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Abstract—In this paper a Distribution State Estimator (DSE) 
tool suitable for real-time monitoring in poorly characterized 
low voltage networks is presented. An Autoencoder (AE) 
properly trained with Extreme Learning Machine (ELM) 
technique is the “brain” of the DSE. The estimation of system 
state variables, i.e., voltage magnitudes and phase angles is 
performed with an Evolutionary Particle Swarm Optimization 
(EPSO) algorithm that makes use of the already trained AE. By 
taking advantage of historical data and a very limited number of 
quasi real-time measurements, the presented approach turns 
possible monitoring networks where information of topology 
and parameters is not available. Results show improvements in 
terms of estimation accuracy and time performance when 
compared to other similar DSE tools that make use of the 
traditional back-propagation based algorithms for training 
execution. 

Index Terms - autoencoders, distribution state estimation, 
extreme learning machine, smart distribution networks. 

I. INTRODUCTION 
The multitude of assets that are expected to be in operation 

in distribution grids of the future will contribute to increment 
significantly their complexity, resulting on several additional 
challenges to Distribution System Operators (DSO), especially 
regarding operational, security and reliability aspects. Loads, 
storage devices, generation units and electric vehicles 
supported by an advanced metering and communication 
infrastructure, capable of gathering and transmitting data in 
quasi real-time, could be a reality in the coming years. For the 
large majority of metering devices, it is predictable that all the 
acquired data might be recorded and transmitted to a database, 
where it will be stored for relatively long periods of time. 

The existence of a new generation of SCADA systems 
located at the Distribution Management System (DMS) will be 
therefore indispensable. This system will assist DSO on the 
integration, control and management of the assets in such a 
coordinated way that the safe operation and power quality 
patterns could be guaranteed. The main goal is to monitoring 
and operating distribution systems in quasi real-time, giving to 
DSO a complete snapshot of their grids while outputs for other 
control modules are provided at the same time. For example, 
in the evolvDSO project [1], the Use Case methodology 

(IEC/PAS 62559) identified the state estimation function as a 
key element to increase grid observability. 

The new SCADA system will rely on data that may be 
acquired by several different telemetry equipment dispersed 
among the grid such as Remote Terminal Units (RTU), Phasor 
Measurement Units (PMU), Intelligent Electronic Devices 
(IED) and Smart Meters (SM). These technologies can 
contribute decisively to diminish the lack of information in 
distribution grids. However, since monitoring all grid points in 
quasi real-time manner will be for sure economically 
unfeasible, a Distribution State Estimator (DSE) module will 
continue to be a mandatory tool in the future DMS (even on 
those existing in the most advanced smart distribution 
networks). Moreover, in the large majority of the distribution 
systems, there is a significant lack of information, particularly 
at Low Voltage (LV) level. This might be the most critical 
issue when it comes to the development of a DSE suitable to 
run in the future LV smart distribution systems. Therefore, in 
the context of this paper, it is assumed that a proper DSE must 
be prepared for dealing with the following two aspects: 

i) networks where their topology and parameters are 
partially or completely unknown; 

ii) full exploitation of all the sensorial information 
available, both in quasi real-time and historical. 

Regarding the conventional state estimation techniques, 
widely used at the transmission level, it is well known that the 
key for their success relies on having a complete knowledge of 
the grid’s technical parameters and topology (among other 
factors, such as a high level of redundancy of the quasi real-
time measurements available). As it was stated before, this is 
not the case experimented in a large number of distribution 
grids, which turns the conventional state estimation techniques 
not suitable to be used. Several techniques have been proposed 
for well characterized distribution systems [2-4]. Despite most 
of them are able to dealing with the very particular 
characteristics of distribution systems (e.g. extremely large 
number of nodes and branches, unbalanced loads, large 
number of dispersed generation) and a few of them are even 
suitable to be used in smart distribution grids, all fail if tested 
for the requirement specified in i). 

Following a complete different approach, some authors 
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have exploited the use of Artificial Neural Networks (ANN) 
and machine learning capabilities for recompose missing 
information in SCADA systems [5], identification of topology 
errors [6] and generation of pseudo-measurements [7]. In [8], 
an ANN-based hybrid state estimator is proposed for 
determining the state of the system in the presence of 
conventional asynchronous as well as synchronous PMU 
measurements. Analyzing the mentioned studies, one can 
conclude that few of them are focused on obtaining a state 
estimation solution and on the evaluation of its quality. 
Instead, the proposed methods were applied to perform other 
DSE related functions such as topological analysis, 
observability analysis, bad data detection, etc. Therefore, the 
referred studies have not been verified against the 
requirements specified in i) and ii). Two recent works [9, 10] 
may be taken as an exception. In [9] the authors tackle both 
the issues i) and ii) through the use of autoencoders (AE) 
trained with a Resilient Back-Propagation algorithm (RPROP) 
[11] and then applying a meta-heuristic procedure for finding 
system state variables, i.e., voltage magnitudes and phase 
angles. A similar methodology was used in [10] but applied to 
the problem of three-phase state estimation in unbalanced 
distribution grids, both in MV and LV networks. 

In the view of the above, this paper exploits the concept of 
Extreme Learning Machine Autoencoder (ELM-AE), which 
consists on the application of ELM techniques [12] to properly 
train an AE. This already trained AE can be seen as the 
“brain” of the DSE algorithm proposed. The main motivation 
behind this study is trying to exploit ELM features in order to 
improve estimation accuracy, training and running times of a 
DSE based on artificial intelligence concepts. The proposed 
DSE should satisfy the requirements specified in i) and ii) and 
to be proper to run in several different distribution systems 
configurations, namely when smart grid features are present. 
In addition to the system state variables, the usual output of a 
state estimator, active/reactive power injections at customers’ 
place may be also estimated if required. The proposed DSE 
algorithm is evaluated against the one proposed in [9] for 
distinct real-time telemetry scenarios.  Several performance 
indicators are used to evaluate the training and running phases 
in what concerns to time and accuracy. 

II. METHODOLOGY 

A. Distribution State Estimator Model 
As it was early mentioned, the state estimator algorithm 

developed is based on the use of a specific type of ANN, the 
AE. Basically, AE are feedforward neural networks that are 
built to mirror the input space in their output, being the size of 
its output layer always the same as the size of its input layer. 
Therefore, an AE is trained to display an output equal to its 
input. Once the autoencoder is trained, if an incomplete 
pattern is presented, the missing components may be replaced 
by random values producing a significant mismatch between 
input and output. A search may then be conducted by an 
optimization algorithm to discover the values that should be 
introduced in the missing components such that the input-
output error becomes minimized. More information about AE 
and their applications can be found in [5], [6] and [9]. 

The proposed DSE model is depicted in Fig. 1. As it can 
be seen, it was adopted an AE with only a single hidden layer. 
In the model it was also considered the existence of two 
distinct execution phases. The first phase (marked in the Fig. 1 
as “DSE Training”) corresponds to the train of the AE, while 
the second phase (marked in the same figure as “Running 
DSE”) corresponds to the DSE quasi real-time execution. 
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Figure 1. Model of the proposed DSE. 

Regarding to the training phase, unlike conventional AE 
that usually apply back-propagation based algorithms for 
training purposes, here it is employed an ELM technique as 
the training algorithm for the AE (see section II.B.). Before 
training the AE, and in order to pre-treating the input and 
output training dataset, a standardization procedure must be 
run. This is a simple scale adjustment process, where the range 
of the input and output values are adjusted to a normalized 
interval [-1, 1], which fits the input variables to the range of 
the activation function.  

In relation to the running process, an Evolutionary Particle 
Swarm Optimization (EPSO) algorithm makes use of the AE 
already trained to estimate the missing signals (see Fig. 1), 
which in the context of this work are the voltage magnitudes 
and phase values. Nevertheless, any other electrical variable 
can be included if desired. The only mandatory requirement is 
the existence of historical data related to them (e.g., 
active/reactive power quantities). The number and type of 
variables to be estimated will depend on their availability on 
the historical dataset as well as on the amount and type of 
measurements being telemetered in quasi real-time. For 
instance, at LV levels it is predictable that each customer owns 
a SM capable of measure voltage magnitude and 
active/reactive powers while the capability of measuring 



angles is not expected. Additionally, voltage magnitude may 
be enough for the functionalities expected to be used in this 
voltage level. On the opposite side, it is expectable 
measurements of voltage angles at MV level (acquired, for 
instance, through PMU). 

It is important to mention that, in order to have an effective 
prediction of the system state for a given operating point, the 
measurements of all the electrical quantities existing in the 
historical database as well as the ones being transmitted in 
quasi real-time should be temporally synchronized. 

B. Implementation of Extreme Learning Machine Concepts  
Compared to the traditional gradient-descent based 

algorithms, particularly back-propagation, ELM [12] is a 
relatively recent computational intelligence technique that has 
been applied in different problems (e.g., regression, binary and 
multiclass classifications) with very promising results, both in 
terms of accuracy and computational performance [13]. 
Differently from the traditional training techniques, ELM is a 
non-iterative learning algorithm that only computes the 
weights vector between the hidden layer and the output layer, 
while the input weights matrix and the hidden layer biases 
vector are randomly generated (using, for instance, a uniform 
distribution) without tuning and independently from the input 
data [12, 14]. Thus, as these parameters can be fixed (are not 
required to be tuned), the output weights can be analytically 
calculated by solving a linear system of equations using the 
least-squares method. This is the essence of ELM techniques, 
contrary to the common understanding of learning. It has been 
shown that even considering that the input weights and hidden 
layer biases remain fixed after randomly generated, a single-
layer neural network trained with ELM algorithm can 
maintain its universal approximation capability [14, 15]. 
Furthermore, and in contrast to the commonly used back-
propagation learning algorithm which only minimizes the 
training error (without considering the magnitude of the 
weights), ELM minimizes not only the training error but also 
the norm of the output weights. ELM also offers some 
advantages such as fast learning speed, minimal human 
intervene and ease of implementation [16]. 

Mathematically, the concept of an ELM-AE is quite 
similar to the traditional ELM presented next. The input data 
is mapped from the m-dimensional input space to L-
dimensional hidden layer feature space and the network output 
is given by 
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where [ ]TLββ ,...,1=β is the output weight matrix between the 
hidden nodes and the output nodes, [ ])(),...,()( 1 xxxh Lhh=  
are the hidden node outputs with respect to the input x and 
hi(x) is the output of the i-th hidden node. Given N training 
samples ( ){ }N

iii 1, =tx , where input data [ ]Tmi xx ,...,1=x and the 

target [ ]Tmi tt ,...,1=t , the learning problem to be resolved can 
be compactly formulated as 

 THβ =  (2) 

where [ ]TNttT ,...,1= consists of the target matrix and 

[ ]TN
TT )(),...,( 1 xhxhH = is the hidden layer output matrix. 

The i-th column of H is the i-th hidden node output with 
respect to inputs x1,…,xN. The training procedure is equivalent 
to finding a least-squares solution β̂ of the linear system 
defined in (2) as 

 THβTβH -min-ˆ
β

=  (3) 

If the number N of training samples is equal to the number L 
of hidden nodes, matrix H is square and invertible and the 
neural network can approximate these training samples with 
zero error [16]. In such case 
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However, it is usual that the number N of training samples is 
different from the number L of hidden nodes. In this case, H is 
a nonsquare matrix and the smallest norm least-squares 
solution of the linear system defined in (2) can be calculated 
by 

 THβ †ˆ =  (5) 

where †H represents the Moore-Penrose generalized inverse of 
matrix H and β̂ are the optimal output weights that minimize 
the training error. 

To make the solution more robust and improve the 
generalization performance [17], a regularization term can be 
added [18] 
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where I is the identity matrix and C is a scale parameter. The 
choice between (6) or (7) depends on the dimension of the 
training dataset N and on the dimension of the feature space L. 
Both expressions can be used no matter the size of N and L, 
but computational costs are usually more reduced when using 
(6) for the cases where N >> L and (7) for the cases where the 
training dataset is relatively small [18]. 

Basically, there are two main differences between the 
ELM-AE and the traditional ELM. The first one is that in an 
ELM-AE the target output t is the same as input x (as 
previously mentioned, an AE is trained to display an output 
equal to its input). The second one is that the input weights 
and the hidden nodes biases of an ELM-AE are made 
orthogonal after being randomly generated. Orthogonalization 
of these randomly generated parameters tends to improve the 
ELM-AE’s generalization performance. As shown in [19], the 
orthogonal random weights and biases of the hidden nodes 
(that project the input data to a L-dimensional space) can be 
calculated as 
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where [ ]Lwww ,...,1= are the orthogonal random input 
weights, [ ]Lbb ,...,1=b are the orthogonal random hidden layer 
biases and g(.) is the activation function of the hidden nodes. 
Depending on the relation between the number m of input 
nodes and the number L of hidden nodes, orthogonality of 
input weights matrix may or not be complete, being verified in 
(8) as follows: when the number of input nodes is larger than 
the number of hidden nodes (m > L), Iww =T is true; when 
the number of input nodes is smaller than the number of 
hidden nodes (m < L), Iww =T is true; finally, when the 
number of input nodes coincides with the number of hidden 
nodes (m = L), Iwwww == TT is true. 

III. CASE STUDY DESCRIPTION 
All the data used in the simulations performed, including 

data related to the network, telemetry equipment, historical 
database, among other are completely characterized in [9]. 
This choice was made taking into account that one of the main 
goals of this work is to evaluate the proposed methodology by 
comparing it with the one presented in [9]. The most relevant 
data for the characterization of the case study is summarized 
in the next paragraph. 

The considered network is a small typical Portuguese LV 
network of 33 nodes. The historical database consists on 
simulated data generated through power flows for a period of 
4 months (summer season) in time steps of 15 minutes (11040 
samples for training purposes and 672 samples for the running 
phase of the DSE). More details about the historical database 
creation can also be found in [9]. Regarding telemetry 
equipment, three scenarios were tested. In each scenario the 
number of SM (located at consumers’ place) with capabilities 
of transmitting voltage magnitude and active and reactive 
power measurements in real-time was assumed to be different. 

TABLE I. QUASI REAL-TIME MEASUREMENTS FOR EACH SCENARIO 

Scenario No of quasi real-time 
measurements (m) 

Variables to be 
estimated (n) m/n (%) 

1 8 64 12.5 
2 23 59 39.0 
3 47 51 92.2 

In Table I it is summarized, for each scenario, the number 
of quasi real-time measurements existing in the network 
(gathered from the metering equipment available in the 
network) and the total number of variables to be estimated. It 
is also computed in the same table the factor m/n that gives 
the relation between these two quantities (expressed in 
percentage). 

IV. CASE STUDY RESULTS 
In order to properly analyze the performance of the DSE 

model proposed under different perspectives, this section is 
divided in three subsections.  The first section begins with the 
evaluation of the results obtained during the training stage 
regarding the generalization performance capability of the 

ELM-AE. Then, in the following two sections, accuracy and 
time performance are respectively evaluated for the case study 
presented in section III. 

All the simulations were performed in a computer with an 
Intel Core i7-2600, 3.40 GHz CPU and 8 GB of RAM 
memory. In results presented, the bus voltage magnitudes and 
angles were considered as the state variables to be estimated. 
For each telemetry scenario evaluated, one week (last seven 
days from the historical database) was used as the test set for 
evaluate the proposed methodology. Since the amount and 
type of measurements present in the input dataset vary in each 
scenario (measurements available in quasi real-time and 
variables to be estimated), it was necessary to train three 
different ELM-AE, being the number of its input nodes equal 
to the number of measurements present in the input dataset. In 
all the simulations performed, it was used an ELM-AE with 
one hidden layer, where the number of hidden nodes assumed 
in each scenario was the same as in [9] (see Table IV). For 
activation function of the hidden nodes it was chosen a 
symmetric sigmoid function. The biases and input weights 
were generated through a uniform distribution between the 
normalization range [-1, 1]. In relation to the output nodes (the 
same number as the input), it was chosen a linear function as 
activation function. For comparison purposes, the convergence 
criterion adopted for the EPSO algorithm was a fixed number 
of 200 iterations (the same value as used in [9]). Other 
possibility could be to specify a given tolerance (error), and let 
the algorithm free to iterate until reach convergence. 

A. Generalization Performance 
The AE generalization performance is an important 

indicator evaluated in this work through the root mean squared 
error (RMSE) at the end of the training phase. Observing 
Table II, it is possible to see very significant differences 
between the two algorithms used for training the AE. 
Comparing the values of the RMSE for the testing set, it 
becomes clear that a better generalization performance is 
achieved with the ELM-AE. ELM-AE accounts for errors in 
the third decimal place while with the AE trained using a 
RPROP algorithm (hereafter named as RPROP-AE) errors 
occur in the first decimal place (in all the scenarios analyzed).  

TABLE II. GENERALIZATION PERFORMANCE  

Training algorithm Scenario RMSE 
Training Set Testing Set 

RPROP 
1 0.4309 0.4330 
2 0.4435 0.4476 
3 0.6422 0.6430 

ELM 
1 0.0064 0.0062 
2 0.0079 0.0079 
3 0.0099 0.0105 

B. DSE Accuracy Evaluation 
In Fig. 2 are depicted boxplots for the voltage magnitude 

absolute error in all the network buses not being quasi real-
time monitored. The absolute error was calculated between the 
real values (generated through power flows) and the estimated 
values obtained with the DSE model proposed. As it was 
expected, the estimation accuracy is improved when are 



available more measurements in quasi real-time. Similarly to 
the results presented in [9], the worst estimation occurs for 
buses that have both loads and microgeneration (e.g., buses 
number 17, 22, 25), what was expected due to the higher 
volatility of the power injected in these buses. In general, the 
error distribution shape obtained in both studies is analogous. 
However, the ELM-AE yields better results than the RPROP-
AE. This can be easily verified observing the results shown in 
Table III, where are computed the mean absolute error (MAE) 
and the maximum absolute error (Max.) for the entire 
evaluation set considered. It is possible to see that the MAE 
obtained using the ELM-AE is nearly 50% smaller than the 
MAE attained using the RPROP-AE in scenario 2 and 3 and 
about 30% smaller in scenario 1. 
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Figure 2. Voltage magnitude absolute error for all network buses (not being 
real-time monitored) in scenarios 1, 2 and 3. 

Another aspect that evidence the better state estimation 
performed by the ELM-AE is the number of buses where the 
maximum absolute error remains below a threshold of 2%. 
While the RPROP-AE accounts for 11 and 6 buses violating 
the referred limit, respectively in scenario 1 and 2, the ELM-
AE accounts only for 6 and 2 buses with such limit violations 
in the same scenarios. Taking these results into account and 
the way as the number of SM with capabilities of transmitting 
data in quasi-real time was defined in scenario 3 [9], the ELM-
AE would probably requires less SM with such capabilities in 
scenario 3 for maintaining the error below the 2% threshold 
limit in all buses. 

From Table III, it is possible to verify that the ELM-AE 
yields better results also for voltage angles, although the 
differences are not so obvious than in voltage magnitudes. 

TABLE III. VOLTAGE ACCURACY  

Training 
algorithm Scenario 

Magnitude (p.u.) Angle (�) 
MAE Max. MAE Max. 

RPROP 
1 0.0062 0.0346 0.0780 0.5570 
2 0.0040 0.0327 0.0641 0.4940 
3 0.0020 0.0185 0.0480 0.4609 

ELM 
1 0.0044 0.0316 0.0688 0.5464 
2 0.0023 0.0278 0.0568 0.4629 
3 0.0011 0.0102 0.0405 0.2539 

C. Time Performance 
Table IV shows, for each scenario, a time performance 

comparison between the DSE model implemented with the 
ELM-AE and with the RPROP-AE. Before analyzing the 
results for the running times, one should bear in mind that they 
are strongly influenced by parameters such as the convergence 
criterion of the EPSO algorithm or the number of hidden 
nodes. In fact, a trade-off can be established between these 
parameters and the AE accuracy. Consequently, whenever 
running times is the most important issue, it may be reduced to 
the detriment of results accuracy (or vice versa).  

Looking to Table IV it is possible to see that, for the same 
number of hidden nodes, the AE trained using ELM 
techniques is expressively faster than when a RPROP 
algorithm is employed. In average, the training process with 
the ELM algorithm runs nearly 2780 times faster than with 
RPROP algorithm. This may be explained due to the 
procedure employed in ELM-AE which is not an iterative 
learning process as in RPROP. Even assuming that, in the 
context of state estimation, the training phase may be done 
offline, these results might bring several advantages, 
especially when dealing with large amount of historical data 
and grids with hundreds of buses to be monitoring. In these 
circumstances a lot of time could be wasted on the adjustment 
of training parameters when using RPROP algorithm. 
Moreover, a fast training procedure may be a good feature in 
real networks with a lot of distributed renewable generation 
due to the big variability in load/generation patterns as well as 
changes in network configuration which may require 
performing DSE training more frequently. It should be noted 
that estimation accuracy tends to be improved when less 
different patterns exist in historical dataset, and logically if 
estimation is also performed under nearly similar conditions.  

TABLE IV. TIME PERFORMANCE 

Training 
algorithm Scenario Time (s) No of hidden 

nodes Training Running 

RPROP 
1 335.109 1.274 43 
2 426.064 1.452 49 
3 657.778 1.673 59 

ELM 
1 0.093 1.345 43 
2 0.204 1.468 49 
3 0.249 1.555 59 

In what concern to the DSE running time, the differences 
between both training algorithms are almost imperceptible. 
The ELM-AE accounts for slightly worse results in scenario 1 
and 2. In scenario 3, where the number hidden nodes was 
higher, the results obtained with the ELM-AE were slightly 
better, which gives good indications that ELM may be faster 



than RPROP when the problem under study increases in size 
and complexity. On the other hand, the tiny differences 
verified may be mainly explained due to programming 
language differences. The DSE based on ELM-AE was totally 
coded in Python programming language, while the DSE based 
on RPROP-AE uses a neural network library coded in C 
language which was compiled through a .dll file for running 
the AE in Python environment (more efficient).  On the other 
hand, if the EPSO convergence criterion used was settled by a 
tolerance value, it is reasonable to expect, looking to the 
generalization performance results (Table II), that the DSE 
based on ELM-AE could reach tolerance with less EPSO 
iterations than with the one based on RPROP-AE, resulting in 
lower execution times for the same accuracy degree. 

V. CONCLUSION 
In a paradigm of smart distribution grids it is expected that 

metering data may be stored and kept in a historical database 
at distribution management level. This historical information, 
together with some quasi real-time measurements gathered 
from terrain, may be the key to perform state estimation in 
poorly characterized distribution grids if properly exploited 
through the use of adequate artificial intelligence techniques. 
It should be kept in mind that in such conditions, conventional 
state estimation techniques cannot be applied due to the lack 
of knowledge about grid parameters. 

In this paper, the concept of ELM-AE was tested as the 
“brain” of non-conventional DSE. The DSE model employed 
is similar to the one presented in [9], but instead of using a 
RPROP algorithm for training the AE it is based on the 
application of ELM concepts. The attempt was to improve the 
state estimation accuracy and reduce training and running 
times compared to the traditional training algorithms. 

The results attained confirm one of the so referred 
advantages of the ELM techniques, the very low time needed 
to train the neural network. Compared to a RPROP-AE, the 
ELM-AE training time is nearly 2780 times faster. The 
execution time of the proposed DSE model follows close the 
values obtained for a DSE based on RPROP-AE, meaning that 
it is suitable for real-time applications. Nevertheless, the 
execution time has margin to be reduced if the algorithm is 
coded in a more efficient programing language. 

In terms of state estimation accuracy, the indicators 
computed allow to conclude that ELM-AE performs better 
than RPROP-AE with error differences in the same order of 
magnitude. Anyway, the improvement registered for voltage 
magnitude is significantly higher than for voltage angle. 

Other big advantage of ELM-AE is that the only parameter 
to be adjusted is the number of neurons in the hidden layer. 
Also, it does not require fine-tuning, since the input weights 
and the hidden layer biases can be fixed and the output 
weights can be determined analytically. Therefore, the 
optimum parameters may be found much easier than for back-
propagation algorithm, where several training parameters need 
to be properly tuned. 

As a final conclusion, it should be pointed out that the 
good generalization performance obtained with ELM gives 

indications that estimation error may be enhanced if a tighter 
convergence criterion for the EPSO algorithm is adopted. 
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