]

authors use tensor analysis to model the deviations of contacts be-

tween residues and their environment with respect to each other

(i.e., relative behavior) as well as with respect to time (i.e. tem-

poral behavior). The tensor model used in this work is in scheme

of contract matrix × time where the contact matrix A ij ( t ) represents

the normalized value of the number of heavy atoms in residue i

coming in contact with the heavy atoms in residue j at time t . 

A dynamic pattern of international trades and the asymmetric

relations between countries is studied in [69] which can poten-

tially be applied for anomaly detection (e.g. economic crisis). 

Tensor decomposition has applications in seismology. A third-

order tensor of space × time × frequency is built in [30] for the pre-

diction of ground motion after earthquake. Time-frequency com-

ponents are obtained by transforming of acceleration records of

earthquake ground motions with continuous wavelet transform. 

Tensor decompositions are used for analysing climate tensors

climate indicator × grid × time [102–104] which makes them capa-

ble techniques for prediction of climate changes. 

Tensors are used for crime forecasting [31] . A fourth-order ten-

sor of longitude × latitude × time × measurements is used for this
urpose where measurements refer to criminal activities such as

esidential burglaries, construction permits, motor vehicle larceny,

ffender data, etc. 

One of the recently emerged topics in anomaly detection is

coustic anomaly detection in which several acoustic sensors are

onitored for event detection. Acoustic anomaly detection can be

sed, for instance, in safety monitoring of nuclear power plants

105] . Unfortunately, although tensor decomposition shows great

otential, is not yet used for this purpose, whereas we can find

orks that model voice data as a third-order tensor of rate × scale

frequency [106,107] or rate × time × frequency [4] . These tensor

odels might be used for acoustic anomaly detection. 

. Tensor-based anomaly detection: existing and potential 

ethods 

Tensor methods are better known for unsupervised and semi-

upervised learning. However, in recent years, many supervised

ensor learning methods and tensor time series models have been

eveloped. Some of these recent techniques are not yet used for

nomaly detection, but might prove themselves useful for this pur-

ose. Table 3 presents the summary of these methods with cor-

esponding references. In the following, these strategies are de-

cribed in more detail. 

.1. Supervised models 

Perhaps we can seek the first footprint of using tensors in su-

ervised anomaly detection in Multiway PLS models [108] . The

econd important role of tensors is in dimensionality reduction for

lassification problems. Nowadays, more supervised tensor-based

earning methods are developed. Some of these techniques, in spite

f their potential for anomaly detection, are not yet applied for this
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pplication. The goal of this section is to provide a structured list

f existing and potential approaches. 

.1.1. Tensor decomposition for dimensionality reduction 

In this category of supervised models, tensor decomposition is

sed as a dimensionality reduction tool for feature extraction (a

ore advanced alternative for matrix-based dimensionality reduc-

ion solutions such as PCA). Depending on the target value, meth-

ds can be grouped in two categories. 

In the first group of methods [26,93,109] , it is assumed that we

ave two sets, train and test, where train set contains normal sam-

les. Tensor decomposition is applied on the normal tensor as a di-

ensionality reduction tool. Then, one of the factor matrices (usu-

lly time) is fed to a regular classifier (e.g. k-nearest neighbors or

VM) for making a model from the normal samples. 

The goal is to predict the labels of the observations in the test

et. Therefore, the built model from train set is used to predict the

abel (normal or abnormal) of observation in the test factor matrix.

or instance, in [26,93] , a PARAFAC decomposition with k number

f components is applied on the space × time × frequency tensor

orresponding to the normal samples and then the derived time

actor matrix is trained via k-NN (features are the latent variables).

he built model is then used for classification of time points in

he arriving data. In other related work, a combination of PARAFAC

nd self-organizing map (SOP) is used [90] for classification of sig-

atures of multitemporal-hyperspectral images. 

The second group of methods [30] follows the same procedure

s the former, but instead of binary labels (abnormal/normal) a

umeric target is given for prediction. Therefore, regression mod-

ls are replaced with categorical classifiers. Targets can be single

r multiple variables. For instance, in [30] the authors propose to

rain a GRNN (generalized regression neural networks) on the ten-

or subspace latent variables for prediction of multiple seismolog-

cal variables. They used this method for prediction purposes. This

ind of approaches can be easily extended for anomaly detection.

 further step, however, is required. For instance, the difference of

redicted and actual values can be used along with a threshold to

etect anomalies. 

Note that tensor decomposition is not necessarily used as di-

ensionality reduction tool in classification tasks. Rather, it can

erve along with various other tasks such as case-based reasoning

6] and clustering [72,110] . 

.1.2. Tensor classifiers 

Tensor classifiers are those that adapt regular classifiers for ten-

orial data. In these methods, data is trained directly via tensor-

ased classifier and then the built model is used for prediction.

 binary tensor classifier has a great ability for anomaly detec-

ion from multiway data. A good example for this category is a

ethod presented by Zhang et al. [89] where SVM (support vec-

or machines) is extended to STM (support tensor machines). The

ew tensorial classifier is trained directly with the tensorial data

f specific objects and then the built model is used for target de-

ection. In another work [111] , a general framework called Super-

ised Tensor Learning (STL) is proposed that adapts many conven-

ional machine learning methods to take higher order tensors as

nputs. This model is successfully tested for binary classification

roblems which can be very useful for anomaly detection. In [112] ,

n addition to another version of STM a new method is also pre-

ented called Tensor Least Square (TLS) which is the extension of

east square classifier. A new type of STM is also presented in [113]

hich is applied for gait and action recognition. 

Multilinear discriminant analysis (MDA) [114] is also proposed

or tensor-based image classification that is an extension of Linear

iscriminant analysis (LDA) for tensor data. Factorization machines

115] is another method for tensor-based classification that extends
VM for tensors using PARAFAC which is motivated for SVM diffi-

ulty in collaborating filtering problems. Tensor classifiers are also

nown as supervised multilinear subspace learning in image pro-

essing community. The recent survey paper [116] covers the ma-

ority of advances for tensor subspace learning. 

.1.3. Tensor regression 

The first tensor regression models emerged in the 1980s from

he Chemometrics community as the traditional name of N-PLS or

ultiway PLS [117] . In these techniques which are widely used for

nomaly detection [33–35,50,108,118–120] a model is built based 

n the relationship of the input tensor (X) to some quality mea-

urements (Y). That model is then used for predicting the quality

easurements of new tensors. Deviations of predicted target vari-

bles from the normal reference are interpreted as abnormal be-

avior. 

Apart from the traditional multiway regression models, some

ovel techniques have been recently developed in different re-

earch communities. One is [121] that proposes two tensor re-

ression models called tensor ridge regression (TRR) and support

ensor regression (STR) that respectively extend vector regression

odels such as ridge regression (RR) and support vector regression

ia some properties of PARAFAC model. The authors apply these

ethods to facial data for human-age estimation and head/body-

ose prediction. These methods can be quite interesting for a cou-

le of problems in TAD. 

Another tensor regression model is proposed in [122] which is

otivated by some problems in brain imaging where observed bi-

ary diagnosis status (Y) is required to be modeled based on the

MRI images as an input tensor (X). The proposed tensor model is

sed to identify regions of interest in brains that are relevant to a

linical response with applications for detection of brain diseases,

ncluding Attention Deficit Hyperactivity Disorder and Alzheimer. 

Moreover, Zhu et al. [123] proposes a tensor-based regres-

ion algorithm called H-MOTE that is capable to incorporate back-

round knowledge into the model. This model is used for predic-

ion of wafer quality in semiconductor manufacturing. 

.1.4. Tensor forecasting 

Tensor forecasting is an extension of vector time series models

or multiway time series. The procedure for anomaly detection is

he same as in univariate ones. A model is built for tensor time

eries and then based on that model, future tensors are predicted.

n the subsequent moment, if the tensor has a considerable differ-

nce with the predicted tensor, it is marked as an anomaly. Differ-

nt methods are developed for tensor forecasting. In [124] a model

alled Multilinear Dynamical Systems (MDS) is proposed, which is

 tensorial extension of linear dynamical system (LDS). Detection

f the market collapse and climate change are introduced as ap-

lications of this methodology. Another tensor forecasting method,

amed Greedy Low-rank Tensor Learning is proposed in [125]

hat is applied for forecasting tensor time series such as climate

ensors. 

Some time series analysis tools are also extended for tensors.

or instance, a tensor-based Hidden Markov Model (HMM) ap-

roach is proposed in [126] and is used for fault detection and

rediction. Some ideas in time series analysis, such as weighting

nd averaging are also extended for tensor analysis in [127,128] .

he tensor version of singular spectrum analysis (SSA) is also pre-

ented in [129] , replacing SVD with PARAFAC in regular SSA and is

pplied for a non-stationary source separation of seizure signals. 

An innovative approach called TriMine [71] is also proposed for

ensor forecasting in the context of topic modeling. In the pro-

osed methodology, a train tensor data is decomposed as a regular

ensor decomposition and then based on the obtained time factor

atrix, the next factor matrix is predicted with different scales.
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Fig. 1. Left) Tucker3 Decomposition: the third-order Tensor X is decomposed to a smaller core tensor and three factor matrices. Right) CP/PARAFAC decomposition: a third- 

order tensor X is decomposed to three factor matrices. 
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Later, the new predicted time factors are multiplied by other two

dimensions to construct the tensor forecast for both short-term

and long-term. This approach seems promising for multi-scale

anomaly detection and prediction. 

3.2. Semi-supervised models 

Semi-supervised methods are twofold. The first group is origi-

nated in online fault detection from batch processes where a train

tensor model corresponding to normal operation condition (NOC)

is usually constructed. Then, arriving data is monitored to detect

deviations from NOC model using statistics such as Squared pre-

diction Error (SPE) or Hotelling T 2 chart [12] . Examples of this cat-

egory are explained in [12,44,45,118,130–132] . There exists another

group of methods that instead of the above statistics monitor the

angle between Eigenvectors or Eigenvalue magnitudes in the test

set in comparison with the train set. Examples of this category are

explained in [29,100] . 

As semi-supervised models impose less human intervention,

they are more desirable comparing to supervised methods. In

many applications such as process control or network security, la-

beling data for each time instant is infeasible. Therefore, this model

presents superior flexibility and simplicity. 

3.3. Unsupervised models 

Tensors are better known for unsupervised learning in problems

such as co-clustering and anomaly detection. In this section, the

popular unsupervised methods are described. 

3.3.1. Score plot-based 

The most traditional use of tensor decomposition in anomaly

detection is with score plots obtained from the decomposition that

are analyzed manually or automatically for anomaly detection or

clustering. Score plots can be 1D (only one factor) [32,76,77] , 2D

[18,37,64,83] and 3D [64,100] . If the latent factor is time, some

factors might be presented as a multivariate time series [48,67] .

Sometimes this multivariate time series may also be monitored

automatically with multivariate SPC methods such as Hotelling T 2 

[95] . 

3.3.2. Streaming decomposition error-based 

This group of methods is composed by those streaming decom-

position methods that operate on data incrementally without the

requirement for a train set. They monitor the decomposition re-

construction error for each tensor in each time instant. Anomalous

time instant is the one which corresponding reconstruction error

goes beyond a pre-defined threshold (e.g. twice standard deviation

of errors so far). Examples are given in [5,16,17,56,59,91] . 

3.3.3. Histogram-based 

Fanaee and Gama [133] proposed an efficient multi-aspect-

streaming tensor analysis approach called MASTA based on online

histograms. In this approach, the whole tensor is vectorized and
s simultaneously segmented into slices in each mode. Then the

istribution of each slice is compared versus the vectorized tensor

sing a standard metrics such as Earth Mover’s Distance. The used

ogic is that tensor information is distributed over slices in each

ode. By matching slices with the reference distribution, similar

lices can be identified as well as anomalous slices. 

. Tensor decomposition 

Traditional data analysis techniques, such as the PCA, clustering,

egression, etc. are only able to model second-dimensional data

nd they do not consider the interaction between more than two

imensions. However, in several real-world phenomena, there is a

utual relationship between more than two dimensions, in par-

icular, when the time dimension is added to the problem. Ten-

or (Multi-way) data analysis considers all mutual dependencies

etween the different dimensions and provides a compact repre-

entation of the original data in lower dimensional spaces. The

ost common multi-way analysis techniques are that of Tucker

137] and CP/PARAFAC [138,139] , which are generalized versions of

CA or, more specifically, Singular Value Decomposition (SVD) for

igher order matrices. 

Among many types of tensor decomposition approaches, Tucker

nd PARAFAC/CP models are the most used ones. Tucker decompo-

ition approximates a large tensor by a product of a smaller ten-

or with predetermined dimensions (called core tensor), multiplied

y factor matrices in each dimension (See Fig. 1 Left). Formally, the

roblem can be defined as an optimization problem [140] : Given

 tensor X ∈ R 

n 1 ×n 2 ×... ×n d , find a core tensor G ∈ R 

r 1 ×r 2 ×... ×r d with

re-defined integers r i with 1 ≤ r i ≤ n i for i = 1,2,…, d. and factor

atrices A 

(i ) that optimizes 

in 

∥
∥X − G ×1 A 

(1) ×2 A 

(2) 
... ×d A 

(d) 
∥
∥ (1)

ubject to: 

G ∈ R 

r 1 ×r 2 ×... ×r d , 

A 

(i ) ∈ R 

n i ×r i , ( A 

(i ) ) T A 

(i ) = I, i = 1 , 2 , 3 . 

In the above model, d represents the dimension of the ten-

or (e.g. For three-dimensional tensor, d = 3) and r 1 , r 2 , ..., r d ( i =
 , 2 , ..., d) are model input parameters (core size). The simplest al-

orithm for finding matrices A 

(d) and G is a method called High-

rder SVD (HOSVD) [141] where firstly tensor is unfolded into

ower-order matrices over all its modes(e.g. unfolding I × J × K

ensor to I × JK or J × IK or J × IK matrices) and then SVD is inde-

endently performed on each matrix (e.g. I × JK matrix) . The more

ophisticated approach is high-order orthogonal iteration (HOOI)

142] that uses alternating optimization to find better projection

atrices iteratively. In the HOOI algorithm, HOSVD can used for

etter estimation of the initial elements of A 

(d) and G. 

PARAFAC/CP also is a special case of Tucker model where

he core tensor is super-diagonal. Therefore, obtaining (1) for

ARAFAC/CP is straightforward. Although, there exist other kinds of

ecomposition models, the algorithmic details of these kind of ap-

roaches is out of the scope of this survey. However, the interested
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Table 4 

Methods for tensor decomposition and applications to anomaly detection. 

Family Method Anomaly detection example 

Tucker Multiway PCA (Tucker1) [46] [25,25,27,27,39,39,44,47,94,110,134,135,147–149] 

GTucker2 [150] [150] 

Tucker3 [137] [2,2,3,9,4 8,4 9,53,72] 

Non-negative Tucker [151,152] [24,83] 

HOSVD [141] [8,29,61,153] 

PARAFAC PARAFAC [138] [3,10,11,26,30,49,63,73,76,80,81,90,154] 

Non-negative PARAFAC [143] [20,67,77,84,144] 

PARAFAC2 [145] [37] 

Dynamic PARAFAC [35] [35] 

CP-APR [146] [70] 

DEDICOM [155] [69,156] 

Bayesian EM-based (pTucker [157] , ETF [158] , InfTucker [75] ) [75,92,158] 

MAP-based (ARD [159] , FBCP [160] ) 

Gibbs sampling (Multi-HD [161] , BTA [162] , BPTF [163] , TriMine [71] , MGP-CP [164] , sp-PARAFAC [165] ) [71] 

LPP TLPP [166,167] [40,58] 

TGLPP [168] [168] 

ICA Tucker1-based ( MICA [45] , MKICA [169] , FS-MKICA [132] ) [45,132,169] 

Tucker3-based [104] [104] 

PARAFAC-based [85] 
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eaders are referred to [13,142] for more technical details about

hese models. 

In the following we list the six main categories of methods

or tensor analysis that can potentially be used for anomaly de-

ection, including PARAFAC-based, Tucker-based, DEDICOM-based, 

ayesian, Locality Preserving Projection (LPP) based and ICA-based.

able 4 demonstrates the summary of existing techniques. 

.1. PARAFAC-based 

.1.1. PARAFAC 

PARAFAC/CP has been the most used decomposition model

mong other models. The reason is probably the similarity of im-

lementation and interpretation, such that PARAFAC as PCA re-

uires only one user input which is the number of components.

ARAFAC model is applied in wide range of anomaly detection

asks in various domains. For example see [3,11,26,49,73,81] . 

.1.2. Non-negative PARAFAC 

One of the important issues in tensor decomposition is that el-

ments in factor matrices can get negative values. These negative

cores cannot be justified with the our physical knowledge (e.g.

MRI tensors). This might not be a problem when we want to work

irectly on eigenspace, but might be a constraint when we want

o perform our analysis on the obtained components. This problem

s mostly motivated by the chemometrics and neuroscience com-

unity where the output of tensor decomposition requires to be

nterpreted by a specialist. PARAFAC model with non-negative con-

traint is called non-negative PARAFAC or non-negative tensor fac-

orization (NTF) which was presented for the first time in [143] .

owadays, NTF has become remarkably popular due to its mean-

ngful and physical interpretation, especially in manual score-plot

ased anomaly detection [20,67,77,84,144] . 

.1.3. PARAFAC2 

In some specific circumstances as occur in batch monitoring,

 tensor with uneven-length slices appears. For instance, in batch

onitoring with tensor of batch × measurement × time , the matrix

easurement × time can be of different length for each batch due

o different elapsed time for the batch. PARAFAC2 [145] which is

n extension of PARAFAC provides a solution for such problems. It

s used in [37] for fault detection from batch tensors with unequal
ime axis and its superiority over regular PARAFAC and Tucker is

hown. 

.1.4. Dynamic PARAFAC 

A procedure called DPARAFAC (dynamic parallel factor analysis)

s introduced in [35] for online fault detection in process monitor-

ng. This methodology includes two phases: learning and detection.

n the learning phase, we are given the data of normal operation

ondition (NOC). Each slice of the NOC tensor (matrix measurement

time ) is segmented into different equal-length windows in the

ime axis. Then all the segments together form a new tensor ( mea-

urement × window × time ). PARAFAC is then applied on this ten-

or for each batch and loadings are obtained. The average of factor

atrices for each window is obtained for all batches. Later, some

tatistics such as T 2 and control limits are computed for each time

oint. In the detection phase, when new batches of data arrives, it

s arranged as the previous procedure, and is then projected onto

he previous under-control subspace to assess its degree of abnor-

ality. 

.1.5. Poisson tensor factorization 

Poisson tensor decomposition (PTF) [146] , also known as CAN-

ECOMP/PARAFAC Alternating Poisson Regression (CP-APR) uses a

ew fitting algorithm based on Kullback–Leibler (KL) divergence

nstead of common ALS fitting algorithm in PARAFAC. The idea of

uch approaches is that count data can be better described by a

oisson distribution rather than Gaussian distribution. This model

s suggested for anomaly detection from count data [70] . 

.2. Tucker-based 

.2.1. Tucker1 

Tucker1 or Multiway PCA (MPCA) is the first

ensor model used for TAD in many applications

25,25,27,27,39,39,44,47,94,110,134,135,147–149] . Tucker1 is used 

hen variance is only important in one dimension. Therefore,

he tensor is usually unfolded through one dimension and then

egular PCA is applied to the unfolded data. For instance, in batch

onitoring, Tucker1 model is used on batch-wise or time-wise

nfolded matrices. 



138 H. Fanaee-T, J. Gama / Knowledge-Based Systems 98 (2016) 130–147 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

i  

b  

i  

[  

p  

R  

i  

a  

s  

(  

d

4

 

d  

A  

p  

h  

t  

s  

a  

w

 

s  

p  

p  

j  

b  

c

4

 

t  

h  

a  

t  

i  

t  

a  

t  

l

4

v

 

p  

o  

c  

v  

a  

c  

[  

p

 

[  

v  

d  

G  

a  

u  

[

4.2.2. GTucker2 

Tucker2 model is barely used for anomaly detection. Only very

recently a generalized version of Tucker2 called GTucker2 was pro-

posed [150] for fault detection from tensors with unequal slice

lengths. GTucker2 is equivalent to PARAFAC2, such that PARAFAC2

can be viewed as a constraint version of GTucker2. In [150] the

superiority of GTucker2 is shown over Tucker1, PARAFAC, Tucker3

and PARAFAC2 on this specific problem. 

4.2.3. Tucker3 

The other model which promises more flexibility is known as

Tucker3. This model as is presented in the previous section is

normally used when there is multiway variations in all modes

[2,2,3,9,4 8,4 9,53,72] . For instance, for water quality tensors, we

are interested in discovering abnormal locations, time instants and

measurements that are more correlated to anomalies. Therefore,

Tucker3 is the preferred model [2] . 

4.2.4. Non-negative Tucker 

There are some extensions of NTF for Tucker decomposition,

called Nonnegative Tucker decomposition [151,152] . The NTF is

used for modeling EEG tensors [24,83] performing better than NMF

(non-negative matrix factorization) in some circumstances. 

4.2.5. HOSVD 

Higher-order singular value decomposition (HOSVD) is a gener-

alization of SVD for higher-order tensors. HSOVD can be viewed as

a special case of the Tucker3 model when ALS optimization is not

performed, rather the tensor is unfolded across different modes

and then regular SVD is applied on the unfolded matrices. There-

fore, HOSVD does not provide the best approximation of a tensor,

it is rather used as an initialization step in Tucker3 for reducing

the number of iterations in ALS procedure [13] . 

4.3. ICA-based 

Independent component analysis (ICA) is a popular method for

decomposing a multivariate signal into additive subcomponents.

The basic assumption in ICA is that subcomponents are indepen-

dent, non-Gaussian signals. Extension of ICA for tensors is available

for Tucker1 (MPCA) [45,132,169] , Tucker3 [104] , and PARAFAC [85] .

All these methods except the latter one are applied for anomaly

detection. 

4.4. DEDICOM-based 

DEDICOM (DEcomposition into DIrectional COMponents)

[145,155] is a generalization of PARAFAC2 for discovering asym-

metric relationships between two modes that refer to the same

type of object (e.g. transactional data). This model has been found

to be effective in temporal analysis of social networks [69,156] .

Therefore, it can be used for event detection goals in similar

scenarios. 

4.5. Bayesian methods 

Traditional tensor decompositions are unable to handle is-

sues such as missing values, outliers, noises and different data

types. Recently, probabilistic methods started to be taken into

consideration due to their flexibility and less restrictive assump-

tions. They are successfully applied to anomaly detection problems

[71,75,92,158] and is expected that the number of their applica-

tions be increased in near future, especially when the majority of

these approaches can estimate the tensor rank during the decom-

position process. 
Bayesian approaches, based on the means of used statistical

nference can be divided into three categories. The first group is

ased on the Expectation maximization (EM) algorithm, includ-

ng pTucker [157] , Exponential Family Tensor Factorization (ETF)

158] and Infinite Tucker (InfTucker) [75] . The second group ex-

loits maximum a posterior (MAP) estimation, such as Automatic

elevance Determination (ARD) [159] and Fully Bayesian CP Factor-

zation (FBCP) [160] . Finally, the third category uses gibbs sampling

s an inference engine. Examples are Multi-HD [161] , Bayesian ten-

or analysis (BTA) [162] , Bayesian Probabilistic Tensor Factorization

BPTF) [163] , TriMine [71] , multiplicative gamma process based CP

ecomposition (MGP-CP) [164] and sp-PARAFAC [165] . 

.6. Locality preserving based methods 

Tensor decomposition methods such as Tucker and PARAFAC

o not consider the intrinsic local geometric structure of tensors.

 recent group of techniques is developed for dealing with this

roblem on the basis of locality preserving projections (LPP). It

as been shown in [40,170] that LPP-based approaches have bet-

er performance than conventional PCA-based methods which pre-

erve only the global Euclidean structure. LPP-based approaches

re more attractive when two dimensions of tensors are in a pair-

ise relationship (e.g. image data). 

The most popular method for this family is Tensor Locality Pre-

erving Projection (TLPP) [166,167] which is applied to detection

roblems [40,58] . A more sophisticated version of TLPP has been

roposed very recently, called Tensor Global-Local Preserving Pro-

ections (TGLPP) and is applied for the fault detection problem in

atch processes [168] which is able to capture both global and lo-

al structures of tensors simultaneously. 

.7. Tensor rank estimation 

The quality of the tensor model has a direct relationship with

rue model selection. Although estimation of tensor rank is an NP

ard problem [185] , in the majority of cases, an optimal low-rank

pproximation is desirable. In the majority of works discussed in

his survey, it is assumed that the number of components is known

n advance via knowledge of the underlying phenomena. However,

his might not be the case in many applications. Some approaches

re developed for estimation of optimal number of ranks for both

ensor decomposition approaches. Some of these approaches are

isted in the below subsections (See Table 5 for summary). 

.7.1. Cumulative sum of the percentage of eigenvalues or explained 

ariance 

This is the most basic method for choosing the number of com-

onents. It is mostly used for MPCA (Tucker1) models. The number

f principal components is chosen based on the cumulative per-

entage of eigenvalues or cumulative percentage of the explained

ariance. If the cumulative percentage of first k components is over

 threshold (e.g. 75%), k is selected as the adequate number of

omponents. For instance, [43] uses the eigenvalue criterion and

33,47,171,172] use cumulative variance for anomaly detection in

rocess batch tensors. 

Sometimes, instead of a threshold cut point, broken stick rule

173] is used. This approach assumes that percentage of explained

ariance (or eigenvalues) of a random data when is divided ran-

omly amongst k components follows a broken-stick distribution

 k = 

1 
p 

∑ p 

i = k 
1 
i 
. Therefore, the k- th principal component is valu-

ble if its value is greater than G k (i.e. a random PC). This rule is

sed for model order estimation of Tucker1 for anomaly detection

33,134] . 
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Table 5 

Methods for tensor rank estimation. 

Method Common use Fast Auto Application to anomaly detection 

Cumulative sum of percentage of eigenvalues [43] Tucker1 No Yes [43] 

Cumulative sum of explained variance [33] Tucker1 No Yes [33,47,171,172] 

Broken stick rule [173] Tucker1 No Yes [33,134] 

Cross-validation [174] Tucker1/ Tucker3/ PARAFAC No Yes [33,33,35,45,135,175] 

CORCONDIA [176] PARAFAC No Yes [3,18,22,26,49,77,154] 

DIFFIT [177] Tucker3 No Yes [83,84] 

FastDIFFIT [178] Tucker3 Yes Yes [95] 

Multiway scree plot [179] Tucker3 No No [2,37,49,51,53,72] 

Split-half analysis [180] PARAFAC No Yes [3,49] 

Maximum block improvement [140] Tucker3 Yes+ Yes [95] 

Convex hull [181] Generic No Yes Is not yet applied for anomaly detection but is 

used for tensor rank estimation [159] . 

Akaikes information criterion (AIC) [182] Generic No Yes 

Bayesian information criterion (BIC) [183] Generic No Yes 

Automatic relevance determination (ARD) [159] Generic Yes Yes 

Genetic algorithm [184] Tucker3 No Yes Used for noise removal [184] 
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.7.2. Cross-validation 

A popular method for finding the adequate model order in com-

onent analysis is cross validation [174] . This technique is applied

or fault detection problem in [33,35,45,135] for estimation of num-

er of components in MPCA model and its extension is presented

n [175] for Tucker3 and PARAFAC models. The basic idea of cross-

alidation is leaving out a single data element [175] , a slice [186]

r random half of a slice [187] at a time, perform tensor decom-

osition and then compute the Predictive Residual Error Sum of

quares (PRESS) = 

∑ I 
i =1 

∑ J 
j=1 

∑ K 
k =1 ( ̃

 X PQR 
i jk 

− X i jk ) for the elements

ot included in the model building. Finally, the sum of PRESS val-

es for each principal component (p,q,r) is calculated for all elim-

nated parts to compute PRESS pqr . Those (p,q,r) that give the min-

mum PRESS are considered a good model dimension. The more

ophisticated cross-validation approaches are developed based on

-statistics [175] which use F-test strategy to determine whether

n additional component is worth to adding or not. 

.7.3. CORCONDIA 

Core consistency test (also known as CORCONDIA) [176] is a

euristic method used for the determination of the number of

omponents in PARAFAC model. It is widely applied in anomaly

etection from tensors [3,18,22,26,49,77,154] . Assuming P as the

umber of components in PARAFAC model, CORCONDIA checks the

uperdiagonailty of Tucker3 model with a core size of ( P , P , P ). If

ll elements in the core tensor except those with same indices

(i = j = k ) become zero, it concludes that the PARAFAC model fits

erfectly. The procedure is as follows. First, core consistency cri-

erion is defined as the similarity percentage of Tucker3 core size

ith superdiagonal array T of ones and only then is PARAFAC fitted

or a series of models from P = 1 to F , computing core consistency

or all these models. The last model in these series which corre-

ponding Tucker3 core is similar to T is considered as the adequate

umber of components. 

.7.4. DIFFIT 

DIFFIT (Difference in Fit) [177] is a residual-based heuristic pro-

edure used for the estimation of the number of components in a

ucker model. It computes the Tucker decomposition for all sensi-

le combinations of components ( i , j , k ) and computes the model fit

s F it(m ) = 1 − ‖ X− ˜ X ‖ F ‖ X ‖ F for each potential model where ‖ . ‖ is the

robenius norm and m = i + j + k . Then the DIF(m) for m-th model

s computed as F it(m ) − F it(m − 1) and accordingly, DIFFIT is com-

uted as DIFFIT( m ) = DIF( m )/DIF( m +1). The model with the largest

IFFIT value is chosen as the most adequate model. The DIFFIT

odel has been used for estimating tensor model dimension in
EG tensors [83,84] . DIFFIT requires computing the Tucker fit for

ll combinations of components which is very time-consuming.

178] proposed a faster version of DIFFIT (so called Fast-DIFFIT)

hat requires performing a single computation of Tucker decom-

osition. [178] provide some evidence that this approach can be

ufficient as the exact solution. Fast-DIFFIT is tested for anomaly

etection purposes in [95] . 

.7.5. Multiway scree plot 

Multi-way score plot [188] projects Tucker3 model onto the

onvex hull. The most adequate model is the one on the convex

ull with less complexity and better fit. This method is used in

2,37,49,51,53,72] for tensor-based monitoring and anomaly detec-

ion. 

.7.6. Split-half analysis 

This technique was primarily introduced by Harshman and De

arbo [180] for PARAFAC. The procedure splits the tensor into two

or more) parts and the model with the same number of compo-

ents is built for two parts. The assumption of this method is that

f the model is valid, both models on two separate sides should

emain stable. A criterion called split-half stability coefficients is

efined and if its value is lower than a threshold (e.g. 0.1), the

odel is considered stable. However, the main requirement for this

ethod is that tensor must be splittable [188] which is restric-

ive for non-stochastic systems. Limited works such as [3,49] use

his technique to ascertain the number of components in tensors

ith application to anomaly detection. Extension of this method

as later proposed by Kiers and Mechelen [189] . 

.7.7. Other methods 

Some other approaches proposed for tensor rank estimation,

hich may not be used for anomaly detection applications, can

e very useful to the area nonetheless. Some of these meth-

ds include convex hull [181] , Akaikes information criterion (AIC)

182] , Bayesian information criterion (BIC) [183] and Automatic rel-

vance determination (ARD) [159] . These four approaches are im-

lemented for multiway models and compared in [159] in which

he superiority of ARD is concluded against the other three ones.

ayesian-based tensor decompositions may also be a good solu-

ion for tensor rank estimation since they automatically find the

ensor rank in their inference procedure [160,164] . In [184] a dif-

erent approach named GAHNTD is proposed based on the Genetic

lgorithm for finding the optimal Tucker lower rank, but no com-

arison is performed against other known approaches. Brockmeier

t al. [190] proposed a greedy approach that builds the tensor
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model iteratively, and uses the BIC criterion to identify the cor-

rect number of components. A more efficient method based on

maximum block improvement (MBI) is proposed in [140] that uses

non-convex block optimization for finding the Tucker3 model rank.

It is evident that this method outperforms DIFFIT and ARD (when

the sum of dimension is predefined) both in terms of accuracy and

runtime. This method is used in [95] for event detection from traf-

fic tensors. 

5. Issues 

This section outlines some of the most important issues in TAD

and the corresponding solutions extracted from the related works.

Table 6 presents a summary of the issues and the corresponding

solutions. 

5.1. Data pre-processing 

Data pre-processing is an important step in TAD. Tensor models

are sensitive to the scale of data elements. If multiple scale data

is going to be used in tensor, it must be scaled accordingly, such

that all columns have the same scale [175] . This is usually done

via z-score scaling [18,32] . In some cases, the input data is a con-

tinuous signal and therefore must be converted to discrete values

using tools such as wavelet transform [6,22,30,82] . 

5.2. Processing types: offline/online/streaming 

Depending on processing tensor offline or real time, TAD meth-

ods are classified into three categories: offline, online and stream-

ing. Offline processing model [48,50,54] is usually used in score

plot based unsupervised detection ( Section 3.3 ). Online processing

usually refers to semi-supervised methods ( Section 3.2 ). A tensor

model is built from a normal operation condition of the system

and is then used for matching with newly observed data to iden-

tify abnormal items. Since the most expensive task is performed

offline, the detection part processes only a small piece of data. For

the majority of cases, the normal model does not update during

the detection process. However, in some works, it is suggested to

constantly update the model upon receiving a new normal batch

of data [29,48] . Streaming processing uses mostly unsupervised

methods that do not learn from a train set, instead they operate

directly on the data [15,16,133] , therefore both learning and de-

tection are performed simultaneously. They may use some mech-

anisms such as forgetting to exclude the outdated data from the

learning process [16] . 

5.3. Tensor dimensionality 

The dimensionality of tensors is usually chosen based on a prior

knowledge. For instance, space and time are inherent modes of the

tensor when system behavior is time-changing. Furthermore, data

items are subject to change according to their spatial position. Dy-

namic networks are also in principle three-way tensors, such that

the first and second dimensions denote the interactions between

nodes and the third mode models the time-changing factor. Due to

higher cost of tensors comparing matrix methods, the use of ten-

sors is justified if there is at least three-way interactions in data.

Multiway ANOVA test is one of the approaches used for discov-

ering multi-way interactions in the data. For instance, Three-way

ANOVA test [189] is used in [72] for ascertaining tensor dimension-

ality in anomaly detection application. The other approach might

be correlation or comparison of model fits in different orders (e.g.

2D vs. 3D) [10,100] . 
.4. Nonlinearity 

Traditional tensor decompositions are unable to model complex

onlinear interactions between entities in each mode. Nonlinearity

roblem in TAD is reported in some works [43,94,126,132,191] . The

olution to this problem is yet limited. Some propose to eliminate

onlinearity in a preprocessing step by segmentation of tensors to

ifferent linear parts [94] , while others such as [43,132,191] pro-

ose the kernelized form of existing tensor decomposition meth-

ds. The probabilistic non-parametric methods such as [75,126,157]

re also suggested for dealing with this issue. A kernel non-

egative Tucker decomposition is proposed in [192] . 

.5. Seasonality 

Most of TAD’s approaches are based on the assumption that the

ehavior of a system is persistent and uniform over time. However,

n systems that deal with human activities such as the Internet, so-

ial networks, public health, etc. this assumption is valid only for a

articular temporal period. For instance, we know that during the

inter, rate of flu increases. Modeling epidemic data with tensors

nd not incorporating seasonality, we would probably signal many

alse alarms for winter season. 

When we apply tensors to such data, two objectives are usu-

lly pursued. One is to discover periodic patterns of an unknown

ystem. For instance, discovering what is the seasonal pattern of

ater quality or land surface changes [2,3,90] . The other and more

ractical target is to monitor the seasonal tensor for more accurate

etection of anomalies and deviations. For the latter case, knowl-

dge of periodic patterns is necessary for building a better tensor

odel. Although this issue is very important, it is not commonly

ddressed. For instance, the authors in [18] model the indoor air

ollutants into four subsets of fall, winter, spring and summer and

ake a tensor model for each season. They compare this strategy

o a global model in which all seasons are modeled together and

how that the new strategy is more accurate. The other approach

s proposed in [29] where separate tensor models are built for each

nvironmental settings (e.g. Day = weekend, Weather = cold, Flu

 high, Season = winter) and then use these tensor models in a

eal time setting for detection of disease outbreaks. 

.6. Unequal-length slices 

A tensor with uneven slices is a known problem in process

onitoring. It may exist in other disciplines but is rarely taken

nto account in other communities. This problem arises when pro-

ess duration for each batch is different and thus measurement ×
ime matrix for each batch has an unequal-length due to different

ength of time axis. Four scenarios lead to such a problem [193] : 1)

he majority of measurement time series have equal length, but a

inority of them despite overlapping in common time part, have

horter length; 2) all measurement time series have same length

ut some of them have small shift due to delay or acceleration

n data collection; 3) the measurement time series have the same

ength, but appear in different shape; and 4) The time series of

easurements have different lengths and shape. 

Two different groups of approaches exist for the above prob-

ems. The first group of methods suggests performing a pre-

rocessing step on the data before performing the decomposition,

hich is called trajectory synchronization/alignment. In this cat-

gory, the first problem is solved by treating the absent part of

horter-length series as missing values. For the second problem,

ynchronization is carried out with a simple shift only on the mi-

ority series. For the third and fourth scenario which are more

eneral cases, the measurements are expressed against the other

ariable (known as indicator variable) other than time so that the
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Table 6 

Important issues and solutions in tensor-based anomaly detection. 

Problem Solutions Reference 

Data pre-processing Scaling [18,32] , [188, Chapter 6] 

Continues to discrete transformation [6,22,30] 

Processing Offline [48,50,54] 

Online without updating [35,35,37,39,40,44,45,47,94,118,119,126,130–132,134,135] 

Online with updating [29,48] 

Streaming [15,16,133] 

Tensor dimensionality Prior knowledge Majority of methods 

Multiway ANOVA [72] 

Compare different ranks (e.g. 2D vs. 3D) [10,100] 

Tensor rank See Table 5 

Nonlinearity Eliminate nonlinearity in a preprocessing step [94] 

Kernel tensor decomposition [43,132,191] 

Seasonality Seasonal segmentation [18] 

Separated tensors for each environment setting [29] 

Unequal-length slices Treating the absent part of shorter-length series as missing values [193] 

Dynamic time warping [135] 

Phase division [194] 

Scalability Sparse-optimized methods [68,197,198] 

GPU-based [79,199] 

Distributed and parallel approaches [67,68,200–202,218] 

Adaptivity Incremental tensor analysis [15,16,59,59] 

Online probabilistic [158] 

Multi-aspect-streaming [133] 

Temporal scaling Prior knowledge (single scale) Majority of methods 

Multiple scale in data model [49,50] 

Multis-scale approaches [71] 

Data fusion Multiblock/multiway models [193] 

Coupled matrix and tensor factorization (CMTF) [213–216] 

Noise removal Preliminary phase removal [188, Chapter 12] 

Two-step decomposition [70] 
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hape of time series overlap for all measurements. Dynamic time

arping [135] and phase division [194] techniques are also sug-

ested for this purpose. However, these approaches are criticized

n the sense that they distort the anomalous patterns and reduce

he anomaly detection accuracy [193] . 

The second group, and more sophisticated methods are those

hat model uneven-length tensors in its natural form. One of the

ensor models that can operate directly on uneven-length ten-

ors is PARAFAC2. This model is proposed for fault detection [37]

nd its superiority has been shown over synchronization tech-

iques. PARAFAC2 is able to directly model the original uneven-

ength tensor without performing further data unfolding or tra-

ectory synchronization. However, it inherits the restrictive con-

traints of its equivalent model, PARAFAC. The authors in [150] pro-

ose GTucker2, a generalized version of PARAFAC2, that does not

ave these limitations and at the same time it can be used to

odel both even-length and uneven-length tensors. The authors

how that GTucker2 has a better anomaly detection performance

han PARAFAC2 for both even-length and uneven-length batch

ensors. 

.7. Scalability 

Scalability of tensor decomposition techniques is a hot and

oung research area in data mining, machine learning and signal

rocessing community. The important problem is that the decom-

osition of big tensors is not computationally affordable by tradi-

ional techniques. Therefore, it is necessary to extend tensor meth-

ds for processing large data sets. Three major groups of solutions
ave been presented for this purpose, including sparse-optimized

ethods, GPU-based solutions and both parallel and distributed

echniques. 

The need for sparse-optimized methods arises from the fact

hat the majority of tensors in data mining applications is in prin-

iple sparse. For instance, density of Email, Web and network ten-

ors barely exceeds 0.1%. Some works like [68,195–198] attempt to

ptimize the traditional tensor decomposition for large sparse ten-

ors, in particular with operations on nonzero elements. 

GPU-based techniques attempt to use new computing

aradigms such as graphics processing unit(GPU) instead of

PU for speeding up the decomposition process. It is proved that

PU substantially outpaces CPU in dealing with computation-

lly demanding and complex problems. Two examples from this

ategory are G-PARAFAC [79] and GPUTENSOR [199] . 

Distributed and parallel approaches have received more at-

ention by researchers due to the current progresses in paral-

el, distributed and cloud computing. The general objective of

hese methods is reducing the intermediate data explosion prob-

em [68,200] and improving the runtime of tensor decomposition

y splitting tensors into different sub-tensors and processing each

maller sub-tensors in a distributed, parallel or cloud environment

e.g. MapReduce). Examples of this category include GigaTensor

200] , ParCube [67] , PARACOMP [201] and HaTen2 [202] . 

.8. Adaptivity 

Standard tensor decompositions have been developed for oper-

tion in offline settings. It means that when new data is received
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they are unable to update the model and therefore they have to

rebuild the model from scratch. Normally, due to the large volume

of data in many applications, rebuilding the model is not feasible.

Also keeping the whole data in memory is not possible. There ex-

ist some streaming approximation solutions for this problem for

either classical tensor decomposition, subspace analysis or proba-

bilistic tensor decomposition. 

The most popular framework for incremental tensor analysis is

ITA [17] consisting of three algorithms called Dynamic tensor anal-

ysis (DTA), streaming tensor analysis (STA) [16] and window-based

tensor analysis (WTA) [15] . DTA decomposes the tensor incremen-

tally by maintaining only the covariance matrix for each arriving

tensor. Then, via diagonalization it outputs the principal eigen-

vectors of the updated covariance matrix as projection matrices.

STA attempts to approximate DTA. Instead of maintaining a covari-

ance matrix for all arriving tensors, it directly updates the principal

eigenvectors using SPIRIT algorithm [203] which does not require

diagonalization. The other algorithm WTA, instead of processing

individual tensors uses a sliding window strategy for handling time

dependency between consecutive tensors. It decomposes the slid-

ing window with a regular Tucker or PARAFAC and then as well as

DTA and STA keeps some statistics from the window in the pro-

cessing of next windows. 

ITA restricts the tensor growth only in time, which is a

huge constraint in scalability and adaptability of other modes.

In fact, ITA is only useful for large, but slender tensors. More

recently a new TAD approach based on multi-aspect-streaming

tensor analysis (MASTA) was proposed [133] that relaxes this

constraint and allows tensor to concurrently evolve through all

modes. 

Incremental extensions of locality projection based methods

( Section 4.6 ) have also been developed that are typically created

for object tracking in video tensors (i.e. spatialrow × spatialcolumn

× frame ). The motivation of these methods is to model the ap-

pearance changes of objects in video data. A more recent approach

from this category is DTAMU [59] that extends DTA for subspace

learning. The objective of this work is to take into account the ge-

ometric structure of the image object, which is ignored in DTA. The

similar ideas are used in [5,204] . 

Incremental version of probabilistic methods ( Section 4.5 )has

also been presented in some works such as [158] . 

5.9. Multi-scale anomalies 

In the discrete space, determination of the right scale (or sam-

pling rate) for temporal dimension requires a prior knowledge

about the scale of fluctuations. The sampling rate, depending on

the application, can be per second [81] , minute, [11,15,20,32,73,77] ,

hour [17,18,18,64,72,91,158] , k-hours [39,119] , day [17,20,29] , k-days

[63] , month [48,50,98,102,205] and year [17,69,95,133] . If there is

no precise knowledge about scaling, multiple tensor model with

different temporal scale may be built from data (e.g. see [96,144] ).

As is demonstrated in [144] the smaller scale (day) may provide a

similar interpretation to a bigger scale (month), but with finer res-

olution. However, this might not be the case for all applications.

If multiple scales have different influences on the data, a combina-

tion of more than one temporal scale may be used. For instance, in

[49,50] a multi-scale scheme of Sites × variables × year × month

is proposed for modeling of soil and water quality data. In this

case, year and month, even though both refer to temporal dimen-

sions, affect data in a different manner. Therefore, some meaning-

ful patterns might be hidden if we lean to only-month or only-year

scales. Recently, a multi-scale probabilistic tensor analysis frame-

work called TriMine has been developed in [71] that accounts for

several time granularities. 
.10. Data fusion 

Coupled matrix and tensor factorization (CMTF) [206] are an

merging group of techniques that attempt to formulate a data

usion model based on joint factorization of matrices and higher-

rder tensor. In many applications, jointly analysis of an ensem-

le of data sets from multiple sources (also known as multi-block,

ulti-view, multi-set, multi-source data analysis) results in the en-

ancement of knowledge discovery. 

The first use of data fusion based tensor and matrix decom-

osition in anomaly detection appeared in the work of Kourti

193] who proposed the use of multiblock/multiway PLS model

or batch processes. The authors proposed that if we incorporate

rior knowledge such as initial conditions for batches, raw mate-

ial properties, initial ingredient charges or operation conditions in

he original tensor model, the accuracy of anomaly detection will

e improved. 

Nowadays, the application of CMTF has been extended to wider

reas such as location-based recommender systems [207,208] , neu-

oscience [209–212] , and sensory data analysis [213] . CMTF has

lso been used in applications related to anomaly detection such

s social networks [214,215] and metabolomics [213,216] . For in-

tance, in the metabolomics case, many heterogeneous data sets

re generated via different analytical techniques for measuring bi-

logical fluids (e.g. blood). These complementary data sets if an-

lyzed jointly may improve the understanding of the underlying

iological processes corresponding to specific diseases. 

A complete list of bibliography related to data fusion based on

oupled matrix/tensor factorizations is gathered in [217] . 

.11. Noise removal 

Noise is a disturbing phenomenon in data that is disregarded

y the analyst and it only negatively affects data analysis task [1] .

ometimes it can be difficult to distinguish anomalies from noises

n tensor models due to their similar nature. Noise removal is

sually undertaken as a preliminary phase in tensor-based mod-

ling (See [188, Chapter 12] ). However, in some works such as

48,70,110] , a two-step decomposition is proposed for handling this

ssue. For instance, Maruhashi and Yugami [70] propose a two-step

ensor decomposition framework. The first decomposition accounts

or noise removal and the second decomposition that operates on

he first step’s output takes into account the meaningful anomalies.

. Practical issues 

In this section we introduce the fundamental tools for conduct-

ng research in TAD, mainly, software tools and evaluation met-

ics. The first section lists the available software and toolboxes for

orking with tensors and the second subsection presents a list of

ommon evaluation metrics used in the various works. 

.1. Tensor software 

Various open source toolboxes have been developed for tensor

nalysis in the recent decade. The most popular ones are MAT-

AB toolboxes like Tensor toolbox ( http://www.sandia.gov/ ∼tgkolda/

ensorToolbox ) and N-way toolbox ( http://www.models.life.ku.dk/

waytoolbox ) which are widely used by many disciplines for

ensor analysis. More recently, two toolboxes, TensorBox ( http://

ww.bsp.brain.riken.jp/ ∼phan ) and Tensorlab ( http://www.esat.

uleuven.be/sista/tensorlab ) have also been developed. TensorBox

s more focused on advanced fitting algorithms for Tucker and

ARAFAC, while Tensorlab offers a wider range of algorithms for

ore complex tasks in tensor decomposition such as coupled

ensor factorization, sparse and incomplete tensor decomposition,

http://www.sandia.gov/~tgkolda/TensorToolbox
http://www.models.life.ku.dk/nwaytoolbox
http://www.bsp.brain.riken.jp/~phan
http://www.esat.kuleuven.be/sista/tensorlab
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nd new fitting algorithms such as quasi-Newton and nonlinear-

east squares optimization, etc. NFEA toolbox ( http://www.bsp.brain.

iken.jp/ ∼phan/nfea/nfea.html ) ia s tensor toolbox specifically de-

eloped for processing EEG tensors. CMTF toolbox is also developed

or coupled matrix and tensor factorization ( http://www.models.

ife.ku.dk/ ∼acare/CMTF _ Toolbox ). Hierarchical Tucker toolbox ( http:

/anchp.epfl.ch/htucker ) was developed for hierarchical Tucker de-

omposition. Apart from above MATLAB toolboxes, some R pack-

ges also exist for tensor decomposition, including ThreeWay, rTen-

or and PTAk . 

.2. Evaluation 

Evaluation of TAD methods is usually similar to classical

nomaly detection techniques [1] . The typical metric used in-

ludes precision/recall [70,77,91] , accuracy [4,27,47,61,90,126,126]

nd area under ROC curve (AUC) [26,70,92] . For semi-supervised

nd unsupervised techniques, true and false positives (or false

larms) are also assessed [26,43,65,126] . For regression based ten-

or models and tensor forecasting methods, prediction error met-

ics such as root mean square error (RMSE) or mean absolute error

MAE) is normally used [50,59,71,90,92,124,136,154] . Detection de-

ay has also been exploited in some works [40] . The more sophis-

icated metric that takes account the detection of both delay and

alse alarm rate is the Activity Monitoring Operating Characteris-

ic (AMOC) curve that is used in [29] . Visual inspection of score

lots with visual inspection is another evaluation method used in

11,18,20,61,64,67,76,84] . 

. Conclusion 

We provided the conceptual classification of many existing

echniques, applications and issues for tensor-based anomaly de-

ection. In the majority of works that we surveyed, the superior-

ty of tensor-based methods has been shown over matrix meth-

ds. This exhibits the importance of tensors as new category in

pectral-based anomaly detection. We classified the tensor-based

earning into three categories of supervised, semi-supervised and

nsupervised. Despite of the great ability of supervised methods,

heir application is not yet well-established for anomaly detec-

ion problem. We hope this survey could draw the attention of

esearchers to this new category of methods and their capabilities,

specially tensor time series models [71,124,127,128] . Moreover, ap-

lication of semi-supervised methods has been limited so far to

onitoring of batch processes, although these kind of approaches

an be very effective for other applications such as epidemiology

nd traffic data analysis. 

We categorized tensor decomposition methods used in TAD into

ix main categories of Tucker-based, PARAFAC-based, Bayesian, LPP-

ased, DEDICOM-based and ICA-based and provided some exam-

les for each branch. Among all, we found LPP-based and DEDI-

OM quite interesting which are unfairly less attended. DEDICOM,

or instance, has a very good potential for the analysis of data in

ocial networks and traffics (computer networks and transporta-

ion systems). LPP-based approaches are also very helpful for video

nd spatial data since they preserve the geometric structures in

he data. Specially, the recently proposed method, TGLPP [168]

eems a promising method for TAD, since it captures both local

nd global structure in data. Bayesian approaches are also emerg-

ng techniques with a huge contribution for anomaly detection.

owever, their appeal is limited due to their high computational

osts. Fortunately, some new scalable methods have been proposed

o deal this issue (e.g. [164,219] ) and it is anticipated that we wit-

ess more works in this area in upcoming years. 

We identified some important issues in TAD and suggested the

ossible solutions for each category, according to the state-of-the-
rt. We devoted a considerable portion of the survey to the prob-

em of tensor rank estimation. Because, during the surveying of

he literature we noticed that this issue has not received suffi-

ient attention from the community. We could not find any work

hat studied the effect of tensor rank determination on the quality

f anomaly detection or comparison of different automatic tensor

ank estimation methods in accuracy of anomalies. Another prob-

em about this issue is that the majority of methods are compu-

ationally expensive and hence infeasible for automatic purposes.

erhaps, the work of Chen et al. [140] is the most efficient method

or this purpose which needs to be researched further for anomaly

etection applications. However, still a need for a fast, accurate and

daptive method for tensor rank estimation is deeply felt. Probably

ew effort s in Bayesian tensor factorization research, for instance

he recent work of Hu et al. [219] should receive more concern

rom researchers. 

It seems that scalability, which is a quite important problem is

eceiving enough attention and is almost a hot topic in tensor liter-

ture. On the other side, it appears that less quantity of research is

evoted to the adaptivity issue which is as important as the scal-

bility. After the work of Sun et al. [16] we have not witnessed

 serious contribution for this kind in the literature. Some recent

orks such as [29] propose the use of sketching techniques for

oping this problem but this kind of approaches still require more

esearch and development. Seasonality issue is also less noted in

he TAD literature. In many phenomena we have the prior knowl-

dge of seasonality that can be incorporated in TAD for more ac-

urate anomaly detection. The recent work of Fanaee and Gama

29] might be a good starting point for further research. Data fu-

ion based tensor approaches [217] are also predicted to be the hot

opic in the near future due to the increasing number of heteroge-

eous data sources in modern digital systems. 
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