1708.06423v1 [cs.DC] 21 Aug 2017

arxXiv

Practical Evaluation of the
Lasp Programming Model at Large Scale

An Experience Report

Christopher S. Meiklejohn
Université catholique de Louvain
Louvain-la-Neuve, Belgium

Vitor Enes
HASLab / INESC TEC
Universidade do Minho

Junghun Yoo
University of Oxford
Oxford, United Kingdom

Braga, Portugal

Carlos Baquero
HASLab / INESC TEC
Universidade do Minho
Braga, Portugal

ABSTRACT

Programming models for building large-scale distributed appli-
cations assist the developer in reasoning about consistency and
distribution. However, many of the programming models for weak
consistency, which promise the largest scalability gains, have little
in the way of evaluation to demonstrate the promised scalability.
We present an experience report on the implementation and large-
scale evaluation of one of these models, Lasp, originally presented
at PPDP ‘15, which provides a declarative, functional programming
style for distributed applications. We demonstrate the scalability of
Lasp’s prototype runtime implementation up to 1024 nodes in the
Amazon cloud computing environment. It achieves high scalability
by uniquely combining hybrid gossip with a programming model
based on convergent computation. We report on the engineering
challenges of this implementation and its evaluation, specifically
related to operating research prototypes in a production cloud en-
vironment.

ACM Reference format:

Christopher S. Meiklejohn, Vitor Enes, Junghun Yoo, Carlos Baquero, Peter
Van Roy, and Annette Bieniusa. 2017. Practical Evaluation of the

Lasp Programming Model at Large Scale. In Proceedings of PPDP’17, Namur,
Belgium, October 9-11, 2017, 6 pages.

DOI: 10.1145/3131851.3131862

1 INTRODUCTION

Once a specialized field for applications that required large data sets,
large-scale distributed applications have become commonplace in
our globalized society. Regardless of whether you are developing
a rich-web application or a native mobile application, managing
distributed data is challenging. For simplicity, developers today
typically resort to using a single database that provides a form

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

PPDP’17, Namur, Belgium

© 2017 Copyright held by the owner/author(s). Publication rights licensed to ACM.
978-1-4503-5291-8/17/10...$15.00

DOI: 10.1145/3131851.3131862

Peter Van Roy
Université catholique de Louvain
Louvain-la-Neuve, Belgium

Annette Bieniusa
Technische Universitat Kaiserslautern
Kaiserslautern, Germany

of strong® consistency. In essence, the database serves as shared
memory for the clients in the system.

A single database is an obvious bottleneck as it introduces a
serialization point for all operations; this restricts the possible
throughput of the system. As developers strive to provide a near-
native experience where operations appear to happen immediately,
and since not all clients can be geographically located close to the
database, application performance can suffer as users move farther
from the database; or worse, when clients can’t communicate with
the database at all because they are offline. To provide good user
experience, including high availability and low latency, developers
are forced to integrate replication in the system design.

Systems that favor weak consistency scale better: data items can
be locally replicated, locally mutated by the application, and their
state can be disseminated asynchronously, outside of the critical
path. Weak consistency allows applications to continue to operate
while offline. While these systems provide for high scalability and
high performance, programming with weak consistency can be a
challenge for the application developer as updates to data items have
no guarantee on update visibility or update order. Concurrency
poses an additional problem, as updates happening concurrently at
different replicas may be conflicting.

Numerous systems and programming models([2, 3, 6, 8, 11, 14,
17, 18] have been proposed for working with weak consistency,
however few have seen adoption. Many of the systems have sound
theoretical foundations, but few perform evaluations at scale to
demonstrate the benefits in practice. We believe that the lack of
these results comes from the difficulty in the required infrastruc-
ture for large-scale experiments, and the challenges in engineering
an implementation of a theoretical model using existing software
languages and libraries.

In this paper, we discuss the practical issues encountered when
evaluating one of these programming models, Lasp [4, 5], originally
presented at PPDP ‘15. Lasp is designed using a holistic approach
where the programming model was co-designed with its runtime
system to ensure scalability. We examine the challenges of engi-
neering an implementation capable of scaling to a large number of
nodes running in a public cloud environment, using a real world ap-
plication scenario. Further, we report on the engineering challenges

!For instance, linearizability, where a value follows the real-time order of updates.

PPDP’17, October 9-11, 2017, Namur, Belgium

of demonstrating the scalability of the Lasp model. Our experience
report substantiates that empirically validating scalability is non-
trivial, regardless of the programming model.

2 ADVERTISEMENT COUNTER

Lasp was invented to ease the development of distributed applica-
tions with weak consistency. The advertisement counter scenario
from Rovio Entertainment, creator of Angry Birds, is an ideal fit
for Lasp. This application counts the total number of times each
advertisement is displayed on all client mobile phones, up to a given
threshold for each. The application has the following properties:

o Replicated data. Data is fully replicated to every client in
the system. This replicated data is under high contention
by each client in the system.

e High scalability. Clients resemble individual mobile phone
instances of the application, so the application should scale
up to millions of clients.

e High availability. Clients need to continue operation
when disconnected as mobile phones frequently have peri-
ods of signal loss (offline operation).

As part of the large-scale evaluation done in the SyncFree project,
and following the personal curiosity of the developers, we decided
to invest resources in using industrial-strength engineering tech-
niques to evaluate the scalability of this application running in a
real world production cloud environment.

2.1 Lasp

Lasp [11] is a programming model that allows developers to write
applications with Conflict-Free Replicated Data Types (CRDTs) [1,
16]. CRDTs are abstract data types, designed for use in concurrent
and distributed programming, that have a binary merge operation
to join any two replicas of a single CRDT. Under concurrent modi-
fication without coordination, different replicas of a single CRDT
may diverge; the merge operation supports value convergence by
ensuring that given enough communication, all replicas, without co-
ordination, will converge to a single deterministic value regardless
of the order that data is received and merged.

Historically, before CRDTs were introduced, ad-hoc merge func-
tions were used, often with few formal guarantees. Later, after
their development, programmers who wanted to use CRDTs in
their applications would have two choices: either, using a single
CRDT from existing literature to store application state, fitting their
problem to an existing data structure; or, building a custom CRDT
that fits their application domain, which requires to ensure that the
merge operation is both deterministic and convergent.

Lasp improves this choice in two ways:

e Composition. Lasp provides set-theoretic and functional
combinators for composing CRDTs into larger CRDTs.

e Monotonic conditional. Lasp introduces a conditional
operation that allows the execution of application logic
based on monotonic conditions? on CRDTS.

These two concepts allow Lasp applications to be both trans-
parently and arbitrarily distributed across a set of nodes without

2Mono’tonicity implies that once a condition becomes true, it remains true; a mono-
tonicity check can be done without distributed coordination.

C. Meiklejohn et al.

altering application behavior. For brevity, the reader is referred
to [11] for a full treatment of the Lasp semantics.

The advertisement counter uses two data structures from Lasp:
the Add-Wins Set CRDT>, where elements can be arbitrarily re-
moved and inserted without coordination and under concurrent
add and remove operations the add will ‘win’; and the Grow-Only
Counter CRDT, which models a counter that only increments.

2.2 Overview

The design of the advertisement counter is roughly broken into
three components.

o Initialization. When the advertisement counter applica-
tion is first initialized, we first create Grow-Only Counters
for each unique advertisement we want to track impres-
sions for, and we then insert references to them into an
initial Add-Wins Set of advertisements.

e Selection of displayable advertisements. We define a
dataflow computation in Lasp that will derive an Add-Wins
Set of advertisements to display to the clients based on
advertisements that have valid “contracts”: records that
represent that an advertisement is allowed to be displayed
at the current time (Figure 1).

e Enforcing invariants. Since clients increment each ad-
vertisement counter as advertisement impressions occur,
when the target number of impressions is reached both
the client and the server will fire a trigger to remove the
advertisement counter from the set of advertisements, to
prevent the advertisement from being further displayed.
This can be done without coordination through the use of
the Add-Wins Set.

Asynchronous Daraflow

a Ads Ads
X With
@ Coniracts Conrracts,

Figure 1: Asynchronous dataflow computation in Lasp that de-
rives the set of displayable advertisements.

The advertisement counter has two important design choices,
which makes its implementation in Lasp ideal.

e Offline support. As Angry Birds is a mobile application,
there will be periods without connectivity. During this
time, advertisements should still be displayable.

e Lower-bound invariant. Advertisements need to be dis-
played a minimum number of times; additional impressions
are not problematic. This is a monotonic condition: once
the condition is true, it remains true.

2.3 Implementation

The advertisement counter is broken into two components that
work in concert. Both components track a single replica of a set of

3ak.a. Observed-Remove Set

Practical Evaluation of the
Lasp Programming Model at Large Scale

identifiers of displayable advertisements, and for each identifier a
replica of an advertisement counter that tracks the total number of
times the advertisement has been displayed to the user. Each node
in our experiment runs either a single client or server process.

e Server processes. One or more server processes, each
responsible for propagating their state to clients and dis-
abling advertisements that have been displayed a minimum
number of times by monotonically removing them from
the set of displayable advertisements.

o Client processes. Many client processes that periodically
propagate their state with other nodes, and increment their
counter replicas based on a synthetic workload.

The prototype implementation of the Lasp programming model
is built in the Erlang programming language and exposed to the
user as an application library.

The fully instrumented Lasp advertisement counter client is im-
plemented in 276 lines of Erlang code, and the fully instrumented
advertisement counter server is 333 lines of Erlang code. Around
50% of this code is for instrumentation and orchestration, to ensure
we can perform a full analysis of the application during experimen-
tation. The Lasp runtime system takes care of cluster maintenance,
data synchronization and storage, which are done manually in the
previous approaches (ad-hoc merge or custom CRDT design).

3 SYSTEM ARCHITECTURE

To perform a real world evaluation of the advertisement counter, we
implemented an efficient, scalable runtime system for Lasp. Lasp’s
runtime system is a highly-scalable eventually consistent data store
with two different dissemination mechanisms (state-based vs. delta-
based) and two different cluster topologies (datacenter vs. hybrid
gossip). Lasp’s programming model, presented in [11], sits above
the data store and exposes a programming interface.

Datacenter Lasp [11] operates using a structured overlay net-
work. Hybrid Gossip Lasp [12] uses an unstructured overlay net-
work, and by design should achieve greater scalability and provide
better fault-tolerance [15].

3.1 Datacenter Lasp

Datacenter Lasp refers to the prototype implementation of the
runtime system presented with the programming model, at this
conference two years ago [11].

In Datacenter Lasp, all CRDT state is both partitioned and repli-
cated across several datacenter nodes. Client processes commu-
nicate directly with server processes that are running on data-
center nodes; client processes do not communicate amongst each
other. Replication is used across datacenter nodes for fault toler-
ance, and partitioning/sharding is used for horizontal scalability:
this is achieved through the use of consistent hashing and hash-
space partitioning. In our experiments this is simplified and there
is no partitioning, since the data set for our experiments never
exceeds a single datacenter node’s available capacity.

3.2 Hybrid Gossip Lasp

Hybrid Gossip Lasp is inspired by two Hybrid Gossip protocols,
HyParView [10], and Plumtree [9]. In Hybrid Gossip Lasp, nodes
are assembled in a peer-to-peer topology, where client processes can

PPDP’17, October 9-11, 2017, Namur, Belgium

communicate either with server processes running on datacenter
nodes or client processes. State is delivered transitively through
other processes in the system: there is no need to communicate
directly with a server process running on a datacenter node.

Hybrid Gossip Lasp uses a membership protocol heavily inspired
by HyParView, to compute an overlay network containing all of
the members in the cluster. The notable differences between the
HyParView protocol and our membership protocol were the results
of adapting the theoretical treatment in the HyParView paper to
an actual implementation that was used for this experiment.

Specifically, the original HyParView protocol was evaluated in a
low-churn environment, whereas our environment has much higher
churn. Churn is defined as rate of node turnover, i.e., percentage of
nodes leaving and being replaced by new nodes, per time unit. The
higher churn in our environment was a byproduct of attempting to
reduce experimentation time to save costs when operating large
clusters: this allowed experiments that would normally take hours
for cluster deployment and operations to be reduced to fractional
hours at significant cost savings. For details on the modifications
to the protocol, the reader is referred to [13].

3.3 Dissemination Protocols
The system supports two data dissemination protocols.

o State-based. Objects are locally updated through muta-
tors that inflate the state. Objects are periodically sent to
peers that merge the received object with their local state.

o Delta-based. Objects are locally updated by merging the
state with the result of §-mutators [1], called deltas, that
compactly represent changed portions of state. These
deltas are buffered locally and sent to each local peer in
every propagation interval.

4 ENGINEERING SCALE

The Lasp semantics ensures that the runtime system is correct
in theory for arbitrary distribution of the computation. However,
engineering a scalable real-world system requires a significant
amount of sophisticated tooling to ensure scalability both for de-
ployment and for observability during execution. Near the end of
the SyncFree project, we designed an experiment with the goal of
scaling to 10 000 nodes. We finally achieved a scale of 1024 nodes
at a total cloud computing cost of about €9000.

4.1 Experiment Configuration

For the purposes of the experiment, we used a total of 70 m3.2xlarge
instances in the Amazon EC2 cloud computing environment, within
the same region and availability zone. We used the Apache Mesos [7]
cluster computing framework to subdivide each of these machines
into smaller, fully-isolated machines using cgroups. Each virtual
machine, representing a single Lasp node, communicated with other
nodes in the cluster using TCP, and given the uniform deployment
across all of the allocated instances, had varying latencies to other
nodes in the system depending on their physical location.

When subdividing resources for the experiment, we allocated
each server task 4 GB of memory with 2 virtual CPUs, and each
client task 1 GB of memory, with 0.5 virtual CPUs. Here a task is a
logical unit of computation that is executed on one virtual machine.

PPDP’17, October 9-11, 2017, Namur, Belgium

We consider that these numbers vastly underrepresent the capa-
bilities of modern mobile devices in widespread deployment today
and therefore will lead to conservative results in the evaluation.
We allocate more resources to servers, specifically in Datacenter
Lasp mode, as servers are required to maintain connections to more
nodes in the system; the advertisement counter does not require
more resources between Datacenter and Hybrid Gossip modes.

4.2 Experimental Workflow

As running experiments in an unsimulated cloud environment can
be challenging due to the inherent nondeterminism across different
executions of the same experiment, we created a workflow targeted
at reducing nondeterminism by controlling the experiments’ setup
and teardown procedures with detailed instrumentation for post-
experimental analysis. We describe that workflow below.

e Bootstrapping. Initially, all of the server and client pro-
cesses are bootstrapped and joined into a single cluster.
The experiment does not begin until we ensure that all of
the nodes in the system are connected and the connection
graph forms a single connected component. Each node
should be reachable by every other node in the system,
either directly as a local neighbor, or indirectly via multi-
hop. During this process, the system creates advertisement
counters and the set of displayable ads.

e Simulation. Once we ensure the cluster is connected, each
node starts collecting metrics and generating its own work-
load that randomly selects a counter to increment based
on the set of displayable advertisements every predefined
impression interval. Periodically, each process propagates
local replicas with neighbor processes. It should be noted
that each client has its own workload generator: using a
centralized harness for running the experiment introduces
coordination, which reduces the scalability of the system.

e Convergence. As each of the experiments has a controlled
number of events that will be generated based on the num-
ber of clients participating in the system, the experiment
continues to run until each node has observed the effects
of all events: we refer to this process as convergence.

e Metrics aggregation and archival. Once convergence
is reached, the experiment is complete. Each node, upon
observing convergence begins uploading metrics recorded
during the experiment to a central location: these logs are
used for analysis of the runtime system. Once this process
is complete, the experiment harness waits for the system
to fully teardown the cluster before starting a subsequent
run, to prevent state leakage between runs when reusing
the same hardware to reduce costs.

4.3 Experimental Infrastructure

Evaluation of a large-scale distributed programming model is diffi-
cult. This is due to failures in the underlying frameworks that are
used to provide mechanisms for deployment and operations, and
because of inadequate tools required to observe the system during
execution to ensure it is operating properly.

4.3.1 Apache Mesos. While experimentation shows Lasp scala-
bility to 1024 nodes, we do not believe that this number is a firm

C. Meiklejohn et al.

upper limit. When attempting to run experiments with 2048 nodes
we quickly ran into problems with the Apache Mesos cloud com-
puting framework. One issue is that when attempting to bootstrap
a cluster containing 70 instances too quickly, instances become
disconnected and need to be manually reprovisioned. This required
a slower cluster deployment where a cluster would be scaled from
35 instances, first to 50 instances, and then to 70 instances. As
the 2048 experiment required 140 m3.2xlarge instances to operate,
cluster deployment would take significantly longer.

When attempting to launch 2048 tasks in Mesos (with a single
task representing a single application node), instances would be-
come overloaded quickly and fail to respond to heartbeat messages:
this triggered these instances being marked as offline by Mesos and
the tasks orphaned. This would require restarting the experiment
and reallocating the cluster to account for the lost tasks.

4.3.2 Sprinter. Once tasks were launched by Apache Mesos, we
needed a mechanism for client processes to discover other client
processes in the system and connect to them.

Therefore, we built an open source service discovery library
called Sprinter that was used to fetch a list of running tasks from
the Mesos framework, Marathon, and supply them to the system
as targets to connect to. Sprinter also performs the following func-
tions:

e Graph analysis for connectedness. Each node uploads
its local membership view to Amazon S3. The first, lexico-
graphically ordered, server periodically pulls this member-
ship information and builds a local graph that is analyzed
to determine if the graph contains all clients, and that the
connection graph forms a single connected component.

o Delay experiment for connectedness. Based on graph
analysis, the experiment’s start is delayed until the con-
nection graph forms a single connected component.

o Periodic reconnection if isolated. If a node becomes
isolated from the cluster, it will rejoin the cluster, using
the information provided by Marathon.

To assist in operator debugging of the experiments, a graphical
tool was built to visualize the graph information from Sprinter
along with extensive logging to the server node with information
about cluster conditions.

4.3.3 Partisan. Distributed Erlang has known scalability prob-
lems when operated in the range of 50 or more nodes as it tracks full
membership information in the cluster at each node and maintains
full connectivity between nodes using a single TCP connection that
is used for both data transmission and heartbeat messages. Single
connections are problematic because of head-of-line blocking when
large messages are transmitted.

We knew that for the experiment to scale we would need: (1)
to move away from Distributed Erlang, (2) to configure network
topologies for both Datacenter Lasp and Hybrid Gossip Lasp in a
single specification, and (3) to specify configurations at runtime
without having to modify application code. To do this we built
Partisan, an open source Erlang library that provides an alternative
communication layer that eschews the use of Distributed Erlang.
Partisan supports multiple network configurations and topologies:
a client-server star topology, a full connectivity topology mirroring

Practical Evaluation of the
Lasp Programming Model at Large Scale

Distributed Erlang’s, a static topology where per-node membership
is explicitly maintained, and a random unstructured overlay mem-
bership protocol inspired by the HyParView membership protocol.

4.3.4 Workflow CRDT (W-CRDT). In our experiments, a cen-
tral task could not be used to orchestrate the execution: early
experiments demonstrated that the central task quickly became a
bottleneck and slowed down execution to the speed of the central
task. Therefore, we eliminated the central task.

However, without a central task performing orchestration, it be-
comes more difficult to control when nodes should perform certain
actions. For example, after event generation is complete, we should
wait for convergence before proceeding to metrics aggregation.
Therefore, we needed a mechanism for asynchronously controlling
the workflow of the application scenario.

We devised a novel data structure, called the Workflow-CRDT (W-
CRDT), that is disseminated between nodes for controlling when
certain actions should take place. This object is not instrumented by
our runtime or included in any of the application logging, to prevent
the structure itself from influencing the results of the experiment.
The W-CRDT is a sequence of Grow-Only Map CRDTs, where each
map is a function from opaque node identifiers to booleans. The
sequence is implemented with the recursive Pair CRDT (similar to
a recursive list type). The W-CRDT operates as follows:

e Per node flag. Each node’s portion of a task to be com-
pleted is modeled as a flag; each node toggles its flag when
it has completed its work.

e Tasks as grow-only maps. Each task that needs to be
performed is represented by one grow-only map. When all
the map’s flags are true, the task is considered as complete.
This corresponds to a barrier synchronization.

e Sequential composition of tasks. Each task can be se-
quenced with another task. A task starts when its preced-
ing task has completed.

o Workflow completion. The workflow is considered com-
plete when all of the tasks that make up the sequential
composition are complete.

The W-CRDT is used to model the following sequential workflow
in each experiment.

e Perform event generation. Once event generation is
complete, nodes mark event generation complete.

¢ Blocking for convergence. Once convergence is reached,
nodes mark convergence complete.

e Log aggregation. Once convergence is reached, nodes
begin uploading their logs to a central location and mark
log aggregation complete.

e Shutdown. Shutdown once log aggregation is complete.

5 EVALUATION

For Datacenter Lasp, we ran experiments using state-based dissem-
ination, with a single server, and 32, 64, 128, 256 clients, forming
with the server a star graph topology. For Hybrid Gossip Lasp, we
ran experiments using both dissemination strategies, with a single
server, and 32, 64, 128, 256, 512, and 1024 clients.

Each experiment was run twice, with the advertisement impres-
sion interval fixed at 10 seconds and the propagation interval at 5

PPDP’17, October 9-11, 2017, Namur, Belgium

seconds. The total number of impressions was configured to ensure
that, in all executions, the experiment ran for 30 minutes.

Figure 2 and Figure 3 evaluate three different operational modes
for Lasp, examining the state transmission for the duration of the ex-
periment. Two Hybrid Gossip dissemination strategies, state-based
and delta-based, are evaluated using a single overlay generated by
the HyParView protocol. We also evaluated Datacenter Lasp, where
clients propagate changes to the server using a state-based dissem-
ination strategy. We did not evaluate delta-based for Datacenter
Lasp, as it is unrealistic to believe that the server could buffer all
changes in the system. In this evaluation, we scale up to 256 client
processes: this is the largest number of client processes a single
server could support in Datacenter Lasp. Hybrid Gossip scaled to
1024 nodes, before we ran into issues with Apache Mesos.

Datacenter Lasp performs the best in terms of state transmis-
sion when compared to Hybrid Gossip Lasp using the same dis-
semination strategy. This results from Datacenter Lasp have no
redundancy at all: the star topology has a single point of failure
that is used for communication between all nodes in the system.
Delta-based dissemination demonstrates a clear advantage for Hy-
brid Gossip Lasp where redundancy is required to keep the system
operating: state transmission can be reduced without sacrificing
the fault-tolerance properties of the underlying overlay network. In
terms of protocol transmission in Hybrid Gossip Lasp, delta-based
dissemination performs better than state-based, even though it is a
more complex protocol: in delta-based dissemination a process can
track which updates have been seen by its neighbor processes and
it will not disseminate an unchanged object, while in state-based
dissemination an object is always propagated.

Advertisement Impression Counter
03 | | | | | |

GB Transmitted

DCIs HGIS HG/ID DCIs HG/S HG/ID

32 64

(Client Number)
—Scare

W Protocol

Figure 2: Comparison of state- and delta-based dissemination
in both Datacenter and Hybrid Gossip Lasp with 32/64 clients.

Our experiments confirm several design considerations made in
Lasp. First, as demonstrated by the graphs, in the Datacenter Lasp
model the transmission cost is reduced as there is no redundancy
in messaging and subsequently no fault-tolerance. In this model,
because of communication through a datacenter node, an update
takes two hops to reach all clients in the system. However, this
model has limited scalability because a centralized point, which
could be partitioned and replicated across multiple servers, is used
as a coordination point for all clients.

Hybrid Gossip Lasp adds additional redundancy by construct-
ing a random overlay network using the HyParView protocol and

PPDP’17, October 9-11, 2017, Namur, Belgium

Advertisement Impression Counter
45 oy e i P

GB Transmitted

DC/S HG/S HG/D

DC/S HGI/S HG/ID DC/S HGI/S HG/ID DC/S HGI/S HG/ID

128 256 512 1024
(Client Number)

Figure 3: Comparison of state- and delta-based dissemination
in both Datacenter and Hybrid Gossip Lasp with Datacenter
Lasp < 256 clients (limited in scalability) and Hybrid Gossip
Lasp < 1024 clients.

gossiping state to local peers. This model has additional cost, but
provides fault-tolerance through redundancy. In the worst case, an
update will be observed by all nodes V after log |V| propagation
intervals, since in this topology the diameter is logarithmic on the
number of nodes.

6 CONCLUSION

Designing new programming models for building large-scale dis-
tributed applications requires not only a solid theoretical design,
but a well-engineered solution to demonstrate that the system can
scale as advertised. Specifically, large-scale evaluations are plagued
by the following problems.

¢ Existing tooling can be problematic. Existing infras-
tructure, frameworks, and languages can be treacherous
as they can reduce the scalability of the system because of
their design choices.

e Visualizations are invaluable. Visualizations assist in
debugging the system in real time.

o Achieving reproducibility is non-trivial. Clouds pro-
vide high-level abstractions over machines, removing visi-
bility into server location and isolation which makes con-
trolled experiments difficult.

e Performance can fluctuate. Virtual machine placement
and migration, compounded by a language VM layer, are
factors that make performance measurement unpredictable.
Cost considerations also limit the statistical smoothing
possible by running multiple experiments.

e Evaluations are expensive. To provide a real world eval-
uation, significant funding is required for the infrastructure
resources and significant time is required for developing
deployment tools and for debugging experiments.

Lasp’s scalable design was achieved by taking a holistic approach:
both the runtime system and programming model were designed
to accommodate one another in a way that allows scalability. How-
ever, the effort required to demonstrate Lasp as both scalable and
practical remained a non-trivial challenge.

C. Meiklejohn et al.

Acknowledgements. This work was partially funded by the SyncFree
Project in the European Union Seventh Framework Programme (FP7/2007-
2013) under grant agreement n° 609551, by the LightKone Project in the
European Union Horizon 2020 Framework Programme for Research and In-
novation (H2020/2014-2020), under grant agreement n°® 732505, by SMILES
within project “TEC4Growth - Pervasive Intelligence, Enhancers and Proofs
of Concept with Industrial Impact/NORTE-01- 0145-FEDER-000020" fi-
nanced by the North Portugal Regional Operational Programme (NORTE
2020), under the PORTUGAL 2020 Partnership Agreement, and through the
European Regional Development Fund (ERDF). Chris is funded by the Eras-
mus Mundus Doctorate Programme under grant agreement n° 2012-0030.

REFERENCES

[1] Paulo Sérgio Almeida, Ali Shoker, and Carlos Baquero. 2016. Delta State Repli-
cated Data Types. CoRR abs/1603.01529 (2016). http://arxiv.org/abs/1603.01529

[2] Peter Alvaro, Neil Conway, Joseph M Hellerstein, and William R Marczak. 2011.
Consistency Analysis in Bloom: a CALM and Collected Approach.. In CIDR.
249-260.

[3] Sebastian Burckhardt, Daan Leijen, Jonathan Protzenko, and Manuel Fahndrich.
2015. Global sequence protocol: A robust abstraction for replicated shared
state. In LIPIcs-Leibniz International Proceedings in Informatics, Vol. 37. Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik.

[4] Christopher S. Meiklejohn. 2017. Lasp Language Documentation. https:
/Nasp-lang.org. (2017).

[5] Christopher S. Meiklejohn. 2017. Lasp Language Source Repository. https:
//github.com/lasp-lang. (2017).

[6] Neil Conway, William R Marczak, Peter Alvaro, Joseph M Hellerstein, and David
Maier. 2012. Logic and lattices for distributed programming. In Proceedings of
the Third ACM Symposium on Cloud Computing. ACM, 1.

[7] Benjamin Hindman, Andy Konwinski, Matei Zaharia, Ali Ghodsi, Anthony D
Joseph, Randy H Katz, Scott Shenker, and Ion Stoica. 2011. Mesos: A Platform
for Fine-Grained Resource Sharing in the Data Center.. In NSDI, Vol. 11. 22-22.

[8] Lindsey Kuper and Ryan R Newton. 2014. Joining forces: toward a unified
account of LVars and convergent replicated data types. In 5th Workshop on
Determinism and Correctness in Parallel Programming (WoDet 2014).

[9] Jodo Leitéo, Jose Pereira, and Luis Rodrigues. 2007. Epidemic broadcast trees.
IEEE, 301-310.

[10] Jodo Leitéo, José Pereira, and Luis Rodrigues. 2007. HyParView: A membership

protocol for reliable gossip-based broadcast. IEEE, 419-429.

Christopher Meiklejohn and Peter Van Roy. 2015. Lasp: A language for dis-

tributed, coordination-free programming. In Proceedings of the 17th International

Symposium on Principles and Practice of Declarative Programming. ACM, 184-195.

[12] Christopher Meiklejohn and Peter Van Roy. 2015. Selective Hearing: An Ap-

proach to Distributed, Eventually Consistent Edge Computation. In Reliable

Distributed Systems Workshop (SRDSW), 2015 IEEE 34th Symposium on. IEEE,

62-67.

Christopher S Meiklejohn and Peter Van Roy. 2017. Loquat: A framework for

large-scale actor communication on edge networks. In Pervasive Computing

and Communications Workshops (PerCom Workshops), 2017 IEEE International

Conference on. IEEE, 563-568.

Florian Myter, Tim Coppieters, Christophe Scholliers, and Wolfgang De Meuter.

2016. I now pronounce you reactive and consistent: handling distributed and

replicated state in reactive programming. In Proceedings of the 3rd International

Workshop on Reactive and Event-Based Languages and Systems. ACM, 1-8.

Rodrigo Rodrigues and Peter Druschel. 2010. Peer-to-peer systems. Commun.

ACM 53, 10 (2010), 72-82.

[16] Marc Shapiro, Nuno Preguica, Carlos Baquero, and Marek Zawirski. 2011. A com-
prehensive study of convergent and commutative replicated data types. Technical
Report RR-7506. INRIA.

[17] KC Sivaramakrishnan, Gowtham Kaki, and Suresh Jagannathan. 2015. Declara-
tive Programming over Eventually Consistent Data Stores. In Proceedings of the
36th ACM SIGPLAN Conference on Programming Language Design and Implemen-
tation (PLDI ’15). ACM, New York, NY, USA, 413-424. https://doi.org/10.1145/
2737924.2737981

[18] Douglas B Terry, Marvin M Theimer, Karin Petersen, Alan J Demers, Mike J
Spreitzer, and Carl H Hauser. 1995. Managing update conflicts in Bayou, a weakly
connected replicated storage system. Vol. 29. ACM.

—_
o

[13

[14

[15

http://arxiv.org/abs/1603.01529
https://lasp-lang.org
https://lasp-lang.org
https://github.com/lasp-lang
https://github.com/lasp-lang
https://doi.org/10.1145/2737924.2737981
https://doi.org/10.1145/2737924.2737981

	Abstract
	1 Introduction
	2 Advertisement Counter
	2.1 Lasp
	2.2 Overview
	2.3 Implementation

	3 System Architecture
	3.1 Datacenter Lasp
	3.2 Hybrid Gossip Lasp
	3.3 Dissemination Protocols

	4 Engineering Scale
	4.1 Experiment Configuration
	4.2 Experimental Workflow
	4.3 Experimental Infrastructure

	5 Evaluation
	6 Conclusion
	References

