
Publishing Linked Data with DaPress∗

Teresa Costa1 and José Paulo Leal2

1 CRACS & INESC-Porto LA, Faculty of Sciences, University of Porto
Porto, Portugal
up200101764@alunos.dcc.fc.up.pt

2 CRACS & INESC-Porto LA, Faculty of Sciences, University of Porto
Porto, Portugal
zp@dcc.fc.up.pt

Abstract
The central idea of the Web of Data is to interlink the information available in the Web, most
of which is actually stored in databases rather than in static HTML pages. Tools to convert
relational data into semantic web formats and publish then as linked data are essential to fulfill
the vision of a web of data available for automatic processing, as web content is currently available
to humans. This paper presents DaPress, a simple tool to publish linked data on the Web, that
maps a relational database to an RDF triplestore and creates a SPARQL access point. The paper
reports the use of DaPress to publish the database of Authenticus, a system that automatically
assigns publication authors to known Portuguese researchers and institutions.

1998 ACM Subject Classification H. Information Systems; H.2 Database Management;
H.2.5 Heterogeneous Databases;

Keywords and phrases RDF, RDF Schema, Relational data; Semantic web

Digital Object Identifier 10.4230/OASIcs.SLATE.2013.67

1 Introduction

The World Wide Web has deeply changed the way information is produced, published and
consumed. Nowadays it is trivial to produce a document in HTML format, publish it on
a HTTP server and virtually anyone, anywhere on the planet, can access it using a web
browser and benefit from its content. Anyone but not anything.

Information on the web is produced and formatted for humans. It is simple for a person to
understand web content and navigate trough hyperlinks with a meaningful purpose. However,
building a software agent that gathers information from the web for a fairly simple task,
such as setting an appointment with a doctor or planning a business trip, is still a challenge
after more than a decade of research.

The goal of the semantic web is to open the vast amount of data available on the web to
software processing. The first attempt was to markup with semantic annotations the content
already available on web pages. The use of XML languages and the separation of content
from formatting was expected to contribute to that goal. However, the forces that shape the
evolution of the web clearly favor graphical user interaction over semantic content. Hence,
nowadays is harder to provide semantic annotations to web apps and web services than it
was to last century hand-made web pages.

∗ This work is in part funded by the ERDF/COMPETE Programme and by FCT within the FCOMP-01-
0124-FEDER-022701 project.

© Teresa Costa and José Paulo Leal;
licensed under Creative Commons License BY

2nd Symposium on Languages, Applications and Technologies (SLATE’13).
Editors: José Paulo Leal, Ricardo Rocha, Alberto Simões; pp. 67–81

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.SLATE.2013.67
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/


68 Publishing Linked Data with DaPress

Fortunately, most web content is actually generated from databases. Thus, rather than
to extract information from web pages it is more effective to collect it directly from raw
data sources. The linked data initiative promotes best practises for publishing the data that
supports web content. This data should be published in open formats so that it can be read
and processed by any software. Moreover data from different sources should be interlinked
to create a global web of content.

Navigation on the world wide web relies on content being linked using Uniform Resource
Locations (URLs). Linked data follows a similar approach to enable software agents to
navigate trough data available from different sources. If URLs are used as identifiers the
content of a database may refer the content of another.

Interoperability has been a concern in databases for a long time. Any relational database
management system imports and exports data in open formats, such as XML or comma-
separated values (CSV), and relational databases themselves are based on open standards,
such as the Structured Query Language (SQL). Unfortunately these open standards are
not enough to build a web of linked data and must be complemented with semantic web
technologies for a number of reasons.

Firstly, the structure of a relational database is rigid. The software that processes a
relational data is designed and implemented for a particular database schema, and needs to be
updated to reflect changes in that schema. A program to process a generic relational database,
independently of its schema, would be too hard to implement. In contrast, the Resource
Description Framework (RDF) data has a simple and uniform structure – a collection of
triples – and the schemata from the various databases are recorded also as RDF data using
a special vocabulary – RDF Schema.

Secondly, the semantics of the data stored in relational database is not explicit. An
application that processes relational data relies on an implicit knowledge of the meaning of the
data, and linking related data from different sources is a difficult task. To a human it may be
obvious that the tables named “teacher” and “docent” from two different academic databases
contains similar data, but that kind of reasoning is extremely difficult to automatise. The
semantic web provides ontologies to describe a domain of data shared by different databases.

Lastly, a typical relational database contains both data that should be published mixed
with sensitive or irrelevant data that should not be published. Also, publishable data may
need to be preprocessed to normalize either its content or its structure. An approach to
achieve it is to map relational databases into RDF data and web ontologies, while providing
absolute control of this process to the data owner.

The motivation for the ongoing research presented in this paper is the development of a
simple and flexible approach to publish the content of relational databases as linked data on
the Web. The corner stone of the proposed approach is a system called DaPress that maps
relational databases to RDF and RDF Schema based on a XML configuration file. Relational
data from the source database is periodically loaded into the DaPress triplestores, which is
accessible trough a SPARQL access point.

The remainder of this paper is organized as follows. Section 2 summarizes the concepts,
languages and tools related to linked data. Section 3 presents the design and implement-
ation details of DaPress, the proposed linked data publishing system. This approach was
validated on the database of Authenticus, a system that automatically assigns publication
authors to known researchers and institutions and the results are reported on Section 4.
Section 5 concludes with a summary of the work presented in this paper and points to future
developments of DaPress.



T. Costa and J.P. Leal 69

2 Linked Data

Linked Data is a methodology for publishing structured data based on two fundamental
Web technologies: Uniform Resource Identifiers (URIs) and the HyperText Transfer Protocol
(HTTP). The term Linked Data highlights the fact that this methodology establishes links
among data from different sources, creating a web of data. Unsurprisingly, the concept of
linked data is due to Tim Berners-Lee, the father of the World Wide Web, who introduced a
set of basic rules for publishing data on the Web [4], namely:

Use URIs as names for things;
Use HTTP URIs so that people can look up those names;
When someone looks up a URI, provide useful information, using standards (RDF,
SPARQL);
Include links of other URIs so that they can discover more things.

The resources, or “things” as Tim Berners-Lee calls them, are identified by URIs and
these entities can be looked up simply by dereferencing the URI over the HTTP protocol.
The HTTP protocol provides a simple and universal mechanism for retrieving resources or
retrieving descriptions of entities.

By using HTTP URIs (or URLs) to identify entities, the HTTP protocol as retrieval
mechanism and RDF data model to represent data, Linked Data builds on the general
architecture of the Web.

The remainder of this section details the fundamental technologies used by Linked Data,
such as RDF and RDF Schema, as well as related systems to publish relational data as RDF.

2.1 Resource Description Framework
The Resource Description Framework (RDF) [2, 10] is a framework for representing any kind
of information available in the web. The RDF data model provides an abstract, conceptual
framework for defining and using metadata, that has a graph-based data model, and is easy
to process and manipulate by applications. It provides interoperability between applications
that exchange machine-understandable information on the Web. Data in RDF format can
be persistently stored in specialized repositories called triplestores, and retrieved using
specialized RDF query languages, such as SPARQL. The interoperability of RDF data is
supported by several serialization formats, both text and XML based.

2.1.1 Data Model
The basic element in RDF is a statement, a simple sentence with three parts – subject,
predicate and object – expressing a relationship between things. The subject is a resource,
the thing to describe, identified by an URI. The properties are a special kind of resource
that describe relations between resources. A property specifies an aspect, characteristic,
attribute or relation used to describe the resource. They are also identified by URIs. A
specific resource together with a named property needs an object, in order to construct a
statement. The object can be either a resource or an atomic value, named literal. Being
composed of tree parts, RDF statements are also known as triples. A collection of triples
forms a graph where the set nodes is given by subjects and objects of triples, and the arcs
that connect them are given by predicates.

SLATE 2013



70 Publishing Linked Data with DaPress

Table 1 Simple example of table-based tripes representation.

Subject Predicate Object
. . . /Person/QuentinTarantino . . . /name “Quentin Tarantino”
. . . /Movie/PulpFiction . . . /name “Pulp Fiction”
. . . /Person/QuentinTarantino . . . /director . . . /Movie/PulpFiction

Lets consider a simple example to show two different ways of represent a statement.

Quentin Tarantino is the director of Pulp Fiction.

Table 1 shows the triples extracted from previous phrase where ellipsis replace a common
URL prefix for sake of terseness. Note that the concepts “Quentin Tarantino” and “Pulp
Fiction” where replaced by URIs, as was the “is the director” property. By the cultural
context, it is known that Quentin Tarantino is a person’s name and Pulp Fiction a movie
title. Using that information the other two statements assign a textual representation to
both the subject and object of the previous sentence.

Figure 1 is a graph-based and equivalent representation of the same three statements. It
is a directed graph, with labeled nodes and arcs. The arcs are directed from the resource
(the subject) to the value (the object). This kind of graph is known as a semantic net.

http://example.org/Person/QuentinTarantino

http://example.org/Movie/PulpFiction

Quentin Tarantino

Pulp Fiction

http://example.org/name

http://example.org/name

http://example.org/director

Figure 1 Simple example of graph-based triples representation.

The use of URIs in RDF is paramount. It is necessary to assign unique identifiers to each
of the nodes so that they can be referred consistently across all the triples that describe the
relationship. In a single dataset it is possible to use sequential numbers or strings to uniquely
identify nodes. But for applications with multiple datasets, from heterogeneous sources, URI
(especially URLs, where domain names are actually owned by the data publisher) ensure
unique and consistent identifiers.

It is possible to provide information about a literal datatype. RDF supports the use
of user defined and XML Schema types, which predefines a large range of basic types,
including Boolean, integer, time and date. For typing complex concepts, such as resources
and properties, one must use RDF Schema, as explain in subsection 2.2.



T. Costa and J.P. Leal 71

2.1.2 Persistence
Data in the RDF data model is persisted in a triplestore, a especial database for the storage
and retrieval of triples. While relational databases are schema oriented, RDF triplestores are
data oriented. That is, in relational databases data complies with a predefined schema, has
explicit indexing and queries performs better with one-to-many relationships; on the other
hand, data in a triplestore is semi-structured, triples are indexed and all relationships are
many-to-many. Triplestores are built either as database engines from scratch or on top of
existing relational database engines.

Just as SQL provides a query language across the relational database systems, SPARQL
(Simple Protocol and RDF Query Language) provides a declarative interface for interacting
with RDF graphs. It is an official W3C recommendation. SPARQL is both a standard query
language and a data access protocol.

The SPARQL language consists of triple patterns, conjunctions (logical “and”) and
disjunctions (logical “or”). As in most the declarative languages, a query specifies a pattern
in the data graph and the result set contains fragments that matched it.

2.1.3 Serialization
The RDF data model is very simple. Still, there are several methods available for serialization
of RDF. A popular format is RDF/XML. In addition W3C introduced Notation 3 (N3), a
text based format, that is related to Turtle and N-Triples. The non-XML serialization is
easy to write by hand and, in some cases, easier to follow.

N-Triple notation is a very simple serialization, but still verbose. This simplicity makes
this kind of serialization useful when hand-crafting datasets. Each line of output in N-Triple
format represents a single statement containing a subject, predicate and object, followed by
a dot. Every element is expressed as absolute URIs enclosed in angle brackets. The N-Triple
simplicity causes redundant information that takes additional time to transmit and parse.
While working with a small dataset it is not a problem, but the additional and redundant
information becomes a liability when working with large amounts of data.

N3 condenses much of the information repetition in the N-Triple format. Every connection
between nodes represents a triple. Since each node can have a large number of relationships,
the number of characters can be reduced using prefixes. Similar to XML namespaces, N3
allows the definition of a URI prefix and identify resource URIs relative to a set of prefixes
previously declared. N3 also reduces the repetition by allowing the combination of multiple
statements about the same subject, by using a semicolon.

Turtle is a more verbose subset of N3 and an extension of N-Triples. It is a simple format
for learning and making simple RDF Documents. The Turtle document is a collection of
RDF-triples with <subject> <relationship> <object>. format. Each statement ends
with a period and each element is an URI (except the <object> which can be a literal). If
a subject has more than one statement, with different relationships, Turtle combines the
multiple statements, using a semicolon. With Turtle it is also possible to define namespace
prefixes, simplifying the document.

The RDF/XML is another way to serialize the RDF data model. Sometimes it is criticized
for being difficult to read. Still it is one of the most frequently used formats. The RDF/XML
is built up from a series of smaller descriptions each of which traces a path through an RDF
graph. The path is described in terms of subject (nodes) and links (predicates) connecting
the nodes. If there are several paths described in the document, all the descriptions must
be children of a single RDF element. As with other XML documents, the top-level element

SLATE 2013



72 Publishing Linked Data with DaPress

is used frequently to define other XML namespaces used through the document. Paths are
always described starting with a graph node, using the URI reference for the node. Predicate
links are specified as child elements of the node. Literal objects can be specified as the text
of an element. And if the object is a node, a new element is created.

2.2 Resource Description Framework Schema
RDF provides a way to express simple statements about resources, using properties and
values. However, users also need the ability to define vocabularies that they intend to use in
those statements. In other words, users need to indicate that they are describing specific
kinds or classes of resources and will use specific properties in that description.

Since RDF itself provides no means for defining classes and properties, it is used a RDF
extension called RDF Schema (RDFS) [1, 6] to provide a type system for RDF. As in the
type systems of some object-oriented programming languages, resources are instances of one
or more classes, organized in a hierarchy.

A class in RDFS corresponds to the generic concept of a type or category. A class can be
used to represent almost any category of things. A resource that belongs to a class is called
its instance.

In RDF a class of resource is assigned with the rdf:type property whose value is the
resource rdfs:Class. The relationship between two classes is described using the predefined
rdfs:subClassOf property to relate these two classes. The meaning of this relationship
is that any instance of the subclass is also an instance of the class. A class may be a
subclass of more than one class. RDF Schema also defines all classes as subclasses of class
rdfs:Resource since the instances belonging to all classes are resources.

Besides describing specific classes, users also need to be able to describe properties that
characterize those classes. In RDF Schema all properties are described using the class
rdf:Property and the properties rdfs:domain, rdfs:range and rdfs:subPropertyOf of
RDFS.

The RDF Schema also provides a vocabulary for describing how properties and resources
are related. The most important information is supplied by using the properties rdfs:domain
and rdfs:range.

The rdfs:domain property indicates that a particular property applies to a designated
class. In RDF, property descriptions are, by default, independent and have global scope.
Then, a RDF Schema could describe a property without a domain being specified, being
possible to extend the use of a property definition to a different situation.

The rdfs:range property indicates that the values of a particular property are instances
of a designated class. It is not possible in RDFS to define a specific property as having
locally-different ranges, depending on the class of the resource it is applied to. Any range
defined for a property applies to all uses of that property.

RDF Schema provides a way to specialize properties as well as classes. The specialization
relationship between two properties is described using the predefined rdfs:subPropertyOf
property. A property may be subproperty of zero, one or more properties. The range and
domain properties that apply to an RDF property also apply to each of its subproperties.

The Figure 2 represents the connection between a RDF and a RDF Schema. The blocks
are properties, ellipses above the dashed line are classes and ellipses bellow the dashed line
are instances. The RDF resources are related with the RDFS classes, by types. The RDFS
relates classes hierarchically. The properties domain and range are constrained by classes.

In summary, RDF Schema provides schema information as additional descriptions of
resources but does not determine how the descriptions should be used by an application. The



T. Costa and J.P. Leal 73

Pulp Fiction
isDirectedBy

Quentin Tarantino

Movie

Movie Staff

Actors

Directors

Writ ers

SubC
lassO

f

SubC
lassO

f

Su
bC
la
ss
O
f

su
bC
las
sO
f

ty
pety
pe

Staff Member

Name Phone
Domain

Literal

Ran
ge

Do
ma
in

Range

isDirectedBy

Do
m
ain

Range

involves
su
bP
ro
pe
rty
O
f

D
o
m
ai
n

Range

RDFS

RDF

Figure 2 RDF and RDFS layers example.

statements in RDF Schema are always descriptions. They may also introduce constraints
but only if the application interpreting those statements wants to treat them that way. All
RDF Schemata provide a way of state additional information. If this information conflicts
with the RDF data is up to the application to resolve it.

2.3 Software Tools
There is a wide range of systems described in the literature that can be used to publish existing
relational databases as linked data. Some are complete database systems, as OpenLink
Virtuoso, other are frameworks for developing semantic web applications, such as Jena, the
framework selected for the implementation of DaPress.

OpenLink Virtuoso [8] is an open source edition of Virtuoso, an hybrid database man-
agement engine that supports multiple formats, including RDF, on top of a relational
database.

The D2R Server [5] is another tool for publishing relational databases content as Linked
Data. It supports RDF and HTML browsers to navigate the content of the database. It also
has a SPARQL access endpoint.

SLATE 2013



74 Publishing Linked Data with DaPress

Triplify [3] is a PHP plugin for web applications for small database contents (up to
100Mb). It exposes the semantic structure encoded in databases by making their content
available as RDF, JSON or Linked Data. It is still a beta version and has not been updated
since 2011.

Apache Jena [9] is an open source Semantic Web framework for Java. It provides an
API to extract data from files, databases, URLs or a combination of these and produces
RDF graphs that are serializable in RDF/XML, Turtle or N-Triple formats. This framework
offers in-memory and persistent storage and supports SPARQL queries, among other query
languages. Jena also provides a support for Web Ontology Language (OWL).

3 DaPress

DaPress is a tool that works as an intermediary between a semantic web client and a relational
database, developed in Java with the Apache Jena Framework. This application extracts
selected data from a relational database and transforms it into RDF. The generated triples
are stored in a persistent triplestore using also a relational database1.

����������	


��	�
��

������

������
�
���

����
��	��
��
�����

��	��
���
��	

����	


�������

Figure 3 DaPress architecture.

As depicted in Figure 3 the architecture of DaPress aggregates three components:
Manager The module responsible for loading configurations, opening database connections,

and controlling the other modules.
Loader Is in charge of converting relational data into the RDF and the RDFS, and store it

in the triplestore using the mapping algorithms from Section 3.1.
Access Point Provides a SPARQL interrogation point. It is a specialized servlet providing a

web service. For testing purposes, there is a simple web page to interact with the stored
model, writing queries and viewing responses on a web browser, as shown on Figure 4.

1 The source database and the triplestore may share the same database management system



T. Costa and J.P. Leal 75

Figure 3 illustrates how control (dashed arrows) and data (full arrows) flow through the
system. Initially, the loading process is started by the Manager using the data in configuration
files, in an operation that is periodically repeated. The Loader receives that information to
execute queries to the external relational database. With the data the Loader creates the
RDF and RDFS models and stores them in the triplestore. Later on, when a client makes a
query to DaPress, the request is handled by the Access Point that interrogates the model
stored in the triplestore.

Figure 4 Screenshot of the DaPress access point web form.

The corner stone of DaPress is the mapping algorithm that converts relational data into
RDF and RDF Schema driven by an XML configuration. The following two subsections
detail both the algorithms and the DaPress configuration file.

SLATE 2013



76 Publishing Linked Data with DaPress

3.1 Mapping Algorithm
This subsection presents the mapping algorithms of DaPress. For sake of clarity the algorithm
for creating plain RDF triples from relational data is separated from the algorithm for creation
RDF Schemata. Both algorithms use data provided by the XML data configuration file and
data retrieved from the relational databases using SQL queries. Both algorithms produce a
model, i.e. a collection of RDF triples. In DaPress these two models are merged in a single
one and stored in the same triplestore.

In the following subsections, the RDF Mapping Algorithm and the RDFS Mapping
Algorithm are described in detail. The last section presents an example of the application of
the two algorithm.

3.1.1 RDF Mapping Algorithm
The RDF mapping algorithm receives as input configuration data and relational data and
produces as output a model – a set of RDF triples created with Jena.

In Algorithm 1 the input is given by a collection of maps. Those maps resulting from
configuration data have as prefix selected, such as selectedTableNames, returning a list
of table names. In contrast, the input with prefix get corresponds to data coming from the
relational database, such as: getIds, mapping table names to lists of ids; and getValue,
mapping field and id pairs to values. Mappings with prefix make correspond to methods
provided by the Jena API to create RDF elements, such as: makeResource, to make a
resource from a type and an id.

The algorithm 1 iterates over the selected tables and for each one retrieves their identifiers
from the database. For each identified record it creates a resource with makeResource. This
resource is assigned with the type given by the selectedResourceTypeName map. This type
is also assigned to the resource with the type property from the RDF vocabulary. For each
field of the current record, a property is created using makeProperty function. The type
associated with this property is given by the selectedPropertyTypeName map. According
to the range selected for the field is created either a literal (typically a string) or a resource
that is assigned to the object. In this last case the field value can be taken as a type, giving
origin to a class hierarchy, as explain in the next sub-subsection. Finally a new statement is
created and added to the model. The statement is created with the makeStatement using
the previously created subject, property and object.

3.1.2 RDF Schema Mapping Algorithm
The algorithm for creating RDF Schema presented in Algorithm 2 is similar to the presented in
the previous sub-subsection. Instead of creating RDF triples it creates classes and properties
using the API available for that purpose in Jena. Although these methods create also RDF
triples, they can be configured to use different vocabularies, such as RDF Schema or OWL,
with the same implementation. To highlight the fact the model produced by this algorithm
contains an ontology it is labelled as ontModel.

The RDF Schema algorithm has also the same inputs of the RDF algorithm. Although
most of the data to create classes and properties comes from the configuration, the values
from the database still have to be explored in cases where subclasses are encoded as auxiliary
tables.

In Algorithm 2, for each selected table is created a new ontology class with the type name
assigned to that table. This new class is added to the model and is used as domain of the
properties related to this type.



T. Costa and J.P. Leal 77

Algorithm 1: RDF Mapping algorithm.

Input : selectedTableNames(), selectedFieldNames()
Input : selectedResourceTypeName(), selectedPropertyTypeName()
Input : selectedValueAsType(), selectedRangeTypeName()
Input : getIds(), getValue()
Output :model
model← ∅
for tableName ∈ selectedTableNames() do

for id ∈ getIds(tableName) do
type← selectedResourceTypeName(tableName)

for fieldName ∈ selectedFieldNames(tableName) do
predicate← makeProperty(selectedPropertyTypeName(fieldName))
value← getValue(fieldName, id)

range← selectedRangeTypeName(fieldName)
if range = NULL then

object← makeLiteral(value)
else

if selectedValueAsType(fieldName) then
type← value

object← makeResource(range, value)

subject← makeResource(type, id)
model 3 makeStatement(subject, predicate, object)

The selected fields of the current table are iterated and a property is created for each one.
The previously created domain is immediately assigned to this property. The property range
depends on the selected range for this field. If none was selected then it is a literal. This
property is then added to the ontological model.

There is a special case when a field was selected as holding subclass names. In this case
the records of this table must be iterated and a new ontological class created as subclass of
the current domain. This new subclass is also added to the ontological model.

3.1.3 RDF and RDFS Mapping Algorithms Example
The following example illustrates how the two algorithms manipulate the information available
in the relational database and the resulting RDF graph. Both tables, Person and Town, have
an one-to-many relationship.

For each row in each table is generated a node. That node is identified by an unique
URI and it is the subject of the triples. A node can be connected to another node. In the
example, the property isFrom connects a person to a town. The node can also be connected
to literal values such as the property countryOf that connects a town to its country.

SLATE 2013



78 Publishing Linked Data with DaPress

Algorithm 2: RDF Schema Mapping algorithm.
Input : selectedTableNames(), selectedFieldNames()
Input : selectedResourceTypeName(), selectedPropertyTypeName()
Input : selectedValueAsType(), selectedRangeTypeName()
Input : getIds(), getValue()
Output : ontModel
ontModel← ∅
for tableName ∈ selectedTableNames() do

domain← makeOntClass(selectedResourceTypeName(tableName))
ontModel 3 domain
for fieldName ∈ selectedFieldNames(tableName) do

property← makeOntProperty(selectedPropertyTypeName(fieldName))
makeDomain(property, domain)

range← selectedRangeTypeName(fieldName)
if range = NULL then

range← literal
makeRange(property, range)
ontModel 3 property

if selectedValueAsType(fieldName) then
for id ∈ getIds(tableName) do

value← getValue(fieldName, id)
subClass← makeOntClass(value)
makeSubClass(subClass, domain)
ontModel 3 subClass

In the table Person, the gender column is used by the RDFS Mapping algorithm to
create two different classes of Person, male and female. The prefix a is used to replace the
full namespace URI http://www.example.com.

3.2 Configuration Files
The DaPress configuration is provided by an XML document that contains all the information
required by the application. The document has four kinds of information: parameters to
establish relational database connections; general configuration such as the SDB description
file path and the delay of the updates; the selected resources and properties and related data.
The structure of this document is formalized by an XML schema whose structure is depicted
in diagram of Figure 6.

The most relevant part of the XML file is about the resources. The element Resources
contains a sequence of elements for each resource. Each has a group of attributes that defines
the name of the resource, the namespace, the type and the table in the relational database.
The table is used in the SQL queries.

Each resource contains a set of properties. These properties also have a group of attributes
defining the name of the property, the namespace, the column in the database, the range if
applied, and a mandatory attribute. The mandatory attribute is a Boolean that allows the
application to know if that attribute needs to exist; if True a where clause is added to the
query stating that the current property (column in the query) must be Not Null.



T. Costa and J.P. Leal 79

female

male

Table: Person Table: Town

Person

rdfs:subClassOf

rdfs:subClassOf
a:Chicago

a:Porto

a:Lisboa

a:London

a:Madrid

a:Glasgow

rdf:type

rdf:type

rdf:type

rdf:type

rdf:type

rdf:type

a:isFrom

a:isFrom

a:isFrom

a:isFrom

a:isFrom

a:isFrom

a:countryOf

a:countryOf

a:countryOf

a:countryOf

a:countryOf

a:countryOf

Portugal

Spain

U.S.A

U.K

a:Maria

a:Ian

a:Paul

a:Helen

a:Cristian

a:Ana

Crist ian
Paul
Ana

male
male
female

Madrid
London
Lisboa

4
5
6

name
Maria
Helen
Ian

gender
female
female
male

hometown
Porto
Chicago
Glasgow

id
1
2
3

London
Porto
Lisboa

U.K.
Portugal
Portugal

4
5
6

id
1
2
3

country
U.S.A
U.K.
Spain

name
Chicago
Glasgow
Madrid

Figure 5 Example of the algorithm application.

A secondary configuration file is the SDB Description File. In this file is configured the
connection to the triplestore an its path is defined in the DaPress main configuration file.

4 Validation

The validation of DaPress is based on the experience gained while publishing an existing
relational database. The relational database selected for this purpose is part of Authenticus [7],
a system to automatically assign publications and their authors to known Portuguese
researchers and institutions. This system has several algorithms to perform the author name
disambiguation and identification. One of the main outcomes of this project is a normalized
and validated database of Portuguese publications, that is an apt example of the kind of
data that should become available as linked data.

Figure 6 XML Configuration Schema.

SLATE 2013



80 Publishing Linked Data with DaPress

The Authenticus database has currently 67 tables and a 210Mb of data. Of these 13
tables where selected with a size of 36,2Mb. The data sizes were computed from the SQL
dumps of the referred sets of tables. The tables currently being used contain data on
researchers, institutions, publications and journals. Some of the tables contain many-to-
many relationships among these base entities. Tables from the original database that just
support the web application where excluded from this mapping, such as those related to user
management or containing precomputed values to speedup frequently requested listings.

The triplestore resulting from the mapping has a size of 153Mb when exported as an
SQL dump. The significant increase in size is easily explained by the “explosion” in the
number of records stored in the triplestore. The triplestore of DaPress and the database
of Authenticus are currently on a two different relational database management system,
although both running MySQL.

The machine where the mapping was processed is a Pentium 4 running at 2,4Ghz with
8Gb of RAM. It is operated by Linux Mandriva 2009 with a 2.6.19 kernel. The DaPress
executed the mapping process in 194 minutes generating 1.456.353 triples, generating on
average 1 triple in 0,006 seconds and producing 12Kb of data in one second. It should be
noted that the machine available for these tests is rather old, with a single processor, thus the
mapping should be even faster on a multi-core machine. Nevertheless, the order of magnitude
of this time requires an incremental algorithm that is already planned for the next version of
DaPress.

5 Conclusions and Future Work

This paper presents ongoing research to create a tool for publishing the content of relational
database as linked data. The major contribution of this research is a pair of mapping
algorithms, driven by configuration data stored in a single XML document, that convert
relational data to RDF, and relational schemata to RDF Schema. These ideas are incorporated
in the DaPress system and the design and implementation of this tool are also relevant
contributions of this research. To validate the proposed approach DaPress was used with the
content of the Authenticus database. Authenticus is a system that automatically assigns
publication authors to known researchers and institutions. The experience gained using
DaPress with Authenticus led to the identification of a number of issues in the current version
that will be tackled in a near future.

The use of XML documents proved to be a simple and expedite way to define and
store mapping information. However, it requires some knowledge of XML and the use of
another tool to browse the relational database schema. An administrative web interface
could show the tables and fields available on the relational database, enabling their selection
and renaming for the mapping process.

The conversion from relational data to RDF does not increase the size of the data.
However, the time necessary to convert the data, about a minute per megabyte, is too high
for a regular update of the triplestore. The next version of DaPress must have an incremental
algorithm to avoid reconverting unchanged data. This will be a challenge since DaPress does
not assume any particular configuration of relational tables, such as the existence of time
stamp fields with the creation/modification date. The current version of DaPress produces
an ontology using RDF Schema, which includes the class hierarchy and the definition of
properties based on those classes. This ontological data could be extended with OWL
definitions, stating properties that cannot be represented in RDF Schema or that cannot be
inferred from the relational schema. The use of OWL in DaPress must be investigated and



T. Costa and J.P. Leal 81

may be included in future versions.
Linked data published by DaPress is ready to be interconnected with similar or related

sources, by sharing URIs of classes, properties and resources, or by relating them at the
ontological level. This is the case of the RDF data of Authenticus that can be interlinked with
the Digital Bibliography & Library Project (DBLP), a related system that stores publication
data that also has a SPARQL access point.

After interlinking data in DaPress with related sources it will be possible to revert the
publishing process from those sources into the local triplestore. That is, related RDF data
from remote sources will be available for download into the triplestore of DaPress and
translated to a relational database. For instance, RDF data from DBLP could be downloaded
to the DaPress triplestore containing Authenticus data. The mapping configuration could
then be used in the other direction, to convert data from the triplestore to the original
relational database, avoiding the use of ad-hoc data converters.

References
1 A Semantic Web Primer. MIT Press, 2004.
2 Programming the Semantic Web. O’Reilly Media, 2009.
3 Sören Auer, Sebastian Dietzold, Jens Lehmann, Sebastian Hellmann, and David Aumueller.

Triplify: light-weight linked data publication from relational databases. In Proceedings of
the 18th international conference on World wide web. ACM, 2009.

4 Tim Berners-Lee. Design issues: Linked data, 2006.
5 Christian Bizer and Richard Cyganiak. D2r server – publishing relational databases on the

semantic web. Poster at the 5th International Semantic Web Conference, 2010.
6 Dan Brickey and R. V. Guha. Rdf vocabulary description language 1.0: Rdf schema.

Technical report, World Wide Web Consortium, 2004.
7 Sylwia Teresa Bugla. Name identification in scientific publications. Master’s thesis, Uni-

versidade do Porto, 2009.
8 Orri Erling and Ivan Mikhailov. Virtuoso: Rdf support in a native rdbms. In Semantic

Web Information Management, pages 501–519. Springer, 2010.
9 Apache Software Foundation. Apache jena.
10 Graham Klyne and Jeremy J. Carroll. Resource description framework (rdf): Concepts

and abstract syntax. Technical report, World Wide Web Consortium, 2004.

SLATE 2013


	Introduction
	Linked Data
	Resource Description Framework
	Data Model
	Persistence
	Serialization

	Resource Description Framework Schema
	Software Tools

	DaPress
	Mapping Algorithm
	RDF Mapping Algorithm
	RDF Schema Mapping Algorithm
	RDF and RDFS Mapping Algorithms Example

	Configuration Files

	Validation
	Conclusions and Future Work

